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Isospin and deformation splittings of the giant dipole resonance for triaxial nuclei
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We study the different mechanisms for the fragmentation of the giant dipole resonance in
medium-mass nuclei with triaxial shape, by resorting to group-theoretical techniques. Coupling be-
tween low- and high-lying collective modes is considered, together with isospin effects, within the
framework of the interacting boson model. An application to titanium isotopes is presented.

It is well known that photon-absorption cross sections
for deformed nuclei show, in the energy region of the gi-
ant dipole resonance (GDR), a typical fragmentation pat-
tern due to the coupling between low-lying and high-
lying collective modes. Moreover, for light- and
medium-mass nuclei, where valence neutrons and protons
fill the same major shells, a further splitting of the GDR
strength originates from isospin effects, owing to the iso-
vector character of the giant dipole excitation.

An algebraic approach, ' as developed in the last few
years within the framework of the interacting boson mod-
el (IBM), can be useful in elucidating the main mecha-
nisms underlying the GDR fragmentation pattern over a
broad nuclear-mass region, where complete shell-model
calculations involving 1p-1h excitations across major
shell closu res are unfeasible. In some cases, when
dynamical symmetries arise, group-theoretical techniques
allow us to obtain analytic formulas for the GDR split-
ting, which are particularly suitable to this kind of inves-
tigation. Closed-form results have been previously de-
rived for axially symmetric and triaxially deformed nu-
clei, ' described by SU(3) and SU(3)* IBM dynamical
symmetries, respectively. The isospin contribution has

been considered for s-d shell nuclei in Ref. 5, in the
IBM-3 extension"' of the model, which takes explicitly
into account neutron and proton degrees of freedom.

In this Brief Report we work out analytic expressions
to deal with both deformation and isospin splittings of
GDR in triaxial nuclei. This result represents a matter of
experimental interest, since it has been recently suggest-
ed that nuclei in the fpshell c-ould exhibit a change of
symmetry from a deformed axisymmetric to a triaxial
shape.

We first consider GDR deformation splitting and recall
some results obtained in Ref. 1. In IBM language, the gi-
ant dipole excitation is represented by a p boson, with
J =1,which belongs to the (1,0) irreducible representa-
tion (irrep) of group SU(3). It strongly interacts with the
usual s and d bosons describing low-lying collective
modes, mainly through a quadrupole-quadrupole
force. ' The IBM-2 ground-state band of a triaxial nu-
cleus belongs to the (2N„,2N ) irrep of SU(3)*, where
N (N ) is the effective number of neutron (proton) bo-
sons and N, ~N WO. The coupling between low-lying
and GDR states is then given by the following product
representation and decomposition

(2N, 2N )(1, 0)=(2N, +1,2N )e(2N —1,2N +1)e(2 N„N2—1) .

I

one is the coupling term given by a quadrupole-
quadrupole interaction. '

The dipole transition operator D "' can be factorized
in a boson D ~" and an isospin part D 'T", which act on
boson and isospin spaces, respectively. It is thus possible
to evaluate dipole transition strengths between low-lying
and GDR states. Boson matrix elements are proportion-
al to the reduced Wigner coeKcients of the
SU&(3) DSO8(3) decomposition and are given by

Therefore, GDR is split into three components; their ei-
genvalues can be obtained explicitly' by exact diagonali-
zation of the following Hamiltonian, considering the as-
sociated three-level mixing problem:

H =H,d+e 8' +b2(Q ' '+Q ' ') [p+ Xp]' ' . (2)

Here, H,d is the usual s-d boson Hamiltonian in the
SU(3)* limit of IBM, the second term in the right-hand
side (rhs) is the unperturbed p-boson energy, and the last

I

MI =&L;+IID a'IIII' & =D'&(2N. ».»L; (1 O»Ill(2N. + I 2N. »»
M2=(L;+llD II'[[Iq~ ) =D'((2N, 2N ),L, ;(1,0), ill(2N„—1,2N +1),1), (3)

where

D' = ((2N. +1,2N. ) llD ',"ll(2N„2N.) )

=((2N —1,2N +1)llD ~"ll(2N„2N ))

=((2N, 2N —1)llD ~s"[[(2N,2N )) .

M~ = (L;+ llD s"
ll l~~ ) =D'((2N„2N ),L;;(1,0), ill(2N„2N —1), I ),

I

I., is the total spin of low-lying states, and the states
l I Is ), l 12' ), l lq~ ) belong to the three irreps in the rhs
of formula (1).

We now introduce isospin degree of freedom by resort-
ing to the third version of the model (IBM-3). In IBM-

(4) 3, wave functions of low-lying states are defined by the
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product of a boson and an isospin part. Therefore, the
usual s and d bosons carry one isospin unit with the third
component equal to + 1 (neutron-neutron pair), 0
(neutron-proton pair), and —1 (proton-proton pair).
Thus in isospin space the ground-state band belongs to
the (N, N )irrep of SU7-(3), since the corresponding bo-
son irrep is (2N„2N ) and two irreps must have the
same symmetry properties, while p boson still belongs to

a

the (1,0) irrep, since the relevant electric dipole excitation
has, obviously, isovector character and third component
equal to zero. These choices for isospin representations
are imposed by the requirement that the nuclear wave
function is totally symmetric in the Fock space, due to its
bosonic character. The isospin states are then defined in
terms of the following decomposition:

(N, N„)(1,0)=(N +1,N )e(N —1,N„+1)e(N,N 1) .— (5)

Each unitary irrep contains two possible components
with isospin T = To and T = To+ 1, respectively, where
To is the isospin value of the nuclear ground state.
Therefore, the three states arising from deformation split-
ting are further fragmented into three components; on
the whole, nine GDR states result.

It is possible to obtain analytic expressions for the en-
ergy splitting of the three states given by formula (5),
likewise to the procedure adopted for the boson com-
ponents. Expressing the total Hamiltonian in terms of
quadratic Casimir operators of SU(3), the eigenvalue
problem can be easily solved in a closed form. The ener-

gy splittings between the first and second state and the
first and third one are found to be, respectively,

I

bE&z=ahCz [SU(3)]=2a(N +1),
hE» =ah, Cz [SU(3)]=2a ( N +N +2) .

Here, C2[SU(3)] are the eigenvalues of quadratic Casimir
operators of SU(3):

C2 [SU(3)] = ,
' [A, +p + Ay+—3(A+p) ],

where (A, ,p) labels SU(3) irreps in Elliott's notation,
adopted in this paper, and a in Eq. (6) is an adjustable pa-
rameter.

Dipole transition strengths for excitation of GDR
states are found by evaluating D 'z'-' matrix elements, in
addition to the boson strengths of Eq. (3):

=D"((N„N ), To, (1,0), lii(N, +1,N ), T)( TO, T0, 1,0iT, TO),

N2 «+ IID V 1112T )

=D"((N, N ), To, (1,0), 1 i~(N, —1,N + 1),T ) ( To, To; 1,0~ T, To ),
N, = &L„+~~D ',"~~ I;, )

=D"((N. , N. ), T, ;(1,0), 1~~(N„,N. —1),T ) ( T, , T,;1,0~ T, T, ),
where

D"=((N, +l,N )~~D ')'~~(N, N ))
= ((N, —1,N. +1)[~D ') '[[(N.,N. ) )

=((N.,N. —1)iiD ',"ii(N. ,N. ) ) .

To and T are, respectively, isospin values of ground state and GDR components (T = To or To+ 1) and the
~ I,z-),

~ 12' ), ~ 137 ) states are given by decomposition (5).
The total transition strength for each possible GDR state can then be obtained taking the product of all D ~" matrix

elements (M„M2,M3) with each D '~" matrix element (N„N2,N3). In this way, deformation and isospin splittings of
GDR are both taken into account.

Introducing the notation

~(~s~Pa)~( r ~Br)» (10)

the possible GDR states are defined as follows:

il, , ) =i(2N +1,2N );(N„+1,N ), T, TO), ii,~) =i(2N +1,2N );(N —1,N +1),T, TO),

il, ~) =i(2N +1,2N );(N„N —1), T, TO), i 1~, ) =i(2N —1,2N +1);(N +1,N ), T, TO),

il22)=i(2N —1,2N +1);(N —1,N +1),T, TO), il~~)=i(2N, —1,2N +1);(N,N —l), T, TO),

i 1~, ) = i(2N, 2N —1);(N +1,N ), T, To), i 132) = i(2N, 2N —1);(N —1,N„+1),T, To ),
~133)= ~(2N, 2N —1);(N,N —1),T, To) .
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FICi. l. Experimental (Ref. 12) and calculated [SU~(3)*@SUr(2)] photoabsorption cross section of Ti. Bars at the bottom
represent calculated dipole strengths (in arbitrary units); dashed line, T= 1 components; dotted line, T=2 components.

Moreover, the dipole transition strengths between these states and the low-energy ones are

= I(L IID '"ill, ) (L IID ',"ill (12)

}) (1)with j,k= 1, 2, and 3. The two constants D' and D" appearing in the D z
' and D 'z' matrix elements can be merged

into only one constant Do in the definition of 5; &.
The Hamiltonian can be diagonalized in the SU(3) basis (5) only if adiabatic approximation holds, that is if the ener-

gy spacing of states with different T values belonging to the same SU(3)* irrep is small with respect to the energy split-
ting between GDR states with T = To and T = To+1. The first quantity is connected with the symmetry term in the
Weiszacker mass formula:

( )
134—2383

0 A
[T(T+1)—To(To+1)] MeV, (13)

while the second one is given by'

60( To+ 1)
(14)

If adiabatic approximation does not hold, the isospin
coupling has to be introduced at the SU&(2) level and,
therefore, the isospin Hamiltonian is expressed in terms
of quadratic Casimir operators of SU(2) rather than
SU(3), whose eigenvalues are

TABLE I. Interacting boson model parameters.

Nucleus 46Ti 48Ti

Therefore, only six GDR states persist altogether for
each isospin component (respectively, To and To+ I ).
Dipole transition strengths are still given by Eq. (12), but
now with k=2, 3 for each j value and only Clebsch-
Gordan coe%cients make different matrix elements
(Xf NQ X3 ). It is worth noticing that the analytic ex-

C~[SU(2)]=J(J+1), (15)

bE~3=bbC~ [SU(2)]=2b(T +Io) . (16)

with J label of SU(2) irreps.
In this situation, there are only two GDR states arising

from isospin coupling for given isospin value, whose ener-

gy spacing is given by

X
e~ (T=TO) (MeV)
b, (keV)
b (keV)
Do (fm)
I 0 (MeV '

)

2
1

17.25
0.24
0.27
3.6
0.026

3
1

17.00
0.24
0.38
4.3
0.015
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FKJ. 2. Experimental (Ref. 13) and calculated [SU~(3) SUr(2)j photoabsorption cross section of Ti. Bars at the bottom
represent calculated dipole strengths (in arbitrary units); dashed line, T=2 components; dotted line, T= 3 components.

pressions derived above are totally independent of any
microscopic interpretation of the model and are thus
quite general.

They can be applied, in principle, to any (nonmagic)
even-even nucleus with triaxial shape through the period-
ic table. As an example of possible applications of the
above formalism, in addition to the intrinsic interest, we
present the results obtained for photoabsorption cross
sections of Ti and Ti (Figs. I and 2), postponing a
deeper discussion of the adopted Harniltonian and the
coupling between low- and high-energy degrees of free-
dom to a forthcoming paper, actually in preparation.

For these nuclei, adiabatic approximation does not
hold and, therefore, the GDR isospin coupling has to be

introduced at the SU&.(2) level. Photoabsorption cross
sections have been calculated by means of standard for-
mulas, " associating to each dipole strength of the six
GDR states an intrinsic width given by a phenomenologi-
cal power law, " I (E)=I oE ~ MeV. The parameters
adopted in the present calculations are listed in Table I.

The results are in quite good agreement with experi-
mental data and they do not seem to be incompatible
with the triaxiality hypothesis, proposed for heavier nu-
clei in this mass region. Further calculations for titani-
urn isotopes, as regards elastic and inelastic photon-
scattering cross sections, together with a detailed discus-
sion of the fit to low-energy spectra will be presented in a
forthcoming publication.
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