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Energetic photon production in proton-neutron as well as in proton-proton collisions at inter-
mediate bombarding energies are investigated in a meson-exchange potential model calculation in
an eAort to provide a more reliable basis for calculations of hard photon production in heavy-ion
collisions. Special attention is paid to the role of the one-body rescattering contribution, which has
been neglected in previous work. It is shown that this contribution enhances the cross section for
photon energies only near the maximum value allowed kinematically. As a function of photon ener-

gy, both pn and pp bremsstrahlung inclusive cross sections are shown to be rather Oat except in the
low photon energy region. The shape of the angular distribution is, to a large extent, determined by
the convection current contribution, which in the soft-photon limit has a well-known dipole shape
in the case of pn bremsstrahlung and a quadrupole shape in the case of pp bremsstrahlung. For pho-
ton energies above —150 MeV where the magnetic current contribution dominates over the convec-
tion contribution, the shape of the angular distribution is roughly of a cos I9 form. The internal
current gives rise to a nearly isotropic angular distribution. The ppy cross section is shown to be
very small compared to the pny cross section, even for considerably high-energy photons, because
of the two-body current contribution, which is mostly absent in pp bremsstrahlung. The present cal-
culation yields np bremsstrahlung cross sections which still tend to underpredict the data, although
the measurements have large uncertainties.

I. INTRODUCTION

The observation of energetic photons produced in
intermediate-energy heavy-ion collisions' has opened a
new field of great interest in heavy-ion physics. The
weakness of the electromagnetic interaction, combined
with the fact that these photons are very energetic, makes
them (the photons) a clean probe of the reaction dynam-
ics. Theoretical calculations using transport equa-
tions (such as the Boltzmann-Uhling-Uhlenbeck or
Boltzmann master equation) to describe the heavy-ion dy-
namics give rise to photon cross sections which are in
reasonable agreement with the experimental data. The
basic ingredient in such calculations is the elementary
proton-neutron (pn ) bremsstrahlung process. Proton-
proton (pp) bremsstrahlung is expected to play a minor
role, at least in the region of photon energies covered by
the existing heavy-ion data. Unfortunately, the scarcity
of the pn bremsstrahlung data does not allow to provide
the necessary information required in heavy-ion calcula-
tions. Therefore, all of these calculations rely on the
theoretical prediction of the elementary pn bremsstrah-
lung process.

In an effort to provide a more reliable foundation for
calculations of heavy-ion photoproduction, in the present
work we investigate the elementary nucleon-nucleon
(XX) bremsstrahlung inclusive processes. The np brems-

strahlung has been studied theoretically in the past ' in
an attempt to investigate the possible off-energy-shell be-
havior of the 1VX interaction which is not accessible with
elastic scattering. However, the kinematical conditions
considered in those works are quite different from those
involved in heavy-ion experiments. Recently, in Ref. 11,
we investigated some of the aspects of pn bremsstrahlung
within conditions more suitable for application in heavy-
ion calculations. In particular, we have shown that the
two-body current is the dominant contribution for high-
energy photons. In the present work we further analyze
the elementary bremsstrahlung process for producing en-
ergetic photons. In particular, the rescattering contribu-
tion from the one-body current which was neglected in
Ref. 11 will be investigated. In addition to pn brems-
strahlung, we also study pp bremsstrahlung. A few com-
parisons with the existing data are also presented. For
the purpose of testing our numerical results, we compare
the present calculations with earlier ones.

This paper is organized as follows: In Sec. II we
present the necessary formulas for calculating the rescat-
tering contribution from the different parts of the one-
body current. A few numerical details are given in Ap-
pendix A. In Secs. III A and III B, selected results for pn
and pp bremsstrahlung, respectively, are discussed. Sec-
tion III C is devoted to the parametrization of the
proton-neutron-photon (pny) amplitude following Ref.
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12. Conclusions are given in Sec. IV. In Appendix B, a
few details are given on how to construct the Lorentz-
invariant transition amplitude from a nonrelativistic T
matrix.

II. RKSCATTKRING
FROM THE ONE-BODY CURRENT

+ ek; f V, T+ 0;
1

E,

+ ek; f T V, T+0;
Ef ' E,

(2.1)

In the above equation, )t) denotes the two-nucleon unper-
turbed wave function, E is the energy denominator, and
T stands for t—he T matrix. The subscript i (f) refers to
the initial (final) two-nucleon state, while the superscript
+ or —indicates the boundary condition associated with
the incoming (+) or outgoing ( —) waves. V, is the pho-
ton emission potential and it consists of three terms:"

Following Ref. 11, we write the transition amplitude M
for producing a photon of momentum k and polarization
e in a NN collision as

M=&e, k;y, IV, IO;y, &

+ e, k;Pg (T ) V, 0;P, )em

Vem Vconv + Vmagn + Vexch (2.2)

where V„„,stands for the convection and V, „ for the
magnetization current contribution; they constitute the
one-body current. V„,h denotes the two-body current
contribution and it is dominated by the meson-exchange
current. '

In a previous work, "we calculated the bremsstrahlung
amplitude as given by Eqs. (2.1) and (2.2) except for the
rescattering contribution [the last term in Eq. (2.1)] from
the one-body current, V„„,+ V, „. In Ref. 13 it is
shown that, in the soft-photon approximation (SPA), a
part of the rescattering term from the one-body current
cancels the contribution from the two-body current, so
that current conservation is preserved in that limit. Nev-
ertheless, based on the results by Brown and Franklin'
who found that it gives a minor inAuence to the cross sec-
tions, we had ignored that contribution entirely. This ar-
gument, however, has to be verified since the kinematical
conditions in which we are interested are quite diff'erent
from those studied in Ref. 10. In particular, we consider
photons of much higher energies, where the rescattering
contributions are expected to be more important. There-
fore, in the present work, we also take into account this
rescattering contribution. We note that the rescattering
term from the two-body current was included in Ref. 11.

The rescattering contribution from the convection
current in momentum space and in the initial NN center-
of-mass (c.m. ) frame reads

e, k; ~ T V„„,

d p E'p= —i/(2~)/k 5ss g J
k , kp' ——,—p' ——;ST)T ) p" —k, —p";ST

)

e2
p' ——,—p' ——;SMs,(T ) p", —p" —k;SMs„

+

x „&p";SM,„Iz+Ip;SM, & .
E(p",p )

In Eq. (2.3), S (S') and Ms (Ms. ) denote total spin and its
projection in the initial (final) state, m stands for the mass
of the nucleon, and e", and e2' are the electric charges of
the interacting nucleons 1 and 2 (e for protons and 0 for
neutrons). The double-primed quantities refer to the in-
termediate state. The relative momentum p (p') in the in-
itial (final) state is related to the momenta of the nucleons
p, and p2 (p', and p2) by

ergy denominators D+ are given by

D+ = s(
I

p' —k/2I )+s(
I
p'+ k/21)

—s(p")—s( Ip'+k/2I )+i i)

with

( ) ( 2+ 2) i /2

(2.5a)

(2.5b)
P PP=2 P P=2 P (2.4a) In the limit of k~o, Eq. (2.5a) reduces to

P, k, P
2 2' 2 2

(2.4b)

D+ =E(p",p')—
=2[a(p') —s(p" ) ]+i i) . (2.5c)

with P denoting the initial NN c.m. momentum. The en- In Ref. 11, Eq. (2.8a) should read as Eq. (2.5c), instead of
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FIG. 1. One-body rescattering diagram for NNy to first order in the electromagnetic interaction. The dashed lines denote the NN
T matrix and the wiggled lines represent the photon.

E(p', p ) =2[E(p') —E(p) ]+iI) .

Also in Eq. (2.3) we have used the notation

(p1, p2, SMs I Tlp1, p2;SMs )

for the arguments of the T-matrix elements. When the
momenta of two interacting nucleons diA'er only by a
sign, we use the usual notation of omitting one of the
(momentum) arguments, such as in the last line in Eq.

(2.3). A diagrammatic representation of the one-body re-
scattering amplitude and, in particular, of Eq. (2.3), is
shown in Fig. 1.

The T-matrix elements in Eq. (2.3) may be easily
transformed to any convenient Lorentz frame by noticing
that

( E1E2) ( P 1) P2) S Ms'
I Tl Plr P2 SMs )+E1E2

is a Lorentz scalar (see Appendix B for details). Indeed,

and

p' ——
,
—p' ——;S'Mz, (T ) p" —k, —p";S"Mz,. =A (p';S'M~, (T ) p" ——;S"Mz.. (2.6a)

(2.6b)

where A+ is given by
E(p')s( lp" +k/2I )

I. E(P ')« Ip"+kl )E(lp' —~/2I)s( lp+It/2I )]'" (2.6c)

R„„„=—&(2')/k 5s s g f (e", —e2 )(2' )

The T-matrix elements on the right-hand side of Eqs. (2.6a) and (2.6b) and the numerator in Fq. (2.6c) are expressed in
the final NN c.m. frame, which is shifted by —k with respect to the initial NÃ c.m. frame.

We perform the integration over the momentum p" in Eq. (2.3) numerically, first integrating over the magnitude of
p" ("radial" integral) and then over the solid angle. For most directions p" the integrand under the "radial" integral
presents two poles for it contains a product of two energy denominators. However, since these poles are simple poles,
we can always split the integral into two parts, each part having only one pole (see Appendix A for the details).

In the SPA, the angular integration in Eq. (2.3) can be carried out explicitly since, in this limit, Eq. (2.3) reduces to

( p', SMs I ( T )'I p";SM, - & ( p-";SMs-
I

T+ p; SM, )
(2.7)E(p",p')E(p" p»)

Using the standard partial-wave decomposition of the T matrix, "Eq. (2.7) becomes

R„„„= (2')/k
3 &s', s„„„=v' 1 2 e

(2~)' 3~2 m
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Xg ( ) E (J MJJ™J'lip)&T,T'+1f dp"p 'T;"L' (p ~p ) E ii r E ii L"'L(pP
P

(2.8)
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where J's, I.'s, and T's refer to the total angular momentum, the orbital momentum, and the total isospin of the states
of the two interacting nucleons, respectively. MJ's and MI 's are the corresponding projections of total and orbital an-
gular momenta. The unprimed (single-primed) quantities refer to the initial (final) state, while the double- and triple-
primed ones refer to the intermediate states. The summation in the above equation runs over all J's, I. s, the corre-
sponding projections, and T's. Since all the T-matrix elements involved in Eq. (2.8) have the same boundary condition
(+), we have dropped the superscript + for simplicity. We also introduced the notation [j]—:&2j+ 1.

It is clear from either Eq. (2.7) or (2.8) that the rescattering term from the convection current contributes only to the
pn bremsstrahlung in the SPA. Also, Eq. (2.8) diff'ers from the two-body current contribution derived in Ref. 11 (in the
SPA) in the "radial" part, in addition to the extra factor 2/m. [Unfortunately, in Eqs. (2.14), (2.15a), and (2.17) of Ref.
11, a factor of I/(2~) is missing. Also, Eqs. (2.15b) and (2.17) of that reference lack a factor e. However, the results
presented there remain unchanged, since the correct formulas have been used. ] It is a part of this R„„,that cancels the
two-body contribution. '

The rescattering contribution from the magnetization current is given by

R —ek T V T 0

=iv(2~)lk x f, p' ——,—p' ——;s'Mz tT I p" —k, —p";&'Mz
)

e de" P], k

P2 (
i)g' —s

D+
p' ——,—p' ——;S'M~.(T ) p", —p" —k;S'Ms

X (S'Ms„~o, .(kh e) SMs ~ ) „(p";SMs ~T+ ~p;SMs ) .1

E(p",p)
(2.9)

Here p&' and pz' are the magnetic moments of the interacting nucleons in units of nuclear magnetons (2.793 for protons
and —1.913 for neutrons). In the above equation we have used the fact that

(S'M ~o (khan)SM ) =( —) (S'M .~o, .(kn, e) SM ) (2.10)

with o. , and 0.
2 denoting the Pauli spin matrices.

The structure of Eq. (2.9), as far as the momentum integration is concerned, is identical to that of Eq. (2.3) and there-
fore may be evaluated in the same way as for Eq. (2.3). In the SPA, however, R, „gives no contribution to the brems-
strahlung amphtude because the magnetic current operator is proportional to o .(k h e). Taking the limit k~O, except
in that term, Eq. (2.9) reduces to

3 IIR, „=i&(2n)/k g f [pI'+( —
) pz'](p';S'Mz ~(T ) ~p";S'Ms )

(S'Ms- a, (khan)SMs ~ ) (p";ST ~
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E(I "s"')«I"? )
(2.11)

It is clear from the above equation that, in this limit, only the initial and final states having the same total spin can con-
tribute to pp bremsstrahlung. Using the partial-wave decomposition, Eq. (2.11) yields
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(2.12)
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This completes the derivation of the necessary formu-
las for calculating the one-body rescattering contribution.
Hereafter, we refer to Eqs. (2.11) and (2.12) as the
modified soft-photon approximation (MSPA).

III. RESULTS

In the present paper we use the one-boson-exchange
potential of Ref. 14 as the bare NN interaction for gen-
erating the T matrix. Hereafter, we refer to this potential
as one-boson-exchange potential (OBEPQ). Since it does
not account for inelasticity, its application is, strictly
speaking, restricted to energies below the pion threshold.
Nevertheless, in the following subsections, some of the re-
sults we present are for energies far beyond the pion
threshold (some of them are even beyond the b, isobar
resonance) and, therefore, should be interpreted with cau-
tion. In spite of this, we believe those results to be of in-
terest because they give one an idea of how the NN
bremsstrahlung cross sections originating from the part
of the nuclear Hamiltonian, which describes the elastic
processes, behaves at high incident energies. We also call
attention to the fact that, in the present formalism, the
electromagnetic transition operator is derived from a
nonrelativistic nuclear Hamiltonian, and therefore, effects
such as relativistic spin corrections are not included
which may be considerable, ' ' especially at high in-
cident and photon energies as we are considering here.

The T-matrix elements in this work are generated as
described in Ref. 17, and two-nucleon partial-wave states
through J =11 are considered. All results shown in the
following subsections are calculated in the initial NN c.m.
system, except the exclusive cross sections which are in
the laboratory frame.
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nal plus internal contributions. We observe, however, a
discrepancy of about 10% around the peaks. This
discrepancy is disturbing since the formalism and NN po-
tential we use in calculating the bremsstrahlung ampli-
tude are, in principle, the same as those of Ref. 10 (we
evaluate this amplitude in momentum space, while in
Ref. 10 it is evaluated in coordinate space). The only
difference is that, while in Ref. 10 the transformation of
coordinates from the initial to final NN c.m. frame is
made nonrelativistically, we do this transformation rela-
tivistically. In Fig. 2(b), we show the results when the

A. pn bremsstrahlung
40-

In our previous work, " we investigated the pn brems-
strahlung under the conditions appropriate for heavy-ion
calculations. In this subsection we further analyze this
process paying special attention to the one-body rescat-
tering contribution. However, before discussing these re-
sults, we will compare the present calculation with some
of the earlier ones in order to check our computer code.

In Fig. 2(a), we show a comparison between the present
results and those of Brown and Franklin's' for the ex-
clusive bremsstrahlung cross section in the coplanar
geometry at an incident energy of T&,b =200 MeV. Here
we use the Hamada-Johnston (HJ) potential for generat-
ing the T matrix and the NN partial-wave states through
J=4 are considered in accordance with Ref. 10. The
dashed curve denotes the present result for the external
current contribution while the solid one denotes the
external plus internal current contributions. The internal
current contribution consists of a sum of the one-body re-
scattering and two-body current contributions. The dot-
ted curves denote the corresponding results of Ref. 10.
We see that the present calculation yields results which
are close to those of Ref. 10 for both external and exter-

20

10

—180 —120 —60 0 60 120 180

«~(d )
FIG. 2. Coplanar geometry npy cross section in the labora-

tory frame for neutron incident energy of T~,b =200 MeV and
for nucleon scattering angles of 0„=45 and 0~ =30 as a func-
tion of photon emission angle 0. (a) The dashed curve denotes
the external current contribution, while the solid one denotes
the external plus internal current contributions. The dotted
curves are the corresponding results from Ref. 10. The
Hamada-Johnston potential is used. The two-nucleon partial-
wave states with total spin J up to 4 are included. (b) Same as in
(a) but using the nonrelativistic transformation of coordinates
from the initial to fina NN center-of-mass frame. (c) Same as in
(b) but switching off the factor QE /m QE /m in the invari-
ant transition amplitude (see Appendix 8 for details).
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nonrelativistic transformation is made. Comparing with
the results of Fig. 2(a), we see that this has practically no
effect on the cross section. This is because, in this
geometry where 0„=45' and 0 =30, the photons still
have relatively low energies ( (43 MeV in the c.m.
frame). In Fig. 2(c), we show the results when the factor
Qm/s~ ~Qm/s~, which is needed to construct the
Lorentz-invariant transition amplitude, is switched off
from the T-matrix elements (see Appendix B for re-
marks). We now see that the agreement between our re-
sults and those of Brown and Franklin' becomes excel-
lent. We compared our calculations with those of Ref. 10
for other incident energies and nucleon scattering angles
and found precisely the same feature as illustrated in Fig.
2. Therefore, the differences between the present results
and those of Ref. 10 may be attributed to our inclusion of
the above factor.

In Table I the np bremsstrahlung cross section
d o. /dA„dA in the coplanar geometry is shown for
several final-state neutron and proton scattering angles.
In the third column are the results of Ref. 10 based on
the HJ potential, while in the fourth column are the
present results also based on the HJ potential. They in-
clude all partial-wave states through J =4. We see that
our results are smaller than those of Ref. 10 by
—10—20 % due, basically, to the factor Qm /r~ Qm /s~
which is not included in the calculation of Ref. 10 as dis-
cussed before. In the fifth column we show the results
obtained using the OBEPQ version of the Bonn poten-
tial' and considering the partial-wave states through
J =4. A comparison with the results in the fourth
column reveals that the OBEPQ potential yields slightly
larger cross sections than the HJ potential. In the sixth
and seventh columns are the results based on the OBEPQ
potential with the two-nucleon partial-wave states
through J=6 and 8, respectively. We see that the in-
clusion of higher partial-wave states reduces the cross
sections considerably as the nucleon scattering angles in-
crease. The results quoted in parentheses are from our
previous work" where the one-body rescattering contri-
bution was neglected and the XX interaction used there
differs from the one used here. Although the experimen-

tal data' (last column) have large uncertainties, it seems
the present calculation still underpredicts the data for
large nucleon scattering angles.

Table II shows a comparison between the present cal-
culation and the experimental data of Koehler et al. '

for the npy differential cross section, do /dQ(col, ~) 40
MeV), in the np c.m. frame at an incident energy of
T&,&

= 197 MeV for three different photon emission angles
0. The photon energy is integrated from co&,&=40 MeV.
In the last column is the corresponding angle-integrated
cross section. The quality of the agreement with the data
is similar to that observed for exclusive cross sections.
At a lower incident energy of Ti,~ =140 MeV, there is a
data point by Edgington and Rose which is

cr„,(coh& )40 MeV) =4.25+0.33 pb .

Our calculation yields, for this case, a cross section of
14.5 pb, which is a factor of —3 larger than the measured
value, showing a clear incompatibility between the theory
and that experiment. However, in view of our. prediction
at Ti,t,

= 197 MeV being in reasonable agreement with the
data by Koehler et al. ' together with the fact that we
believe the npy cross section does not show such a strong
incident energy dependence (see discussion of Fig. 5), it
may be that the result of Ref. 20 is too small. Indeed, a
similar incompatibility was found by Nifenecker et al. '

and Nakayama and Bertsch in the case of proton-
nucleus bremsstrahlung.

Having checked our calculations with some of the ear-
lier works and also compared the present results with
some of the existing data, we now turn to the discussion
of inclusive pn bremsstrahlung processes which are re-
quired in heavy-ion calculations. ' Figure 3 illustrates
the effect of the rescattering contribution from the one-
body current on the double-differential cross section at
the photon emission angle of 0=90 and incident energies
of T&,&=200 and 400 MeV. The solid, dashed, dash-
dotted, and double-dashed curves correspond to the total,
convection, magnetization, and two-body. current contri-
butions, respectively, and they include the rescattering
term in the SPA tEq. (2.8)] and MSPA [Eq. (2.12)]. The

TABLE I. The coplanar geometry npy cross section in units of pb/sr' in the laboratory frame for an
incident energy of Tl,&

=200 MeV. The various neutron and proton scattering angles H„and 0~ are in

degrees. The present results including the two-nucleon partial-wave states with total spin J,„='4, 6,
and 8 are in columns denoted by J ~4, J(6, and J(8, respectively. They are based on the one-boson-
exchange potential from Ref. 14. The results in parentheses under the column denoted by J ~6 are
those from our previous work (Ref. 11). The results of Brown and Franklin (Ref. 10) based on the
Hamada-Johnston potential are under the column denoted by HJ(BF). The present results based on the
Hamada-Johnston potential are under the column denoted by HJ. The experimental data in the last
column are from Ref. 18.

30
35
38
40
45

30
35
38
30
30

HJ(BF)

34.6
44.0
69.8
69.9

121.0

HJ

30.9
38.9
56.5
58.4

107.0

J &4

32.1

40. 1

57.6
62.7

116.0

30.8(34.8)
39.0(43.1)
57.3(64.9)
54.8(58.8)
98.0(94.2)

J(8
30.8
38.7
56.4
55.6

101.0

Expt.

35+14
57+13

116+20
114+44
132+53
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TABLE II. The differential npy cross section do. /A(~&, b )40
MeV) (in units of pb/sr) in the npy center-of-mass frame at an
incident neutron energy of T~,b=197 MeV. The photon emis-
sion angle 0 is in the npy center-of-mass frame while the photon
energy co],b is in the laboratory system. The last column is the
corresponding total cross section in units of pb. Two-nucleon
partial-wave states through J =11 are included. The experi-
mental data (last row) are from Ref. 19.

0=60

2.6
3.4+1.0

0= 108

1.7
2.8+0.8

0= 147'

0.9
1.8+0.5

cr„,(co„)40 MeV)

22
35+12

dotted lines are the corresponding results when the re-
scattering from the one-body current is switched off. One
sees that, at T»b =400 MeV, this rescattering contribu-
tion increases as the photon energy cu approaches its
maximum allowed value ~ „enhancing the cross sec-
tion. For the convection part, this term has a minor
influence, but for the magnetic part it increases the cross
section by a factor of —3 near co „,so that the magneti-
zation contribution becomes comparable to the two-body
contribution. As a result, the one-body rescattering term
increases the total contribution by a factor of —1.5 in the
region of co near its end point. Figure 3 also reveals that
this enhancement of the cross section is confined to the
region of ~ close to its maximum. The crosses in Fig. 3

100

80-

60-

pnwpn~

T„,b = 200 MeV

co = 75 MeV

40-

20-

refer to the corresponding results with the full rescatter-
ing contribution [Eqs. (2.3) and (2.9)]. These show that,
in calculating inclusive cross sections, the SPA and
MSPA for the one-body rescattering term are excellent,
even for very high-energy photons. At T»b =200 MeV,
the effect of the one-body rescattering term is very small
over the full range of photon energies.

Figure 4 shows the effect of the one-body rescattering
contribution on the angular distribution at co=75 and
150 MeV and for T»b=200 and 400 MeV, respectively.
As can be seen, the one-body rescattering contribution
enhances the cross section for forward and backward
photon emission angles. Of course, the size of this
enhancement depends strongly on the photon energy con-
sidered, as we have seen in Fig. 3. Again we see that the
SPA and MSPA for the rescattering are excellent. We
also see that the two-body current contribution is nearly
isotropic. Figure 4, therefore, shows that the internal
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FIG. 3. Effect of the one-body rescattering contribution on
the double-differential pny cross section in the initial proton-
neutron center-of-mass frame as a function of the photon energy
co and at the photon emission angle 0=90'. The incident ener-
gies are, from right to left, T],b =200 and 400 MeV. The dash-
dotted, dashed, double-dashed, and the solid curves denote the
contributions from the magnetization, convection, two-body,
and total current contributions, respectively. The convection
and magnetization parts include the rescattering term in the
SPA [Eq. (2.8)] and MSPA [Eq. {2.12)]. The dotted lines are the
corresponding results when the rescattering from the one-body
current is switched off. The crosses refer to the results with the
fu11 rescattering contribution [Eqs. (2.3) and {2.9)]. The OBEPQ
version of the Bonn potential (Ref. 14) is used. Two-nucleon
partial-wave states through J= 11 are included.
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FIG. 4. Effect of the one-body rescattering contribution on
the angular distribution for the pn y process calculated in the in-
itial neutron-proton center-of-mass frame. The upper part cor-
responds to the incident energy T],b =200 MeV and the photon
energy co =75 MeV, while the lower one corresponds to
T],b=400 MeV and m=150 MeV. For further details see the
caption of Fig. 3.
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current contribution (rescattering from the one-body
current plus two-body current) gives roughly an isotropic
angular distribution.

Hereafter, in this subsection, the one-body rescattering
term will be calculated in the SPA and MSPA for the
convection and magnetization current contributions, re-
spectively. In Fig. 5 we show the double-differential
cross section as a function of photon energy at 0=30 for
T&,b =150, 300, and 600 MeV. The contributions arising
from the different parts of the current are shown sepa-
rately. We see that they show very similar features. The
cross section (total contribution) drops basically as I/co
in the low photon energy region, which is governed by
the convection current contribution, and then stays rath-
er constant due to the increasing contribution from the
two-body and magnetization currents. The latter has a
linear dependence on co in the low-energy region [see Eq.
(3.2)]. The behavior of the two-body contribution can be
understood if we consider the one-pion-exchange current
contribution as discussed in Ref. 11. As the photon ener-

gy approaches its end point, the cross section increases
rapidly. This feature has been also noticed and discussed
in our previous work. " The incident energy dependence
of the photon cross section is determined by the incident
energy dependence of the T matrix and of the elec-
tromagnetic current operator, as well as by the energy
denominator in the intermediate states. The np T matrix
has a rather strong energy dependence up to T„b-200
MeV. This is a consequence of the strong energy depen-
dence of np total cross section o.„z which drops as the in-
cident energy increases. The convection current operator
also contains an incident energy dependence since it
comes from the kinetic-energy part of the nuclear Hamil-
tonian, while the magnetization current operator has no
such dependence [apart from momentum-conserving 5
function (see Ref. 11)] because it is related to the magnet-
ic moment of the nucleon. In Fig. 5 we observe that, in
the region of the incident energy considered and for a

given photon energy, the convection current contribution
increases as the incident energy increases (note the
difference in the scale in Fig. 5). This can be understood
since the incident energy dependence of the convection
current contribution is contained in the factor
T„bcr„(T~,b) in the SPA [see Eq. (3.1)]. The np total
cross section cr„(T~,b ) does not drop as fast as 1/T„b in
the region of incident energy considered. For lower in-
cident energies, the pn y cross section can decrease as a
function of incident energy. The magnetic contribution
is rather insensitive to the incident energy; in this case
the energy dependence of the np T matrix counterbal-
ances that of the energy denominator. The two-body
contribution decreases as a function of incident energy
for a fixed co, the current operator here depends on
momentum transfer rather than on relative momentum. "
As a consequence of these behaviors, the total contribu-
tion depends rather weakly on the incident energy, except
in the low photon energy region where it is entirely dom-
inated by the convection contribution.

In Figs. 6(a), (b), and (c) the angular distributions for
various photon energies co are shown at T„b=150, 300,
and 600 MeV, respectively. For low incident energies,
the shape of the angular distribution is dictated by the
convection current even for relatively high ~ as illustrat-
ed in Fig. 6(a). Note that the two-body and magnetiza-
tion currents yield nearly isotropic angular distributions.
At T~,b =300 MeV [see Fig. 6(b)], the situation is still
very similar to what we see at lower incident energies, ex-
cept that the angular distribution is much more pro-
nounced at low photon energies due to the relatively
larger contribution of the convection current. However,
at higher co [see the upper part of Fig. 6(b)], the angular
distribution is much less pronounced because of the
suppression of the convection current. A remarkable
change in the shape of the angular distribution as a func-
tion of photon energy can be observed at much higher in-
cident energies as illustrated in Fig. 6(c). We see that the
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shape changes from a roughly sin 0 to a cos 0 depen-
dence as the photon energy increases from co=30 to 230
MeV.

The general feature of the angular distribution can be
understood by examining the contribution arising from
the external current (one-body current excluding the re-
scattering). To this end let us consider the bremsstrah-
lung amplitude from the one-body external current as
given by Eqs. (3.8) and (3.9) in Sec. III C. Then, follow-
ing Ref. 11, the individual pny cross sections to leading
order are

for the convection current contribution and

magn 1 A co p
'

de dQ 2 (2~)~ m~ p

s(p')E(p) T„'~np
( p+ p)

4m

X [(g —d) + —,'g v' ]+d v cos 8

2
conv

dco dA
Q 1 p

(2~)' ~v p

E(p') E(p) T„'~

4~

pp P~—2d(g —d) v cos0
pp +P„

(3.2)

X(—', v' +v sin 0) (3.1)
for the magnetic contribution. Here a=e is the fine-
structure constant, and the subscripts n and p stand for
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FIG. 6. pny angular distribution in the initial neutron-proton center-of-mass-frame. {a) corresponds to an incident energy of
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MeV and photon energies of, from bottom to top, co= 30, 60, 120, and 230 MeV. For further details, see the caption of Fig. 3.
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neutron and proton, respectively. We have also omitted
explicit reference to the arguments of T„,d, and g. The
quantity in the large parentheses in Eqs. (3.1) and (3.2)
becomes the total np cross section o.„ in the SPA limit.
The classical bremsstrahlung formula may be recovered

from Eq. (3.1) if we drop there the phase-space factor
(p'/p) and replace the quantity in the large parentheses
by 0'np

We first concentrate on the convection part. Equation
(3.1) shows that the angular distribution from that contri-
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bution has the well-known dipole shape. Moreover, it be-
comes more pronounced as the incident energy increases
because of the factor v, which is approximately propor-
tional to T] p. The photon cross section also goes basical-
ly as 1/co. These features are what we observe qualita-
tively in Fig. 6. The small asymmetry around 0=90' in
Fig. 6 is due to the higher-order correction in the brems-
strahlung amplitude which has been neglected in Eq.
(3.1). Also, the deviation from a I/co dependence in the
high photon energy region, as can be observed better in
Fig. 5, is mainly due to the energy dependence of the T
matrix. We observe that, for high-energy photons, the

I

e6'ective incident energy is small.
The magnetic contribut. &on yields a combination of

terms linear and quadratic in cosI9 in addition to a term
independent of the photon emission angle. However, the
value of the parameters d and g (see Table III) are such
that the term independent of the photon angle gives the
dominant contribution, followed by the cos 0 term. The
term linear in cosO is suppressed to a large extent. For
example, at T&,t, =300 MeV, using the values of d and g
quoted in Table III, the pn y cross-section angular depen-
dence is given by

d2
(T„„=300MeV) ~ 1.20 0. 17

/2 3

2 2

u' +2.27v cos 0+0.90 U cosO
Pp Pn

pp +P
(3.3)

TABLE III. Fitted parameters a, b, a', and b' (third, fourth, seventh, and eighth columns, respec-
tively) in Eq. (3.11) and for g and d (fifth and sixth columns, respectively) in Eq. (3.9). The first column
is the nucleon incident energy T~,, l, in the laboratory frame, while the second column is the correspond-
ing value in the nucleon-nucleon center-of-mass frame.

+lab
(Mev)

+c.m.

(MeV)
a

(MeV fm')
b

(Me V ')
a'

(MeV fm')
b'

(Mev ')

10.0
15.0
25.0
50.0
75.0

100.0
125.0
150.0
175.0
200.0
225.0
250.0
275.0
300.0
325.0
350.0
375.0
400.0
425.0
450.0
475.0
500.0
525.0
550.0
575.0
600.0
625.0
650.0
675.0
700.0
725.0
750.0
775.0
800.0

4.99
7.49

12.46
24.84
37.13
49.35
61.50
73.56
85.55
97.47

109.32
121.10
132.80
144.44
156.02
167.53
178.97
190.35
201.67
212.93
224. 13
235.26
246.34
257.37
268.33
279.24
290.09
300.90
311.64
322.34
332.98
343.57
354.11
364.61

—1356.2
—1150.2
—849.5
—543.5
—434.6
—369.1
—325.4
—301.9
—285. 1
—272.8
—265.3
—257.2
—250. 1
—243.5
—238.1
—233.0
—228. 1
—222.8
—217.9
—214.1
—209.0
—205.0
—201.7
—197.5
—194.1
—190.7
—187.7
—185.0
—182.0
—179.2
—176.9
—174.0
—171.7
—169.1

9.59 X 10
7.30 X 10
5.41 X 10-'
3.57 X 10
2.12 X 10
1.48 X 10-'
1.24 X 10
9.64 X 10-'
7.86 X 10-'
6.41 X 10
5.09X10 '
4.35 X 10-'
3.62 X 10-'
3.12 X 10
2.96 X 10
2.73 X 10
2.68 X 10
2.53 X 10
2.40 X 10
2.27 X 10
2.20 X 10-'
2.09 X 10
2.02 X 10
1.97 X 10
1.93 X 10-'
1.83 X 10
1.80 X 10
1.70 X 10
1.62 X 10
1.49X10 '
1.43X10 '
1.39 X 10
1.33X10 '
1.30 X 10-'

0.687
0.679
0.654
0.622
0.585
0.560
0.532
0.505
0.485
0.468
0.452
0.436
0.423
0.410
0.395
0.380
0.369
0.357
0.345
0.332
0.322
0.311
0.301
0.290
0.280
0.270
0.256
0.242
0.234
0.225
0.213
0.200
0.188
0.175

1.643
1.641
1.636
1.624
1.612
1.600
1.588
1.576
1.564
1.553
1.541
1.530
1.518
1.507
1.496
1.484
1.473
1.462
1.451
1.441
1.430
1.419
1.408
1.398
1.387
1.377
1.367
1.357
1.346
1.336
1.326
1.319
1.314
1.310

0.992
0.988
0.980
0.960
0.941
0.922
0.904
0.886
0.869
0.852
0.836
0.820
0.804
0.789
0.774
0.760
0.746
0.732
0.718
0.705
0.692
0.680
0.668
0.656
0.644
0.633
0.621
0.611
0.600
0.589
0.579
0.569
0.560
0.550

1.02 X 10
7.61 X 10
4.39 X 10
2.12 X 10
1.37 X 10-'
1.10X 10
9.30 X 10-'
7.92 X 10
7.07 X 10
6.52 X 10
6.00 X 10
5.52 X 10
5.23 X 10-'
4.93 X 10-'
4.63 X 10
4.44 X 10-'
4.21 X 10-'
4.05 X 10
3.91 X 10-'
3.70 X 10
3.63X10 '
3.50 X 10-'
3.41 X 10
3.32 X 10-'
3.26 X 10
3.10X 10-'
3.03 X 10-'
2.89 X 10
2.76 X 10
2.64X10 '
2.55 X 10
2.48 X 10-'
2.42 X 10
2.41 X 10-'
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Since U'&U and U =0.14 at this incident energy, we see
that the ratio between the 0 independent and cos 0 terms
is at least 4. This should be contrasted to the correspond-
ing ratio of —, for the convection current contribution [see
Eq. (3.1)]. The angular distribution from the magnetiza-
tion current is, therefore, much less structured than the
convection current contribution. It is interesting to note
that the dominant term in Eq. (3.2) is also independent of
U' . The term linear in cosO introduces a small asym-
metry in the angular distribution around 0=90 which is
difficult to see in Fig. 6 at that scale. Equation (3.2) also
shows that the angular distribution becomes more pro-
nounced as a function of incident energy. The deviation
from Eq. (3.2) observed in Fig. 6 is basically due to the
spin-projection diagonal approximation of the T matrix
made in Eq. (3.9). For example, the angular distribution
in Fig. 6 at T],b =150 and 300 MeV and for high photon
energies shows a slight enhancement around 0=90 .
This is caused by the strong off-diagonal (SD ), and diag-
onal D& tensor states which make the spin-projection di-
agonal approximation of the T matrix less accurate.
However, we see that, at these incident energies, the mag-
netic contribution still plays a relatively minor role as far
as the shape of the angular distribution is concerned. At
much higher incident energies, where a very high photon
energy region can be reached [see Fig. 6(c)], the magnetic
contribution shows a cos 0 dependence, in accordance
with the approximate formula given by Eq. (3.2). In any
case, the qualitative features of the angular distribution
where the magnetization current becomes really impor-
tant can be understood from Eq. (3.2) which also shows
that the cross section has a linear dependence on the pho-
ton energy. The deviation from this dependence in the
high-energy region is due, largely, to the energy depen-
dence of the T matrix. A comparison of Eqs. (3.1) and
(3.2) shows that the small contribution of the magnetiza-
tion current with respect to the convection current is due
to the smallness of the nucleon magnetic moment, which
is proportional to the inverse of nucleon mass m. This is
retlected in the factor I /m in Eq. (3.2).

As a result of the behavior of the convection and mag-
netization current contributions, the total contribution
exhibits the angular distribution shown in Fig. 6. We
again observe that the internal current yields basically an
isotropic angular distribution.

Before leaving this subsection we shall discuss the im-
portant question of gauge invariance. In order to
preserve the gauge invariance of the theory, each contri-
bution from diA'erent parts of the internal current should
be treated in the same order of perturbation. ' In Figs. 3
and 4 we have shown that the rescattering contribution
from the one-body current increases the photon cross sec-
tion considerably in the photon energy region near its end
point, due essentially to the magnetic current. As men-
tioned in Sec. II, this gives a nonvanishing contribution
only beyond the SPA. On the other hand, the two-body
current contribution is considered only in the SPA (the
minimal substitution alone is insufhcient to obtain
uniquely the electromagnetically induced two-body po-
tential beyond the SPA). Therefore, the gauge invariance
is violated if we include the one-body rescattering contri-

bution beyond the SPA and the two-body contribution in
the SPA, as in the present work. However, in Ref. 11 we
have estimated that the SPA for the two-body current is
a good approximation as far as the inclusive cross sec-
tions are concerned. In view of this fact, we believe the
violation of the gauge invariance in the present case is
not as critical as it might appear at first.

B. pp bremsstrahlung

In this subsection we analyze the pp bremsstrahlung.
This process is usually ignored in calculations where the
pny process is also present. The latter gives rise to dipole
radiation while the ppy process yields quadrupole radia-
tion in the SPA. However, the ratio of pp to pn brems-
strahlung cross sections is certainly larger when high-
energy photons are produced than for soft-photon pro-
duction; recall that the convection current contribution
drops as the photon energy increases, while the magnetic
contribution increases with photon energy. The main
purpose of this subsection is, therefore, to investigate the
relevance of the pp y process with respect to the pn y pro-
cess in producing energetic photons.

In the present work we neglect the inhuence of the
Coulomb interaction. We also recall that all the formulas
derived in Ref. 11 and in the previous section apply for
both pn and pp bremsstrahlung. The relevant difterences
in both cases are the normalization factors of the wave
functions in terms of isospin states and the integration
only over half the pp final-state solid angle in the ppy
process.

As in the case of the pn bremsstrahlung, we first com-
pare the present calculation with some of the earlier ones.
In Figs. 7(a) and (d) we show a comparison between our
results and those by Brown for the exclusive ppy cross
section in the coplanar geometry at an incident energy of
T] b

= 158 MeV. Here we use the HJ potential. Also, the
two-nucleon partial-wave states through J=4 are con-
sidered for purposes of comparison with Ref. 24. Figure
7(a) shows the results from the external current contribu-
tion, while Fig. 7(d) shows the results from the external
plus internal current contributions. The solid curves
denote the present calculation and the dotted ones are the
results of Ref. 24. We find excellent agreement between
the two calculations. However, this excellent agreement
is accidental. Figures 7(b) and (e) show the same compar-
ison as in Figs. 7(a) and (d), respectively, but with our re-
sults obtained using the nonrelativistic transformation of
coordinates from the initial to final NN c.m. frame, as
was used in Ref. 24. In contrast to the results of Fig. 2,
here we see that this has a non-negligible eAect on the
cross section and that the agreement between the two cal-
culations deteriorates. We note that the relevance of the
relativistic transformation of coordinates from the initial
to final NN c.m. frame is determined not only by the
momentum of the emitted photon but also by how
strongly the T matrix varies with the relative momenta of
the nucleons. In fact, in the case of Fig. 7, the energy of
the photon is ~ 55 MeV in the c.m. system, only about 10
MeV larger than in the case of Fig. 2. However, here the
T matrix has much stronger momentum dependence than
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in the case of Fig. 2, and its magnitude is also larger,
since we probe the lower effective incident energy region.
Therefore, a relatively small difference in the values of
momenta of nucleons will affect the results. We also note
that, for some special cases, the relativistic transforma-
tion of coordinates from the initial to final NX c.m. frame
changes the results by —10% even for incident energy as
low as T~,~ =100 MeV. In Figs. 7(c) and (f), we show the
same comparison as in Figs. 7(b) and (e), respectively,
when the factor Qm/E Qm/E in the T-matrix ele-
ments (see Appendix B for the details) in our results is
switched off. Again we find excellent agreement between
the two calculations. We have compared our results with

those by Brown for other incident energies and proton
scattering angles and found the same feature as illustrat-
ed in Figs. 7(b), (c), (e), and (f).

In Fig. 8 we show a comparison between the present
results and those by Drechsel and Maximon for the ex-
clusive ppy cross section in the coplanar geometry at low
incident energies of T&,&

=30 MeV [Fig. 8(a)j and
T„~=10MeV [Fig. 8(b)]. We use the HJ potential as in
Ref. 25. The solid curves are the present results, while
the dashed ones correspond to those of Ref. 25. We see
that the two calculations are in very good agreement.

Figure 9 shows a comparison between the results based
on the HJ (solid line) and the OBEPQ (dash-dotted line)
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FIG. 7. Coplanar geometry ppy cross section in the laboratory frame for incident energy Tl, l,
= 158 MeV and for proton scattering

angles OI =02=30' as a function of photon emission angle 0. The left-hand side are the results from the external current contribu-
tion, while the right-hand side are from the external plus internal current contributions. The solid curves in (a) and (d) are the
present results based on the Hamada-Johnston potential with partial-wave states J ~4. The dotted curves are the corresponding re-
sults from Ref. 24. (b) and (e) are the same as (a) and (d), respectively, but using the nonrelativistic transformation of coordinates
from the initial to final nucleon-nucleon center-of-mass frame in the present calculation. (c) and (f) are the same as (b) and (e), respec-
tively, but switching off the factor Qm /e~ Qm /e~ in the T-matrix elements (see Appendix B for the details) in the present calcula-
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potentials for the exclusive pp y cross section at
T&&b

= 1 58 MeV together with the experimental data.
The OBEPQ potential yields a cross section which is
shifted upwards by -0.3 pb/sr rad with respect to that
based on the HJ potential. The quality of the agreement
with the data seems to be slightly better in the case of the
OBEPQ than the HJ potential. However, within the un-
certainties in the experimental data, it is not possible to
discard any of these potentials.

In Fig. 10, a comparison between the results based on
the HJ (solid curve) and the OBEPQ (dash-dotted curve)
potentials is made together with the experimental data
for a lower incident energy of T&,b=42 MeV. We see
again that the OBEPQ potential yields larger cross sec-
tions than the HJ potential. Here, the HJ potential gives
better agreement with the data. The dotted curve in Fig.
10 corresponds to the result of Ref. 28 in the soft-photon
approximation.

From what we have discussed so far, the OBEPQ ver-
sion of the Bonn potential' seems to yield cross sections
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FIG. 9. Coplanar geometry ppy cross section in the laborato-
ry frame for incident energy T~,b =158 MeV and for proton
scattering angles 0&=02=30' as a function of photon emission
angle 0. The solid curve denotes the result based on the HJ po-
tential, while the dash-dotted curve corresponds to that based
on the OBEPQ potential (Ref. 14). Two-nucleon partial-wave
states through J =4 are included. The data are from Ref. 26.

which are systematically larger than those based on the
HJ potential. However, this feature depends on the re-
gion of the incident energy we are considering. To illus-
trate this we show results in Fig. 11 for the @pe cross sec-
tions in the coplanar geometry at an incident energy of
T&,b =200 MeV. We see that the two potentials yield, for
this case, results which are much closer to each other
than at lower incident energies. Moreover, in this case,
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FIG. 8. ppy exclusive cross section in the coplanar geometry
at incident energies of (a) TI,b =30 MeV and (b) T„b=10 MeV.
The proton scattering angles are 0& =02=30. The solid curves
denote the present results, while the dashed ones correspond to
those from Ref. 25. The Hamada-Johnston potential is used
with all partial-wave states with J 4.

FIG. 10. ppy cross section in the same geometry as in Fig. 9
but for an incident energy T1,b =42 MeV. The so1id line is the
result based on the HJ potential, while the dash-dotted line cor-
responds to that from the OBEPQ potential (Ref. 14). All
partial-wave states through J=4 are considered. The dotted
line is the soft-photon approximation result of Ref. 28. The
data are from Ref. 27.
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Although the MSPA for the rescattering underesti-
mates the ppy cross section for photon energies very
close to co,„as we have seen in Fig. 12(a), hereafter in
this subsection we include its contribution only in this
limit. This, however, does not spoil the following
analysis.

In Fig. 13 the differential photon cross sections as a
function of co are shown for T] b=150, 300, and 600
MeV, and at the photon emission angle of 0=30'. In the

R
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FIG. 11. Coplanar geometry ppy cross section in the labora-
tory frame for an incident energy T~,b =200 MeV and for pro-
ton scattering angles 0I =L9&=40' as a function of photon emis-
sion angle 0. The solid line is the result based on the HJ poten-
tial, while the dash-dotted curve corresponds to that based on
the OBEPQ potential (Ref. 14). Two-nucleon partial-wave
states through J =4 are included.
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the cross section based on the OBEPQ potential (dash-
dotted curve) is smaller than that based on the HJ poten-
tial (solid curve) around 0= 130'. A more detailed
analysis of the exclusive bremsstrahlung processes will be
presented in a future work.

We now discuss results for ppy inclusive cross sections
which are more appropriate for heavy-ion calculations.
In Fig. 12(a) the effect of the one-body rescattering con-
tribution is shown. As in the pny process in Fig. 3, the
solid, dashed, and dash-dotted curves correspond to the
total, convection, and magnetization current contribu-
tions, respectively, with the rescattering term included in
the SPA [Eq. (2.8)] and MSPA [Eq. (2.12)]. The crosses
are the results with the full rescattering [Eqs. (2.3) and
(2.9)]. The dotted lines are the corresponding results
without the rescattering. We observe that in the SPA
there is neither a one-body rescattering term nor a two-
body contribution to the pp bremsstrahlung. First, we see
in Fig. 12(a) that the inclusion of the one-body rescatter-
ing term (crosses) enhances the cross section in the high
photon energy region, similar to what we have seen in
Fig. 5 for pn bremsstrahlung. However, since the two-
body current is absent in this case, the rescattering effect
on the total contribution is very large compared to the
any process for co near its maximum. We also see that
the SPA and MSPA for the rescattering correction are
good approximations, except for co very close to its end
point, where the MSPA largely underestimates the cross
section. Figure 12(b) illustrates the one-body rescattering
effect on the angular distribution. As can be seen, it
essentially enhances the photon cross section for forward
and backward photon angles as in the case of the pny
process. The MSPA for the rescattering provides a good
description of the shape of the angular distribution calcu-
lated exactly.

0
l

I

(b)
PP ~PP& T...= 400 MeV

cu = 150 MeV

20 40 FO 80 '00 'l 20 l 40 160 l 80
0(de )

FIG. 12. (a) Effect of the one-body rescattering contribution
on the double-differential pp y cross section in the initial
proton-proton center-of-mass frame as a function of the photon
energy co at the photon emission angle 0=90'. The incident en-

ergy is T],b=400 MeV. The solid, dashed, and dash-dotted
curves correspond to the total, convection, and magnetic
current contributions, respectively, and included the rescatter-
ing term in the SPA [Eq. (2.8)] and MSPA [Eq. (2.12)]. The dot-
ted lines are the corresponding results when the rescattering
contribution is switched off. The crosses refer to the results
with the full rescattering contribution [Eqs. (2.3) and (2.9)]. The
OBEPQ potential (Ref. 14) is used including all partial-wave
states through J=11. (b) Effect of the one-body rescattering
contribution on the angular distribution for the ppy process in
the initial proton-proton center-of-mass frame. The incident en-
ergy is T~,b =400 MeV and the photon energy is m=150 MeV.
For further details see (a).
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FIG. 13. ppy cross section in the initial proton-proton center-of-mass frame, as a function of photon energy co at the photon emis-

sion angle 0=30'. The incident energies are (from right to left) Tl,b =150, 300, and 600 MeV. For further details see the caption of
Fig. 12(a).

low-~u region, the cross section (total contribution) falls as
1/~ and is dominated by the convection current contri-
bution. Then, as the photon energy increases, the cross
section remains rather constant because of the increasing
magnetic contribution. These features are very similar to
those of pn bremsstrahlung (see Fig. 5). As the photon
energy becomes larger, the cross section starts to drop.
This is not observed in the pny process because of the
two-body contribution, which is absent here. At the end
point the photon cross section increases rapidly, as in the
case of pny. Recall that when the full rescattering con-
tribution is included, the ppy cross section will show an
~ dependence similar to the pny process over all of the
photon energy region [compare Figs. 3 and 12(a)]. More-
over, the photon cross section here exhibits a much
stronger incident energy dependence than in the pn y pro-
cess and it is not restricted to the low photon energy re-
gion. This different behavior of the ppy cross section
compared to that of pn bremsstrahlung is caused, in part,
by the different incident energy dependence of pp and np
T matrices. Recall that the pp total cross section has a
much weaker energy dependence than the np cross sec-
tion. Another reason for the different incident energy
dependence between pp and pn bremsstrahlung is the ab-
sence of the two-body current contribution in the ppy
process. A comparison of Figs. 5 and 13 also shows that
convection current contribution is strongly suppressed in
going from the pny to the ppy process. This is easy to
understand because, in the latter process, the convection
currents associated with the two interacting protons can-
cel to a large extent, while in the former process it does
not. The magnetization current contribution for ppy is
comparable to pn y bremsstrahlung. The pp cross section
is smaller than the np total cross section, but this is corn-
pensated by both a larger magnetic moment of the proton
and by the spin matrix elements of cr. (khe'). The latter
weights each two-body partial-wave state differently. As
a result, the relative importance of the individual current
contribution is different for pp and pn bremsstrahlung. In
the ppy case the magnetic contribution largely dominates

2
conv

dc' dQ
a 1 p'

(2~)' ~
e(p')E(p) T

8~

X( —,', u' +u sin 20) (3.4)

for the convection current contribution and

2
~magn

dco dQ
A' co p

(2~) m p

e(p')E(p) &~~

8~ p

X [(g —d) + —,'g u' ]+d u cos 0 (3.5)

for the magnetic contribution. In the above equations,

the convection contribution at much lower photon ener-
gies than in the pny process. Moreover, the one-body
current contribution to the ppy cross section becomes
comparable to that of pny for suKciently high incident
energies. However, the total contribution is much small-
er in pp bremsstrahlung than in pn bremsstrahlung. At
T] b

= 1 50 MeV, the pp y cross section is more than an or-
der of magnitude smaller than the corresponding pny
cross section; at T&,„=600 MeV it is still a factor of -4
smaller. This is due to the large two-body current contri-
bution, which is mostly absent in the ppy case.

In Fig. 14 the angular distributions at T&,b =600 MeV
and for various photon energies are shown. They are
symmetric with respect to 0=90 because of the identity
of the protons. We see the remarkable change in the an-
gular distribution as the photon energy increases. For
low m the angular distribution exhibits a pronounced
quadrupole shape; it is entirely dominated by the convec-
tion contribution. As co increases, the angular distribu-
tion changes to a cos 0 dependence because of the in-
creasing contribution of the magnetic current.

As in the previous subsection, these features can be un-
derstood by examining the external current contribution.
Analogous to what we have obtained for the pny cross
sections [Eqs. (3.1) and (3.2)], where we obtain, to leading
order,
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PP~PP&

T„,= 600 MeV

10- co= 230 MeV

the quantity in the large parentheses becomes the pp total
cross section (cr ) in the SPA limit.

The convection current contribution now has a quad-
rupole shape. It also shows a v dependence, which is a
difFerent incident energy dependence than for the corre-

sponding pny cross section [Eq. (3.1)], as we have ob-
served before. The magnetic contribution gives a cos 0
dependence. Unlike the pny case [Eq. (3.2)], the linear
term in cosO is absent here because of the identity of the
two interacting particles. Equations (3.4) and (3.5) ex-
plain the qualitative feature of the angular distribution in
Fig. 14. The deviations observed there from Eqs. (3.4)
and (3.5) are due to the higher-order corrections which
were neglected in Eqs. (3.4) and (3.5). For lower incident
energies, the angular distribution will become less pro-
nounced as can be seen from Eqs. (3.4) and (3.5).

A rough estimate of the ratio between the ppy and pn y
cross sections can be obtained from Eqs. (3.1) and (3.2)
and Eqs. (3.4) and (3.5). For the convection contribution
in the SPA and at 0=0', it yields

4 ~ppR, =—
5 o.„

2 (3.6)

10-

0 I

co= 120 MeV

This shows that, for the convection contribution, the ppy
cross section is much smaller than the pn y cross section
for low incident energies. In addition to the factor v, the
np total cross section (o „)is much larger than the pp
cross section o. . As the incident energy increases, the
ratio R, increases, not only due to the factor v but also
due to the fact that o „decreases much more rapidly
than o

pp
with incident energy, as has already been dis-

cussed. Assuming that the ratio between the pp and np
total cross sections becomes unity for very high incident
energies, we see that the ratio R, tends to the limit 4 at
0=0'. Similarly, for the magnetic contribution, we ob-
tain the ratio

10- cu = 60 MeV
R m

2
2pp o

pp

Pp+Pn ~p
2 2 O

IPP

~np
(3.7)

30 MeY

0 f I I i 1 I T T
0 20 40 60 80 100 120 140 160 180

at 0=90, assuming the parameters d and g to be the
same for ppy and pny. In that case, the ppy cross sec-
tion may become larger than the corresponding pny
cross section for sufticiently high incident energies where
o becomes comparable to o.„.However, in the region
of incident energy where the present potential model is
applicable (T&,b (300 MeV), the pp bremsstrahlung is
smaller than the pn bremsstrahlung by a factor of —5 or
more. The nn bremsstrahlung contribution can be ob-
tained from the magnetization current contribution from
pp bremsstrahlung by multiplying that result by
(p„ /p~ )'.

C. Parametrization of the pn y amplitude

'v(cec i

FIG. 14. pp y angular distribution in the initial proton-
proton center-of-mass frame at T~,b =600 MeV. The photon en-
ergies are, from bottom to top, co=30, 60, 120, and 230 MeV.
For further details, see the caption of Fig. 12(a).

In this subsection we give a simple parametrization of
the pny amplitude which may be useful in the applica-
tion of the present formalism to more complicated pro-
cesses such as nucleon-nucleus and/or heavy-ion scatter-
ing.

Following Ref. 12, we write the pny transition ampli-
tude for the convection current contribution as



43 NUCLEON-NUCLEON BREMSSTRAHLUNG AT INTERMEDIATE. . .
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and for the magnetization current contribution as

( e, k; p'S'Ms lV. , „l 0; pSMs ) =i &(2vr ) /k
2Pl

T(E, , co)

g(E, ) d(E, )
X p~

1 —k v' 1 —k-v

X (S'Ms
l o, .(k 6 e) lSMs ) .

+ (
—

)
g(E, )

1+k v'

d(E, )

1+k v

(3.9)

n the above equations v'(v) is the velocity of the nucleon associated with p'(p) in units of c. T(E, , co) denotes the
angle- and spin-averaged T-matrix element; it depends on two variables which can be taken as the initial NN c.m. ener-
gy E, and the photon energy co. In Eq. (3.9), d(E, ) and g(E, ) are parameters introduced because we assumed
the T matrix to be diagonal in spin-projection quantum numbers. Here the magnetic contribution differs from that of
Ref. 12 because it contains an extra parameter g(E, ) which improves the description of the angular distribution
where the magnetization current dominates over the other currents. In the limit of g =d, Eq. (3.9) reduces to that of
Ref. 12.

The two-body current amplitude is parametrized as in Ref. 12:

f ( T'Oli /2(r& h w2), l
TO)

(e,k;p'S'Ms.
l V,„,„lO;pSMs ) = —2e&(2')/k

p q +p

o, qo 2.qX&S'Ms
l

2&'q
p 2 (trl ~a2 q+tri'qaz'&) lSMs&

q +p
(3.10)

where q=p' —p denotes the momentum transfer. The
mass of the effective meson exchanged (p) and the cou-
pling strength (f) are parameters in the above equation.
The isospin matrix element, which takes the value +1 or
—1 according to T =0, T'=1 or T=1, T'=0, we as-
sume to be +1.

We fit Eqs. (3.8)—(3.10) to the pn bremsstrahlung cross
sections as calculated in Sec. III A. For a given initial en-

ergy of the nucleon in the IVY c.m. system, the quantities
T in Eqs. (3.8) and (3.9) and f in Eq. (3.10) have been
parametrized as linear functions of the photon energy co:

T(E, , co)=a(E, )[1+b(E, )co],

f(E, , co) =a'(E, ) [1+b'(E, )co] .

(3.1 1)

The mass of the effective meson exchanged has been fixed
to be the pion mass, i.e., p =0.7 fm

In Table III the results are given for incident energies
up to T] b

=800 MeV. As mentioned at the beginning of
this section, since the bare NN potential used does not in-
clude inelasticity, one has a limitation on the maximum
incident energy for which the present model is strictly
applicable (T&,b (300 MeV). Therefore, we must keep
this fact in mind when applying the present results to
higher energies. The quality of the present fit to the exact
calculation is essentially the same as that of Ref. 12, ex-
cept for the magnetization contribution, whose angular
distribution is now much better described. This is

reAected in the values of d and g which take different
values from each other.

IV. CONCLUSION

The present calculation yields both pp and np brems-
strahlung exclusive cross sections which are in excellent
agreement with some of the earlier calculations, provided
the XN transition amplitudes of Refs. 10 and 24 are mul-
tiplied by the factor Qm/E„+m /8 which is required
for constructing Lorentz scalar amplitudes.

In the present work we have extended the investigation
of NX bremsstrahlung for producing energetic photons in
an effort to provide a more reliable basis for photopro-
duction calculations in heavy-ion collisions, paying spe-
cial attention to the rescattering contribution from the
one-body current, whose exact evaluation requires a con-
siderable numerical effort. The SPA [Eq. (2.8)] and
MSPA [Eq. (2.12)] are in excellent agreement with exact
calculations, thus simplifying the evaluation of this con-
tribution. It has also been shown that the oo,e-body re-
scattering contribution for inclusive cross sections is
relevant only in the region of photon energy near its end
point. Moreover, we found that the dominant contribu-
tion arises from the magnetic current.

The pn y double-differential cross section is found to be
rather insensitive to the incident energy, except in the
low photon energy region, where it is entirely dominated
by the convection current contribution. This insensitivity
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is due to the fact that the two-body current contribution
decreases as the incident energy increases while the con-
vection contribution increases. The convection current
contribution gives rise to a very pronounced angular
dependence, which is not the case for the magnetization
and two-body current contributions. As a result, for in-
cident energies up to T&,b

—300 MeV, the angular distri-
bution is determined by the convection current which
gives essentially the well-known dipole shape. For a fixed
incident energy, the angular dependence becomes less
pronounced as the photon energy increases because of the
suppression of the convection contribution. At higher in-
cident energies (where very high-energy photons can be
created) the angular distribution changes from a sin 0 to
a cos 0 shape as the photon energy increases due to the
magnetization current contribution. The internal current
(one-body rescattering plus two-body current) contribu-
tion has a nearly isotropic angular distribution. The
present calculation yields npy cross sections which still
tend to underpredict the data, in spite of large uncertain-
ties in the experimental data. For the npy total cross
section there is a clear incompatibility with the data of
Ref. 20 at T&,b =140 MeV.

The pp bremsstrahlung inclusive cross section for a
fixed photon emission angle is found to have similar
features to those of the pn y process as a function of pho-
ton energy. However, in contrast to the pn bremsstrah-
lung, the ppy cross section increases as a function of in-
cident energy due to the absence of the two-body current
contribution. Also, the magnetic current contribution is
relatively much more important than the convection
term compared with the pn y case; the convection contri-
bution is largely suppressed while the magnetic contribu-
tion remains comparable to that in the pn bremsstrah-
lung. For a given incident energy the angular distribu-
tion has a quadrupole shape for low photon energies,
where it is dominated by the convection term. As the
photon energy increases, the cross section becomes dom-
inated by the magnetic contribution, and the shape of the
angular distribution changes to a cos 0 form. The ppy
cross section is small compared with that from the pny
process, even for photon energies as high as co=200
MeV, where it is still a factor of -5 smaller than the pn y
cross section. This relatively small ppy cross section is
due to the near absence of a two-body current in this
case. Therefore, in calculations where no interference
occurs between the ppy and pn y processes (such as in ex-
isting heavy-ion data), we may consider only the latter
process. As in pn bremsstrahlung there is, to our
knowledge, only one set of pp bremsstrahlung inclusive
cross-section data (Rothe et al. ). Our calculation
reproduces the slope of the spectrum but yields a cross
section which is too large by a factor of —2. Similar re-
sults have also been obtained in earlier calculations.

It is clear that more data are required for both pp and
np bremsstrahlung in order to test existing potential mod-
el calculations, especially in geometries where photon en-
ergies near the maximum value allowed kinematically can
be reached. Such an experiment has been recently pro-
posed by the Julich group at COSY.

We should mention that the present calculation

preserves the gauge invariance only in the SPA, for it in-
cludes the two-body current contribution only in that
limit (we have seen that the one-body rescattering contri-
bution is considerable only beyond the SPA). However,
as mentioned before, this may not be critical for calculat-
ing inclusive cross sections. It is certainly very important
to learn about the role of the two-body contribution,
beyond the SPA, in producing energetic photons.
Theoretically, this is one of the present limitations in us-
ing the np bremsstrahlung as a tool for investigating, for
example, the o6'-energy-shell eftects of the XX interac-
tion.

Finally, we remember that in the present calculation
no inelasticities have been included. Therefore, the re-
sults we have presented for incident energies beyond the
pion threshold should be interpreted with caution. The
present calculation also uses the nonrelativistic elec-
tromagnetic current operator; for high incident
(T„b ~200 MeV) and photon energies, relativistic spin
corrections may become considerable. ' '

ACKNOWLEDGMENTS

APPENDIX A

As far as the momentum integration is concerned, Eq.
(2.3) as well as Eq. (2.9) is of the form

z= fd'p" F( ")
D+«s" u) ' (A l)

where D+ and E(p",p ) are defined in Eq. (2.5).
We perform the above integral first integrating over

the magnitude of p" ("radial" integral) and then integrate
over the solid angle, i.e.,

(A2)

For a given solid angle 0", the "radial" integral has
two simple poles: one at E(p",p)=0 and another at
D+ =Q. Therefore, we split the integral in two pieces,
each containing only one pole (this is always possible
since they are simple poles) and write it as
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II

X(p")—:f dp "p"'
0 D+E p" p

F(p")
0 D+ E(p",p )
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(A3)
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so that the energy denominator D+ can be written in the
more symmetric form

D+ = e(p+ )+E( lp++kl )
—e(p" )

—e( p"+kI )+i i) .

(A7)

where a is chosen such that the first integral contains a
pole from D~ and the second one a pole from E(p",p).
In the above equation we have omitted explicit reference
to the angular part of p".

The second integral in Eq. (A3) can be evaluated most
easily if we write the relevant energy denominator as

We then proceed similarly to the previous case to write
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Inserting this into the second integral, we obtain
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where, in the last step, we have subtracted and added a
term in order to smooth the integrand for numerical pur-
poses. We have also introduced the notation

It may happen that Eq. (A6a) cannot be satisfied for
some direction p+ given by Eq. (A6b). In this case the
integrand in X1(p") contains no pole and, consequently,
there is no problem with the numerical integration.

APPENDIX B

In this appendix we construct the Lorentz-invariant
transition amplitude from the nonrelativistic XX T ma-
trix. The nonrelativistic T matrix ( T„,) obeying the
Schrodinger equation (or the Lippmann-Schwinger equa-
tion) is related to the cross section in the NN c.m. system
by

2

In order to perform the first integral in Eq. (A3), we
define the quantity p+ through the relation

do. m

dA 4~ IT„„(p,p)l', (Bl)

e(p ~ ) + e( I p ~+k
I ) =E( I

p' —k/2
I ) + E( I

p'+ k/2
I ),

with the condition

(A6a)

with the final and initial relative momenta, p' and p,
obeying Ip' =

I pl. This is the case, for example, of the T
matrices based on the Paris and Hamada-Johnston poten-
tials. Now we want to construct the Lorentz-invariant
transition amplitude from T„„(p',p). The total NN cross
section in terms of invariant quantities can be written as

1

E182[(P1—P2) —(P1XP2) ]'

I Pi G P2x, , , lv'E, E,T(pi. , pz, pi, pz)v Eie~l'(2n) 6(pi+P2 Pi Pz)~(E1+E2
e', (2~)' e2(2ir )

(B2)

In the above equation, p, and E; =(p, +m )' denote the
momentum and energy of the nucleon i in the initial
state, respectively; P, =p, /E, . The primed quantities
refer to the final state.

The quantity

T(P1 ~P2'apl~ p2) (ele2) T(P1'~P2'ipl~p2)(Ele2)1/2 1/2

(B3)

is the Lorentz-invariant %2V transition amplitude and we
now look for a relationship between T in the above equa-
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do
dQ I VE, /m T(p', p )QE, /m I

' . (85)

Comparing Eqs. (Bl) and (85) yields

T(p', p) =Qm /E T„,(p', p)+m / E (86)

Of course, Eq. (86) is valid only on-the-energy-shell,
i.e. , ~p'~= p~. Off the-energy-shell (~p' W~p~) the exten-
sion of Eq. (86) is

T(p', p)=Qm/Ep T„,(p', p)+m/E

which is the desired result. We note that, in the case of
the OBEPQ version of the Bonn potential, where the
Lorentz structure of the interaction is known (this poten-
tial is based on the relativistic meson-exchange theory)
and that the resulting Blankenbecler-Sugar equation

I

tion and T„, in Eq. (81).
In the XXc.m. frame, Eq. (82) reduces to

B41 1

4E (2~)

with E„=F. = (p +m )' . Therefore, we have
2

(which is obtained from a three-dimensional reduction of
the Bethe-Salpeter equation) can be cast into a
Lippmann-Schwinger equation by a proper redefinition of
the NN interaction, ' the Lorentz scalar nature of T in
Eq. (83) with T given by Eq. (87) can be explicitly
verified. We also observe that Eq. (Bl) is obtained by im-
posing the unitarity of the S matrix associated with T„„'
therefore, if we use T„, instead of T given by Eq. (86) in

Eq. (82), we violate the unitarity of the S matrix.
Since we also express the bremsstrahlung transition

amplitude in terms of Lorentz-invariant amplitude, ' "'
the T matrix required in such calculations is that given
by Eq. (87) and not T„,. In order to see this explicitly,
we consider, for simplicity, the bremsstrahlung transition
amplitude from the convection current as given in Ref.
11. Moreover, we restrict to the term in which the pho-
ton is emitted by one of the interacting nucleons, say, nu-
cleon 1, before the strong interaction takes place. This
corresponds to the first term in Eq. (2.7a) of Ref. 11 and
we will denote this amplitude by

& ~ ki pi'p2'S™S'~Vconv ~0& pl "p2"SMS &

Then, according to Ref. 11, the invariant amplitude is
given by

Vconv +El'E2'~& ~~k~pl'P2'S MS'~ V onv ~0~PI "P2"SMS & 1/ EI"E2" (88)

We want to verify explicitly that the above amplitude is, in fact, a Lorentz invariant. In the final XN c.m. frame, fol-
lowing Ref. 11, we have

~ p &p', S'Ms l(T )t~p k/2—, SM &

Vco„v ='1/ EI F2' el'/(27r)/k 6SS' 1/ EI"E2"
m E( p —k/2, p)

where E(~p —k/2~, p ) is defined by Eq. (2.5c); E, .=E2 =E~ and E,-=E2 =E~F k/2~.

Using Eq. (83), the above expression can be rewritten as

.p &S'M ~(T )"(p', p
—k/2)ASM

V = —e ~/2~6
E(~ —k/2~, ')

The quantity e.p in the above equation can be rewritten as

6'p=&p Epo= 6 pp

(89)

(810)

(811)

since we work in a gauge where e =0. e" and p„are four vectors. Also, it is easy' to see tha~ the energy denominator
can be reexpressed as

E(Ip —k/2l, p') =2[E(p') —F-(Ip —k/21)]
=

t [2E(p')] —P' ]
' —

I [2E( ip —k/2i ) ] —P'
J

'

—[( + )2 PI2]1/2 [( +E )2 PF2]1/2 (812)

where

P' =P &'+ P2' P1-+P2.=0

is the final NN c.m. momentum. The quantities

S =(El'+ E2') P —(p I'+p2' ) (pl'+p2' )p &

S (El"+E2" ) P (pl" +p2" ) (pl" +p2" )

in Eq. (812) are Lorentz scalars.

(813)

(814)

Using Eqs. (811)—(814) in Eq. (810), we obtain

~~p„&S'Ms, ~( T )'~SMs &-
Vconv I 2~fiss'

(s') —(s" )
(815)

which is, manifestly, Lorentz invariant provided T, T,
and T„„are related via Eqs. (83) and (87). In other
words, V„„,will be Lorentz invariant if the NN transi-
tion amplitude T is a Lorentz invariant. The same con-
clusion follows for other terms in the bremsstrahlung am-
plitude.
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