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Unitary pole approximation for the Coulomb-plus-Yamaguchi potential
and application to a three-body bound-state calculation
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The unitary pole approximation is used to construct a separable representation for a potential U
which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The ex-
act bound-state wave function is employed. U is chosen as the potential which binds the proton in
the 1d5&& single-particle orbit in '"F. Using the separable representation derived for U, and assum-

ing a separable Yamaguchi potential to describe the 1d,zz neutron in "0, the energies and wave
functions of the ground state (1+) and the lowest 0+ state of "F are calculated in the core-plus-
two-nucleons model solving the Faddeev equations.

I. INTRODUCTION

In some three-body processes, the T matrix associated
to a pair of particles is dominated by the bound-state pole
of the pair. In this case the interaction U between these
particles can be approximated by the separable potential
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) being the bound-state wave function. This approx-
imation is known as unitary pole approximation (UPA).

Our purpose is to construct, based on the UPA, a se-
parable approximation for a potential U which consists of
a short-range attractive part V and of a Coulomb repul-
sion Vc=(ZZ'e )fr. As is well known, the inclusion of
the Coulomb interaction in the three-body problem
presents many difficulties. Although it has been possible
to extend the Faddeev formalism to include the Coulomb
force, ' the numerical applications have been restricted to
low values ( S4) of the product ZZ'. ' The usual re-
placement of the Coulomb T matrix by VC (Born approx-
imation) becomes questionable as ZZ' increases.

In a recent calculation of the p-d breakup reaction,
the long-range tail of the Coulomb interaction is replaced
by a short-range potential and the Ernst-Shakin-Thaler
(EST) method is used to obtain a separable approxima-
tion for this cutoA' Coulomb potential. The EST method
is more general than the UPA. However, for the UPA it
is not necessary to make any screening of the Coulomb
tail.

II. CONSTRUCTION
OF THE UPA FORM FACTOR

Having in mind applications to three-body systems
consisting of two nucleons outside an inert and massive
core, we consider U as being the single-particle potential
of the proton. For simplicity, it will be assumed that the

short-range part V is already separable and acts in a
specific (lj) orbit of the shell model:
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where p is the momentum of the proton (mass m ) and
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With this choice, the two-body problem corresponding to
the potential V+ Vc can be solved exactly. ' The ener-

gy E'Ij of the bound state is determined by the equation

2l +1a-'= —4-'
Ij (2P) ' '(P+K)

l +1—s/~

X2F) 1, —l ——;l+2——;S s p K

P+K

2

where s = —(2mZZ'e )/2 and K=(2mlel l)' . The cor-
responding wave function is given by

qlBi,s(p) =X.. . , [gi)(p) Ui&(p)] p(,„(p), —
P +K

where

We assume also that the error made in considering the
core as a point charge, which leads to an excess Coulomb
repulsion in the region corresponding to the interior of
the core, is compensated for by making the potential V
more attractive.

It is convenient to choose a form factor of the
Yamaguchi type,
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and Xi~ is a normalization factor. The C„(z) are the
Gegenbauer polynomials.

From expression (6) we see that the separable potential
U„, which generates the same bound state as the poten-
tial V+ V&, is given by
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with
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(8) FIG. 2. Form factors g2 &/2 of UPA, gz 5/2 of the Yamaguchi
potential, and the difterence v 2 5/, between g, 5/2 and g 7 &/2.

and A& is determined by requiring that the bound state
has the energy eigenvalue ei, . Expression (8) is the UPA
[Eq. (1)] when the degeneracy introduced by the quantum
number p is included.

As an example, we consider U as the interaction which
describes the 1d 5&& single-particle bound state of the pro-
ton in ' F. The energy of the bound state
(ez s&z= —0.596 MeV) is reproduced if we take
A,z 5&z=945 fm and /3=1.464 fm ' in Eqs. (2) and (4).
The value of /3 is the same as the one appropriate for the
neutron lds&z single-particle state in ' 0 (see Sec. III). In
Fig. 1 we show the radial function
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where 3 is a normalization constant and y =is/ir (Ref. 7,
p. 432). The corresponding mean-square radius is 3.74
fm. This value is very close to the value 3.69 fm given in
Ref. 8. In Fig. 2 we plot the functions gz spaz(p), v z spaz(p),
and gz s~z(p) [Eqs. (4), (7), and (9)]. It can be shown
analytically that vz spaz(p) behaves as p when p~0 and
as p for p ~~. Finally, we mention that the coupling

constant Az spaz which appears in Eq. (8) results in being
equal to 1103 fm

III. APPLICATION
TO A THREE-BODY BOUND-STATE CALCULATION

We consider the nucleus ' F as a three-body system
composed of an ' 0 core plus a proton (particle 1) and a
neutron (particle 2). We restrict ourselves to bound
states dominated by the (ldszz, ids&z) configuration and,
in fact, consider only the ground state (1+) and the
lowest 0+ state (excitation energy 1.042 MeV).

For the proton-' 0 interaction U& = V&+- Vc, we use
the UPA potential described in the previous section. For
the neutron-core interaction V2, a potential of the same
form as the short-range part V& of the proton interaction
[Eqs. (2)—(4)] is used. The parameters are chosen in such
a way to reproduce the energy ( —4.146 MeV) and the ra-
dius (3.464 fm) of the Idszz single-particle state in ' O.
Thus the values A, ~z z&z=924 fm and /3~z z&z=1.464 fm
are obtained. We here make the remark that since kz'~&&
(=945 fm ) is larger than Az'5'&z, V, is more attractive
than Vz. This is expected since, as was pointed out in
Sec. II, V, has an additional attractive part to compen-
sate for the excess Coulomb repulsion.

For the neutron-proton interaction V, z, we use the se-
parable s-wave Yamaguchi potential

&s
& ql I']z lq &

= — g gs(q)gs(q')
S=o &

m

I

15 20 gsq=( )=-
s

FID. 1. Exact radial wave function for the 1d&/2 state in the
Coulomb-plus- Yamaguchi potential.

In Eq. (11), q is the relative momentum —,
' (P, —Pz), P,- be-

ing the momentum of particle i, and ~SMs ) is the spin
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FIG. 3. Spectator functions for the ground state of "F. FIG. 4. Spectator functions for the lowest 0+ state of "F.

wave function for the proton-neutron system. The values
used for the parameters are AO=0. 149 fm, PO=1.165
fm ', A, =0.382 fm, and P1=1.406 fm ', which are
determined from the values a, = —23.71 fm, ro, :2.70
fm, a, =5.42 fm, and I o,

= 1.76 fm for the scattering
I

length and effective range of the neutron-proton scatter-
ing.

Performing the Faddeev decomposition of the total
wave function, 4=+"'+4' )+'0' ', we obtain the fol-

lowing expressions for the components 4I":
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In Eqs. (13)—(15), E is the energy of the three-body bound
state, (J,MJ) denotes the total angular momentum, P is

the center-of-mass momentum P, +P2, and the 'Y's are
the usual total angular momentum eigenfunctions.

The spectator functions H satisfy the homogeneous in-

tegral equations given in Refs. 10 and 11. For the 1

state, we have (l', j')=(2, —,'), (2, =,'), (4, —', ), L=O 2, and
S=1 in expansions (13)—(15) and, for the 0+ state,
(l', j')=(2, —', ), L=O, and S=O. The coupled integral

equations are transformed into a system of algebraic
equations by applying the X-point Gauss quadrature
method for the integrals. The vanishing of the associated
determinant gives the energy eigenvalue. In this way we

get E,+ = —10.3 M V a d E + = —7.93 MeV. These

numbers are close to the experimental values'
E;"+'= —9.75 MeV and E'"+' = —8.71 MeV, despite the

fact that only the 1d5y2 interaction is considered.
In order to evaluate the contribution of the Coulomb

force to the three-body bound-state energy, we replace
the valence proton by a neutron and calculate the energy
of the 0 ground state of ' 0 obtaining E +

(' 0)= —11.38 MeV. Therefore, in our model, the

switching on of the proton-core Coulomb interaction
raises the energy by an amount E +(' F)

E+(' 0)= ——7.93 MeV+11.38 MeV=3.45 MeV. Ex-

perimentally, one has E'"+~'(' F) E'"+'(' 0)—
=——8.71 MeV+12. 19 MeV=3.48 MeV. This shows that
the UPA is able to yield a correct value of the Coulomb
energy.

In Figs. 3 and 4, we p1ot the spectator functions versus
momentum. From the closeness of II"' and H' ', we
conclude that the asymmetry introduced in the total
wave function [Eqs. (13)—(15)] by the Coulomb force lies

mainly in the difference U2 5&2 between the form factors

g2 5/2 and g2 5/2 (g2 5/2 in Fig. 2) and is about 20%. ~e
make here the remark that in the numerical calculations
we found it convenient to multiply gz»z and gz 5&2 by a
factor of 15.50 and, accordingly, divide A2»2 and A, z ~&2

by (15.50) . Therefore, the actual values of H'" and H' '

are 15 ~ 50 times those shown in Figs. 3 and 4.
It is our purpose to extend the present calculation to

other levels of ' F, and further, we expect to be able to
apply the UPA to describe the (d, n) stripping reaction on
16O
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