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The purpose of this paper is to understand intuitively the origin of the angular momentum and
incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisym-
metrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus in-

teraction, we show first that the nucleus-nucleus interaction can be written by the use of the
density-distribution function and the phase-space distribution function instead of using the many-

body wave function itself. And we show that the structure change of the density-distribution func-
tion with the increase of the angular momentum causes the angular momentum dependence of the
nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interac-
tion originates from the structure change of the phase-space distribution function.

I. INTRODUCTION

The angular momentum and incident-energy depen-
dence are basic characteristics of the nucleus-nucleus in-
teraction. One of the origins of these characteristics is
the fact that the nucleus is a composite particle of fer-
mions and so total antisymmetrization is required. Until
now by use of the microscopic studies with the
resonating-group method (RGM) and its semiclassical
version (RGM+WKB), it has been made obvious that
the total antisymmetrization of the nucleon wave func-
tions gives rise to this character. '

In addition to the antisymmetrization, there are some
other origins, such as dynamical polarization, to endow
this property to the nucleus-nucleus interaction. As for
the incident-energy dependence caused by the dynamical
polarization, it is easy to understand the structure of it if
we neglect the nonlocality. On the other hand, though it
is already known that the antisymmetrization brings the
angular momentum and incident-energy dependence to
the nucleus-nucleus interaction, it cannot be said that the
structure of this dependence is clearly understood.

The purpose of this paper is to get intuitive under-
standings of the angular momentum and incident-energy
dependence caused by the antisymmetrization. Especial-
ly we discuss this property from the viewpoint of the
structure change of nucleon distribution functions. The
distribution functions mentioned here are the density-
distribution function and the phase-space distribution
function (Wigner function). These functions give us the
most intuitive information on the mode of existence of
the nucleus-nucleus system.

The above-mentioned nature of the nucleus-nucleus in-
teraction is also caused by the state dependence and the
structure dependence (density dependence and starting-
energy dependence) of the nucleon-nucleon eA'ective in-
teraction. This time, however, we pay attention only to
the effects of the antisymmetrization. In this paper we
employ a many-body theory employing a totally antisym-

metrized wave function and an effective interaction
which is density- and starting-energy independent.

The many-body theory employed here is the canonical
moving wave-packet method (CMWP). ' This method
describes the internucleus relative motion in a semiclassi-
cal way on the basis of the time-dependent variational
principle. As for the reliability of this method, it has al-
ready shown that the internucleus potential obtained by
this method coincides well with the one by more reliable
RGM+ WKB. '

The many-body wave function used in CMWP is a sin-
gle Slater determinant of the harmonic-oscillator single-
particle wave functions. In this paper it is shown that the
interaction kernel of CMWP can be expressed by using
the nucleon-distribution functions instead of using the
many-body wave function itself. This fact gives us a hint
to understand intuitively the properties of the nucleus-
nucleus interaction. And then we investigate the origin
of the angular momentum and incident-energy depen-
dence together with discussing the features of the distri-
bution functions.

In Sec. II we briefly review the CMWP method and
show the relation between the nucleon-distribution func-
tions and the nucleus-nucleus interaction. In Sec. III
some comments on the nucleon-nucleon effective interac-
tion are made. In Sec. IV we discuss the nature of the
density-distribution function and the Hartree-type-
interaction kernel. In Sec. V we discuss phase-space dis-
tribution function and the Fock-type-interaction kernel.
(These two-types of interaction kernels are defined in Sec.
II.) In Sec.VI we show the numerical results on the
nucleus-nucleus interactions by the CMWP method. Sec-
tion VII is devoted to the summary and the concluding
remarks.

Finally, it is noted here that in this paper all the con-
siderations are performed on the assumption that both
the projectile and the target are spin-isospin-saturated
closed-shell nuclei. The systems explicitly treated are a-
' O and ' 0-' 0 systems.
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II. NUCLEUS-NUCLEUS INTERACTION
BY THE CMWP METHOD

A. Brief review of the CMWP method

V(R, P) = T,„(R,P)+ V(R, P),
A+B p2

T,„(R,P) = g t, —TG
2Pf0

(2. 1)

(2.2)

The nucleus-nucleus interaction V of CMWP is com-
posed of the kinetic-exchange kernel T„and the interac-
tion kernel V. They are given by the following expres-
sion:

&zioiz&
&ziz&

(2.4)

where t„TG, p, and v, b are the kinetic-energy operator
of each nucleon, the kinetic-energy operator of the
center-of-mass motion, the reduced mass number of the
nucleus-nucleus system, and the nucleon-nucleon
effective interaction, respectively. The scalars t,'„,' and
UI„t' (a= A, B) are the kinetic- and interaction-internal
energies. The term —,'Ace is required because of using a
Gaussian function as a wave function of the nucleus-
nucleus relative motion. The expectation values of the
operators are defined as

A+B
V(R, P)=(—,

' g v.v)
—(v', „",'+vI„,'),

a, b=I
(2 3)

The many-body wave function in the center-of-mass sys-
tem is defined as

~Z&= A y, r, — v'p, /vZ . . .y„r, —1 1 v'p/vZ

1 1
XPa+i r~+i+ &8/vZ —. . .P„+s ra+a+ &8/vz—

B B
Z2

exp
2

(2.5)

where P, (a = 1, . . . , A +B) are the spatial and spin-
isospin parts of the single-particle wave functions in the
nuclei A and B. The harmonic-oscillator construction
potentials are employed to get those wave functions. The
operator A is the antisymmetrizer throughout the whole
system. The oscillator width parameters for both nuclei
are assumed to be equal in this study. The letters 3 and
B are used not only to distinguish the target and the pro-
jectile but also to indicate the mass number of each nu-
cleus. The definition of Z is

Z= — v 2vpD+1 i K
2 2' &

(2.6)

P=K in%'(s)a
Bs

1/2 (2.8)

s =zz, w(s) =
& z~z &, (2.9)

where the vector Z is complex conjugate to Z. It is noted
that the norm A is a function depending only on the sca-
lar product s =ZZ.

With these canonical variables R and P, it is not hard

ffI CO

2A

The vectors D and K are the noncanonical distance and
momentum vectors, respectively, and have no direct
physical meanings. The physical distance vector R and
the physical momentum vector P are defined as

T ' 1/2

R=D lulls(s )
a
Bs

vpR+ P «N
4vpA

(2.10)

The value NA corresponds to the smallest quantum num-
ber of the RGM Pauli-allowed states.

The nucleus-nucleus interaction is given for each angu-
lar momentum I and incident energy E by determining
the vectors D and K which satisfy the following equa-
tions:

1 P (D, K) +V( R( D, K), P(D, K))= E,
2P fn

R(D, K) X P(D, K) =Rv'l(l+ 1) .
(2.11)

As a result, the nucleus-nucleus interaction begins to
have the angular-momentum and incident-energy depen-
dence.

The relationships between the canonical coordinates R
and P and the noncanonical coordinates D and K are
rather complicated. But here we show that those non-
canonical and canonical vectors have a one-to-one
correspondence with each other except at D =K=0.
When the target and the projectile are both spin-isospin-
saturated closed-shell nuclei, the norm JV can be expand-
ed in powers of s:

JV(s)= g s~,I x
o Nt

(2.12)

where p~ are the eigenvalues of the RGM norm kernel
and they are non-negative. As po=0 for the systems

to see that the Pauli-allowed region in the phase space of
nucleus-nucleus relative motion is given by
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treated in this paper, we get

JV(s) ~0 . (2.13)

When s =0, that is, D=K=O, the norm JV becomes 0.
From Eq. (2.12) and the fact that p~ are non-negative, it
is obvious that the norm JV and also the function lnJV are
monotonic increasing functions of s. (For lnJV, s=0 is
the exception. ) Then we can find that Eq. (2.8) is the
one-to-one transformation. Therefore, the increase of R
corresponds to the increase of D, and the same for P and
K.

It is noted here that the kinetic-exchange kernel has no
explicit angular momentum dependence. When we get
the nucleus-nucleus interaction by self-consistent calcula-
tion with Eqs. (2.11), both the kinetic-exchange and in-
teraction kernels produce the angular momentum depen-
dence. However, as the angular momentum dependence
has only the perturbative order of magnitude, it is essen-
tially caused by only the parts which contain the scalar
product D.K. It is shown in Appendix A that the
kinetic-exchange kernel can be written as follows:

where P; are the spatial parts of the single-particle wave
functions P, . While the subscript a runs from 1 to
(A+B), the subscript i from 1 to (A+B)/4. B is the
overlap matrix

B)=(Q;~Q ) (i,j &A,B) . (2.16)

It is noted again that these combinations appear only
when the target and the projectile are spin-isospin-
saturated closed-shell nuclei. Hereafter the kernels VH
and VF in the above expressions are abbreviated as the
Hartree-type and Fock-type kernel, respectively.

The density-distribution function p(r) of the nucleus-
nucleus system is defined as

The nucleon-nucleon interactions v& and v, are the direct
and exchange interactions and are given by the following
combinations of the state dependence of the effective in-
teraction:

vz =
—,', [v('0)+3v( E)+3u('E)+9v( 0)],

(2.17)
u, =

—,', [ —u('0)+3v( E)+3u('E) —9v( 0)] .

T,„= [(ZZ)+(ZZ)] ln(JV(s)e ') .
2m Bs

(2.14) p(r)=4 g g, (r)1(j(r)B,, ' .
ij GA, B

(2.18)

From the definitions of Z and Z (2.6) and s (2.9), it is easy
to see that the kinetic-exchange kernel (2.14) does not
have the explicit angular momentum dependence. There-
fore, it can be said that the angular momentum depen-
dence of the nucleus-nucleus interaction is essentially
caused by only the interaction kernel.

In the subsequent subsection we explain the structure
of the interaction kernel more elaborately.

B. Interaction kernel of the CMWP method

When the target and the projectile are both spin-
isospin-saturated closed-shell nuclei, the interaction ker-
nel can be written in the form

Using this definition, the Hartree-type kernel VH can be
rewritten as

H 2
4; r1 k r, Bk' '

v& r1 —r2
ik

X 4 g fj(r2)g&(r2)BIJ.
gl

= —,
' f dridr2p(ri)u~(ri —rz)p(r2) . (2.19)

The phase-space distribution function f(r, p) (Wigner
function) of the nucleus-nucleus system is defined as fol-
lows:

VH =8 g fdr, drgr;(r, )g (r2)uz(r, —r2)
ijklE A, B

Xgk(ri)pi(r2)Bk; 'Bl

f «i«2$/(ri)yJ(rp)u, (ri —rp)
(2.15)

f(r, p)=4 g f dsg, r+ —P. r ——B, 'e'i" .
ij EA, B 2 ' 2

(2.20)

ijklE A, B

X gk(ri )Pi(r2)B&~ 'B&, ', Using this expression of f, we can get another expression
for the Fock-type kernel VF.

VF '
1 I 2 I

' v 1 2 j 2 k 1 kj
il jk

d p, d p2 r1+ r2 —(i/Q )(p~ —p~) ~ (z'1 —r, )

dr, dr2 f pi fu, (ri —r~)e ' ' ' ' ]f
(2M) 2

1 dP1dP2d«r, p, v, p, —p, r, p2
2 (2mB)

(2.21)

where use has been made of the relation
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4 y e;(rim, (r2)B,, '= fd "',f
;,eA, B

—ip(r& —r2)
(2.22)

The effective interaction U, is an exchange interaction represented in the momentum space:

u, (p)= f dr u, (r)e'~'. (2.23)

From Eqs. (2.19) and (2.21), it is found that the interaction kernel VH is a sum of the nucleon-nucleon interactions in
coordinate space and that VF is the one in momentum space.

According to the kernel-classification method, we decompose the interaction kernel into four parts, that is, a-, b-, c-,
and d-type kernels. These types of kernels are defined as

(12 type ) ( p
A

g A
u

~

ql A y Al ) ( ql )q(Bl~
~

q(B)pl B) ) ( q( A)q( A)
~ ~

~1B)~1Bl)

(e-tyPe) —
& O' "'O'" Iud, I

P'"P' "&

(d-type) —(1)'j' 'ltr'"'~ud, ~g' 'p' ') and c.c., (g'A'p' 'tud, ~p' 'p'B') and c.c.

By the above definition of the classification, each type of the Hartree-type kernel VH is written as

~ =1
VH = — dr, d r2ud(r, —r2) [p A A (r, )p A A (r2)+p AB (r, )p AB (r2)+PBA (r, )PBA (r2)+ PBB (r, )PBB(r2)],2

VH f d ldr2ud( 1 r2)PA A (rl )PBB( 2)

VH f drldr2ud(rl r2)P AB(rl )PBA (r2)

VH drldr2ud(rl r2)rp A A (rl )p AB (r2)+P A A (rl )PBA (r2)+P AB(rl )PBB(r2)+PBA (rl )PBB(r2)]d=

(2.24)

(2.25)

And each type of the Pock-type kernel VF is written as

p ld p2VF'= —«, u, (pl —p2)[fAA(r, pl)f AA(r, p2)+ f»(r, pl)f»(r, p2)
(2vrfi)'

+fBA (r, pl )fBA (r, p2)+fBB(r, pl)fBB(r p2) ],
dpidp2

VF"= dr-, u, (pl —p2)f AB(r, pl)fBA(r, p2),
(2vrfi)

d P1dP2VF'= f«, u, (pl —p2)f AA(r, pl)f»(r, p2),
(2~h )

d P1d P2
VF dr

6 u, (pl —p2)[f AA (r, pi )fAB(r p»+f AA(r pl)fBA(r p2)
(2vrlri)

+fAB(r, pl )fBB(r,p2)+ fBA (r, p 1 )fBB(r,p2) ],

(2.26)

VH = Va+ VH+ Ve+ VH,

VF —VF+ VF+ VF+ VF,
p ~(r)=4 g g P;(r)gj(r)B~, ' (a,P=A, B),

iEa jap
(2.27)

P(r) =PA A(r)+pAB(r)+pBA (r)+pBB(r),

where p & (a,P= A, B) and f & (a,P= A, B) are
defined as

(2.29)

(2.30)

(2.31)

f fi(r, p)=4 g g fdsP, r+-
i6a jap

f(r, p) =fAA(r, p)+f»(r, p)+f»(r, p)+f»(r, p) .

(2.32)

By definitions,

X g r ——B 'e'1"
J 2 JI

(a,p= A, B) . (2.28)

While the functions pAA, pBB, fAA, and fBB are real
quantities, the functions pAB, pB„, f„B, and fBA are
complex. But p„B and fAB are complex conjugate to
pBA and fBA, respectively. Then from Eqs. (2.19), (2.21),
(2.31), and (2.32) it is found that the imaginary parts of
pAB, pBA, fAB, and fB„make no contribution to the
nucleus-nucleus interaction.
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III. DIRECT AND EXCHANGE NUCLEON-NUCLEON
EFFECTIVE INTERACTIONS

IV. DENSITY-DISTRIBUTION FUNCTION
AND HARTREE- TYPE-INTERACTION KERNEL

&~;,(R)= I«&«~&(r~)Ud(R r~+—r2)p&(r2), (3.1)

where p~ and pz are the density-distribution functions
for the target and the projectile.

Figure 1(b) shows the form factor of the exchange in-
teraction given by HNY in momentum representation.
In the region where the relative momentum between the
interacting two nucleons are small, the attraction is
strong. As the relative momentum gets higher, the in-
teraction decreases its attraction and becomes even repul-
sive.

40 —(MeV fm')

The realistic form factor of the nucleon-nucleon
efFective interaction, which is obtained from the bare
nucleon-nucleon interaction on the basis of the
Brueckner-Hartree-Fock method, resembles one of the
bare interaction, though the former is more moderate
than the latter. For the triplet-even and singlet-even
states the effective interaction has the form factors which
are strongly attractive in the medium range and are
strongly repulsive in the core region. The form factor for
the triplet-odd state has a weak attraction in the medium
range and has a weak repulsion in the core region. For
the singlet-odd state it is weakly repulsive in all regions.

Figure 1(a) shows the form factor of the direct interac-
tion given by the Hasegawa-Nagata- Yamamoto force
(HNY). ' It also has the repulsion in the core region and
the attraction in the medium region. It is noted that the
vd is an attractive interaction. It is easily understood by
the fact, for example, that the direct potential with the
HNY force is attractive. The direct potential for the sys-
tems in which both the target and the projectile are spin-
isospin-saturated closed-shell nuclei is given as

A. The features of the density-distribution functions

The densities p ~ ~ and pzz which include the overlap
matrix elements of the nucleus-nucleus system differ from
the densities (p„,p~) of the nuclei A and B. In the
asymptotic region (

~

R
~

~ ~ or
~
P

~

~ ac ) where the
effects of the antisymmetrization disappear, the overlap
matrix elements between the nuclei A and B become
zero:

B~~0 (i E A, j&B, )R[~~ or IPI —+ oc ),
and at the same time,

p»~p&, p~~~p& (IRI~~ « IPI~~) .

(4.1)

(4.2)

The appearances of densities p ~~ and pz~ originate from
the antisymmetrization between the target and the pro-
jectile and they disappear in the asymptotic region:

p&&~0, p&& ~0 (~R —+ ac or ~P ~ ao ) .

Though near the Pauli-forbidden region,

p2
vpR + -N~,

4vpA

(4.3)

the total density-distribution function p remains finite, all
the components, p„~, pz~, p~„, and p~z, diverge. How-
ever, as we encounter such divergence only in the ex-
tremely low incident-energy region, the classification of
the Hartree-type kernel (2.2S) is not meaningless.

Figure 2 shows the density distribution in the scatter-
ing plane for the head-on colliding a-' 0 system (R~~P).
(The density-distribution and phase-space distribution
functions are given in the center-of-mass system. ) In the
CM%'P method the head-on collision corresponds to the

-50—

200 -- (MeV fm')

I (~m')

—6 . I ) I I I I I

-2 0
X AXIS

(b)
I

-2 0 2
X AXIS

(c)
I I I I I

-2 0
X AXIS

-400—

-700—

FIG. 1. The form factor of the direct interaction (a) and the
exchange interaction (b) by the Hasegawa-Nagata-Yamamoto
force. The b, parameter in the HNY force is put to 21.3 MeV.
The form factor of the direct interaction is multiplied by r .

FIG. 2. The contour maps of the density-distribution func-
tions for a-' 0 system in case of the head-on collision. (a), (b),
and (c) show p, p» +p», and the real part of p»+ p», re-
spectively. In this figure ~R~=4.0 fm, ~P~=2.0 fm ', and P is
parallel to R. The density-distribution functions p, p», and
p» are positive quantities, while the real parts of p» and p»
are negative. The centers of p», pz&, and Rep&z (or Rep~&)
located at z =2.58, z = —0.65, and z =0.97, respectively, where
AisnandBis' O.
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zero angular momentum. In this figure the relative dis-
tance ~R~ is 4.0 fm and the relative momentum ~P

~
is 2.0

fm . The oscillator parameter v for this system is
0.1603 fm . Figures 2(a) —2(c) show p, p„~+p~s, and
real part of p~~+p~&, respectively. In this figure it is
found that the densities p, p ~ ~, and p~~ are positive
quantities but real parts of p» and p» are basically
negative ones. p z~ and pz z are located in the middle of
the densities p» and p». It is noted that p» and p~~
seen in Fig. 2(c) have something like an ellipsoidal shape
and the direction of the long axis is perpendicular to the
incident axis (z axis).

Figure 3 also shows the densities p, p ~ z +pzz, and
real part of p» and pz~ for the u-' 0 system. In this
figure the absolute values of R and P are held fixed
( ~R ~

=4.0 fm, ~P
~

=2.0 fm '), but the direction of vector
P is perpendicular to the one of R (RLP). ,This corre-
sponds to the situation in which the largest angular
momentum within a given local momentum is realized.
In this figure we put the direction of vector R parallel to
the z axis and P parallel to the x axis. The features seen
in this figure are almost the same as Fig. 2 except the
shape of p ~~ and p~ ~ . This time, p ~z and p~ ~ have
round shapes. Comparing Fig. 2 with Fig. 3, we can find
that the density-distribution functions p z& and p~z have
the angular momentum dependence.

The same investigations are performed for the ' 0-' 0
system (Figs. 4 and 5). The oscillator width parameter,
relative distance ~R~, and relative momentum ~P~ are
0.1603 fm, 6.0 fm, and 2.0 fm ', respectively. In Fig.
5 instead of the density-distribution functions themselves,
the differences between the density-distributions for Rlp
and the ones for R~~P are shown. As shown in Fig. 5(b),
the parts p~z and p~~ as we11 as p~z and pz~ have angu-
lar momentum dependence. This dependence is, howev-
er, negligibly small. From Figs. 5(a) and 5(c) it can be
seen that the change of the total density p is almost equal
to the one of p~z and p~~. The characteristic features
for this system are almost the same as in the o-' 0 sys-
tem. Then it seems possible to say that those features of
the density-distribution functions are quite general to the
nucleus-nucleus systems.

10 I I 1

s

CA

0

0 2
X AXIS

(b)

4 -4 -2 0 2 4 -4 -2 0 2
X AXIS X AXIS

FIG. 4. The contour maps of the density-distribution func-
tions for ' 0-' 0 system in case of the head-on collision. (a), (b),
and (c) show p, p» +p», and real part of p&z+p», respec-
tively. In this figure ~R~=6.0 fm, (P(=2.0 fm ', and P is
parallel to R. The density-distribution functions p, pz„and
p~~ are positive quantities, while the real parts of p» and p»
are negative. The centers of p», p», and Rep» (or Rep» )

located at z =2.93, z = —2.93, and z =0.0, respectively.

B. Theoretical investigations
on the Hartree-type-interaction kernel

]0 I T&

8

T I I
' l i I I

From the above investigations on the structure of
density-distribution functions and from the definition and
the classification of the Hartree-type-interaction kernel
Eq. (2.25), the following insight is deduced. As already
mentioned, the nucleon-nucleon effective interaction Ud is
attractive. And the densities p „~ and pzz are positive
quantities, but the densities p ~~ and p~ ~ are negative.
Then the a-, b-, and c-type kernels produce the attractive

6/3

0

2(
0

(a)
-6 L

-4 -2 0 2

X AXIS

(b)

-2 0
X AXIS

(c)

-2 0 2 4

X AXIS

FIG. 3. Same as Fig. 2, but in this figure P is perpendicular
to R. Also in this figure the density-distribution functions

p, p», and p» are positive quantities, while the real parts of
p» and p» are negative. The centers of p», pz~, and Rep &z
(or Repzz ) located at z=2. 58, z= —0.65, and z=0.97, respec-
tively, where 2 is a and B is ' O.

0 2
X ~YXIS

(b) ( )

0 2 4 -4 -2 0 2
X AXIS X AXIS

FIG. 5. The contour maps of the differences between the
density-distribution functions for ' 0-' 0 system in case of rota-
tion and in case of head-on collision. This figure shows
Ap(l ) =p(l ) —p (l =0), and so on. (a), (b), and (c) show
Ap, Ap z z +Apzz, and the real part of Ap» +Apz &, respec-
tively. In these figures ~R~=6.0 fm, ~P~ =2.0 fm ', and P is
perpendicular to R. The symbols + and —in this figure indi-
cate the positive and negative parts, respectively.
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interaction to the nucleus-nucleus interaction, but the d-

type kernel repulsive.
In the high incident-energy region the c-type and d-

type kernels disappear and only the b-type and a part of
a-type kernels remain. When the incident energy gets
higher, the a-type and b-type kernels become closer to the
interaction-internal energy and the direct potential, re-
spectively. In the low incident-energy region, however,
the former are different from the latter because of the
effect of antisymmetrization.

The incident-energy dependence of the Hartree-type-
interaction is brought by the one appearing in the
density-distribution function, and it is caused only by the
total antisymmetrization. Namely, the change of the
Hartree-type kernel with the increase of the incident en-

ergy only traces to the disappearance of the effect of total
antisymmetrization.

In the Hartree-type kernel the angular momentum
dependence of the nucleus-nucleus interaction is expected
to be produced mainly by the d-type kernel. When the
angular momentum is equal to 0 (RllP), the overlap of
the densities p» and pz~ with the densities p ~~ and p»
becomes smallest. Then the repulsion of the d-type ker-
nel also becomes weakest. When the angular momentum
takes the maximum value (RlP), the densities p„~ and

p~~ maximally overlap with the densities p~~ and p~~.
In this case the d-type kernel produces strongest repul-
sion. It is expected that the angular-momentum depen-
dence of the Hartree-type-interaction kernel emerges as a
decrease of the attraction with an increase of the relative
angular momentum. '

V. PHASE-SPACE DISTRIBUTION FUNCTION
AND FOCK-TYPE-INTERACTION KERNEL

A. The features of the phase-space distribution functions

Similar to the density-distribution functions, the
phase-space distribution functions f~„and f~~ differ

from the one of each nucleus. In the asymptotic region
the former become close to the latter:

fgg fg, fg~~fg
The appearances of the phase-space distribution func-
tions f„z and fez originate from the antisymmetrization
between the target and the projectile and they disappear
in the asymptotic region:

fq~ ~0, f~~ ~0 ( IRI —+ ~ or Pl ~~ ) . (5.2)

Near the Pauli-forbidden region the total phase-space dis-
tribution function f remains finite, while the terms
f„„,f~~, fs„, and f~~ diverge. However, the
definition of the classification of the Pock-type kernel
(2.21) is meaningful except in the extremely low incident-
energy region.

It is noted here that generally the functions fez and

f~~ (and also f~ and f~) do not have homogeneous
structure and become positive at some point and negative
at another point in the nucleon phase space. This fact is
easily confirmed, for example, by calculating the phase-
space distribution for one ' 0 nucleus with the shell-
model wave functions. This nature, which cannot be seen
in classical systems, is the quantum fIuctuation and origi-
nates from the Pauli blocking between the nucleons. But
basically the functions f„~ and f~~ have to be con-
sidered as positive quantities. It is because p~„and pz~,
which can be obtained from f„„and f~~ by the integra-
tion on p, are positive at each spatial point r. As for the
real parts of f„~ and f~„, they are basically the negative
quantities, because p~~ and pzz, which can be also ob-
tained from f~~ and f~„by the integration on p, are ba-
sically negative.

Figures 6 and 7 show the momentum distributions of
nucleons for the head-on colliding a-' 0 system (RllP).
The momentum distribution mentioned in this paper im-
plies the distribution function given by the phase-space

I I I I I I I

+ (b)
I I I I I I I

-1 0 1
P~ AXIS

I I I I I

P~ AXIS

(c)
I I I I I I I

-1 0
Pz AXIS

2

FIG. 6. The contour maps of the momentum-distribution functions for e-' 0 system in case of the head-on collision. The
momentum-distribution functions are given by the phase-space distribution function f(ro, p), and so on. (a), (b), and (c) show

f, f„„+f~s, and the real part of f„~+fez, respectively. In these figures lRl =4.0 fm, lPl =2.0 fm ', and P is parallel to R. ro is

(&,p, &)=(0.0,0.0,0.97). The symbols + and — in this figure indicate the positive and negative parts, respectively. The
momentum-distribution function f has the positive and negative parts, f„„and f~~ are positive quantities, and the real parts of f„~
and Fz& are negative.
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I I I I I I I

0 1
Pz AXIS

0 ]
Pz AXIS

-1 0 1

Pz AXIS
plG. 7. Same as pig. 6, but in this figure relative momentum lPl is 6.0 fm which corresponds to the case of high relative momen-

tum. In this figure ro is (x,y, z) =(0.0,0.0, 1.20). The symbols + and —in this figure indicate the positive and negative parts, re-
spectively. $n this figure the momentum-distribution functions f, f„„,and f~s are positive quantities. The real parts of fqs and
f~„are mainly negative but have small positive part.

distribution function at a fixed spatial point ro, namely, it
is given by f(rii, p). For Fig. 6, we put lRl=4. 0 fm,
lPl =2.0 fm ', and ro is taken to be the very middle of
the centers of p~„and pz~. In Fig. 7 these parameters
are the same as in Fig. 6 except lPl. In Fig. 7 lPl is 6.0
fm ' which corresponds to the case of high relative
momentum.

Figures 6(a) and 7(a) show the total momentum distri-
bution f ( ro, p ). It is found that the maximum points in
the distribution separate from each other with the in-
crease of the relative momentum.

Figures 6(b) and 7(b) show f~~+f~~. From these
figures it is confirmed that these functions are basically
the positive quantities and that f~„and f~~ separate
from each other in the momentum space with the in-

crease of the relative momentum.
Figures 6(c) and 7(c) show the real parts of f~~ and

f~„. Because the effect of the antisymmetrization van-

ishes in the high relative-momentum region, these func-
tions disappear in that region. It is also confirmed here
that these distribution functions are basically the negative
quantities. And their centers are located in the middle of
the distribution functions f„~ and f~z.

The same investigations are performed for the ' 0-' 0
system (Figs. 8 and 9). The parameters l

R
l

and
l
P

l
are

6.0 fm and 2.0 fm ' in Fig. 8 and 6.0 fm and 16.0 fm ' in
Fig. 9, respectively. And ro is 0 in both figures. The
characteristic features for this system are almost the
same as seen in the a-' 0 system. Then it seems possible
to say that the features of the phase-space distribution
functions shown in this section are quite general to the
nucleus-nucleus systems.

(a)
-3

-2 -1 0 1 -1 0 1
Pz AXIS Pz AXIS

(c)
J

-] 0 1 2

Pz AXIS

FIG. 8. The contour maps of the momentum-distribution
functions for ' 0-' 0 system in case of the head-on collision.
(a), (b), and (c) show f,f„„+fss, and the real part of
f~~ +f~„, respectively. In this figure lR l

=6.0 fm,
lPl =2.0 fm ', and P is parallel to R. ro is taken to be the mid-
dle of the centers of p» and p», that is, ro=0. The symbols
+ and —in this figure indicate the positive and negative parts,
respectively. In this figure the momentum-distribution func-
tions f, f», and fss are positive quantities. The real parts of
f„s and fz~ are mainly negative but have small positive part.
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(b)
I ~ t I 1
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I
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FIG. 9. Same as Fig. 8 but in this figure the relative momen-
tum lPl is 16.0 fm ' which corresponds to the case of high rela-
tive momentum. The symbols + and —in this figure indicate
the positive and negative parts, respectively. Also in this figure
the momentum-distribution functions f, f„„,and fs~ are posi-
tive quantities. The real parts of f„s and fs„are mainly nega-
tive but have small positive part.
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B. Theoretical investigations
on the Fock-type interaction kernel

From the structure of the phase-space distribution
functions shown in the above subsection and from the
definition of each type of Fock-type kernel (2.26), we can
expect the following qualitative features in Fock-type
kernel.

As already mentioned in Sec. III, the exchange interac-
tion U, is attractive in low relative-momentum region.
The phase-space distribution functions f„„and fss are
basically the positive quantities and Ref~ii and Refs~
are negative. Therefore, the a-, b-, and c-type kernels
produce the attraction to the nucleus-nucleus interaction,
but the d-type kernel produces the repulsion.

In the high incident-energy region the b- and d-type
kernels disappear and the remaining parts are the c-type
kernel and a part of a-type kernel. In that region the c-
type kernel becomes equal to the knock-on exchange po-
tential and the a-type to the interaction-internal energy.
In the low incident-energy region, however, the a-type
and c-type kernels differ from the internal energy and the
knock-on exchange potential because of the effects of an-
tisymmetrization.

As for the incident-energy dependence, the behavior of
the Fock-type kernel is expected to be different from the
one of Hartree-type kernel. Though the incident-energy
dependence of the Hartree-type kernel is brought only by
the disappearance of the effects of antisymmetrization in
the density-distribution function, the form factor of the
exchange interaction as we11 as the antisymmetrization
wi11 make some contributions to the incident-energy
dependence of the Fock-type kerne1.

The c-type kernel is the interaction between the distri-
bution functions f„~ and fss and these two distributions
separate from each other with the increase of the relative
momentum. Then in the high incident-energy region the
attraction between these two parts becomes weak because
the high-momentum part of the form factor of v, is less
attractive than in low relative momentum as seen in Fig.
1(b).

For the d-type kernel, the form factor of the exchange
interaction plays the same kind of roles as expected in c
type. The distance between f„„and Re(f„ii+fbi„) and
the one between fsii and Re(f„ii+fii„) become larger
with the increase of the incident energy. Then, the repul-
sion of d-type kernel becomes weaker because of the de-
crease of the strength of exchange interaction. Moreover,
the distributions fzs and fs„ themselves vanish in the
high incident-energy region. This vanishing promotes
the behavior that the repulsion of d-type kernel weakens
in the high incident-momentum region. Thus, the
incident-energy dependence of d-type kernel is expected
to be quite strong.

As for the angular momentum dependence of the
Pock-type kernel, it is dificult to make definite state-
ments on the basis of the investigation of the distribution
functions and the effective interaction. However, it can
be said that the d-type of the Fock-type kernel is also ex-
pected to bring the angular momentum dependence to
the nucleus-nucleus interaction. The angular momentum

dependence in the Hartree-type kernel originates from
the change of the overlap of the parts p ~ ~ and p~z with
the parts p~~ and pz~. On the other hand, the density-
distribution function can be given by the integration of
the phase-space distribution function on momentum p.
Then it is also expected that there is a change of overlap
of the parts f~~ and fbi~ with the parts f„ii and f~~.

VI. NUMERICAL RESULTS ON NUCLEUS-NUCLEUS
INTERACTION

In this section the nucleus-nucleus interactions ob-
tained by the self-consistent calculation with Eqs. (2.11)

(M~v)
0

-140—

(r rev)
0

-400-
FIG. 10. Nucleus-nucleus interactions for o.-' 0 system (a)

and 0- 0 system Ib) in ease of zero angular momentum. The
16 16

numbers in these figures are the incident energies in units of
Me V/nucleon.
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are presented. All results are shown in the center-of-
mass system and the incident energy is given in units of
MeV/nucleon. The nucleon-nucleon effective interaction
employed here is the HNY force introduced in Sec. III.
The 6 parameter in the HNY force is taken as 21.3 MeV
for o.'-' 0 and ' 0-' 0 systems.

The nucleus-nucleus interactions of s wave for a-' 0
and ' 0-' 0 systems are shown in Fig. 10. The strength
of attraction for both cases becomes weaker with the in-
crease of the incident energy. It is noted that this proper-
ty does not appear without the antisymmetrization.

Volume integrals j, of the above potentials and also the
kinetic-exchange, Hartree-type-interaction, and Fock-
type-interaction kernels are shown in Fig. 11. The

definition of the volume integral is

jv= JdRV(R) . (6.1)

In this figure we show the volume integrals of Hartree-
type and Fock-type kernels from which the internal ener-
gies are subtracted. First of all, for both systems it is
found that the incident-energy dependence seen in Fig. 10
is produced by almost only the Fock-type-interaction ker-
nel. Though the kinetic-exchange kernel also produces
the incident-energy dependence to the nucleus-nucleus in-
teraction, it is restricted in the quite low incident-energy
region. The Hartree-type-interaction kernel makes no
contribution to the incident-energy dependence. This
fact implies that though there are no incident-energy
dependence without the antisymmetrization, the
incident-energy dependence caused by only the disap-
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FIG. 11. Volume integrals of the nucleus-nucleus interaction,
kinetic-exchange kernel, Hartree-type-interaction kernel, and
Fock-type-interaction kernel for o.-' Q system (a) and ' O-' 0
system (b) in case of zero angular momentum.
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FICs. 12. Volume integrals of the Fock-a-, Fock-b-, Fock-c-,
and Fock-d-type kernels for a-' Q system (a) and ' 0-' 0 system
(b) in case of zero angular momentum.
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pearance of the effect of antisymmetrization is quite
weak, and that the form factor of the exchange interac-
tion plays an important role in the incident-energy depen-
dence.

Figure 12 shows the volume intergals of Fock-a, -b, -c,
-d type kernels. First of all, for e-' O system below 20
MeV/nucleon there appears the infiuence of the diver-
gence of phase-space distribution functions mentioned in
Sec. V A. Above 20 MeV/nucleon it is clearly seen that
the incident-energy dependence of the Fock-d-type kernel
is largest among the four types of Fock kernels. One of
Fock-a-type and Fock-b-type kernels is weak in this
incident-energy region, The Fock-c-type kernel has the
moderate incident-energy dependence in all the incident-
energy regions and also has the second largest incident-
energy dependence above 20 MeV/nucleon. As already
mentioned in Sec. V B, the incident-energy dependence
appearing in Fock-a-type and Fock-b-type kernels traces
to the disappearance of the effect of antisymmetrization.
On the other hand, the behavior of Fock-c- and Fock-d-
type kernels is different from Fock-a- and Foek-b-type
kernels. The incident-energy dependence of the former
originates from not only the antisymmetrization but also
the form factor of the exchange effective interaction. The
fact that above 20 Me V/nucleon the incident-energy
dependence of Foek-c-type and Fock-d-type kernels is
larger than the one of Fock-a-type, and Fock-b-type ker-
nels is the reAection of the effects of the form factor. For
the ' 0-' 0 system, though it is dificult to see the
characteristic behavior of Fock-c-type kernel such as seen

(Mev)
3--

in the u-' 0 system, the basic structures of the four types
of Pock kernels are almost the same as the ones seen in
the n-' 0 system.

Figures 13(a) and 14(a) show the angular momentum
dependence of the nucleus-nucleus interactions for cx-' 0
and ' 0-' O systems, respectively. The incident energy is
30 MeV/nucleon in each ease. In these figures the angu-
lar momentum dependence are presented as the
differences between the nucleus-nucleus interaction for
angular momentum I and the one for zero angular
momentum. It can be seen that in both systems the at-
traction of the nucleus-nucleus interactions weakens with
the increase of the angular momentum.

Figures 13(b) and 14(b) show the angular momentum
dependence of the Hartree-type-interaction kernels for
u-' 0 and ' 0-' 0 systems, respectively. It is found that
almost all the angular momentum dependence of the
nucleus-nucleus interaction is explained by the one of the
Hartree-type-interaction kernel ~ Though it is not shown
numerically in this paper, the kinetic-exchange kernel
and the Pock-type-interaction kernel do not make impor-
tant contributions to the angular momentum dependence
of the nucleus-nucleus interaction.

Figures 13(c) and 14(c) show the angular momentum
dependence of the Hartree-d-type interaction kernels for
u-' 0 and ' 0-' 0 systems7 respectively. The angular
momentum dependence of this kernel is larger than the
one of the full nucleus-nucleus interaction seen in Figs.
13(a) and 14(a) or the one of Hartree-type-interaction ker-
nels seen in Figs. 13(b) and 14(b). Though it is not
shown, the parts canceling the angular momentum
dependence of the Hartree-d-type kernel are the
Hartree-a- and Hartree-c-type kernels. As well as the
Hartree-d-type kernel, these types of kernels also include
the density-distribution functions pz~ and pzz whose
shapes are transformed with the change of the angular
momentum. And this brings the weak angular momen-
tum dependence to the Hartree-a- and Hartree-c-type
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FIG. 13. Angular momentum dependence of the nucleus-
nucleus interaction for a-' 0 system which is expressed as the
difrerence between the angular momentum l and the angular
momentum 0: 6 V( l ) = V( l )

—V ( l =0). (a), (b), and (c) show
one of the total nucleus-nucleus interaction, the Hartree-type
kernel, and the Hartree-d-type kernel, respectively. The num-
bers in this figure indicate the relative angular momentum. In
this figure the angular momentum dependent nucleus-nucleus
interactions are calculated without the parity projection.
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FIG. 14. Same as Fig. 13, but for ' 0-' O system.
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kernels. However, from these numerical results it may be
said that essentially the Hartree-d-type-interaction kernel
produces the angular-momentum dependence of the
nucleus-nucleus interaction.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper the efforts are concentrated on the inves-
tigation of the structure of nucleon distribution functions
in order to get an intuitive understanding of the angular
momentum and incident-energy dependence in the
nucleus-nucleus interaction. Subject to employing a sin-
gle Slater determinant as a many-body wave function, the
interaction kernel of a many-body theory can be rewrit-
ten with the density- and phase-space distribution func-
tions instead of employing the many-body wave function
itself.

On the basis of the exchange characters, the nucleon
distribution functions are decomposed into four parts,
that is, p~~, p~~, p~~, and p~~ for the density-
distribution function and f„„,f~s, fs„, and fss for
the phase-space distribution function.

As for the density-distribution function, p~~ and p~~
are positive quantities. On the other hand, p~z and p~~
are basically negative quantities. In contrast to p ~ ~ and

p~z, the densities p ~~ and p~~ vary their shapes with the
increase of the angular momentum. The overlap of the
densities p z ~ and pz~ with the densities p &~ and pz~ be-
comes minimum at l =0. With the increase of the angu-
lar momentum this overlap becomes larger.

The phase-space distribution functions f~~ and fss
are essentially positive quantities. On the other hand,
f~s and fez are basically negative quantities. While

f„z and fez separate from each other in momentum
space with the increase of the relative momentum, f~&
and fs~ rest in the middle offz „and fez.

The angular momentum dependence of the nucleus-
nucleus interaction is mainly produced by the Hartree-
type-interaction kernel, especially by the Hartree-d-type
kernel. The Hartree-d-type kernel is the interaction be-
tween the densities p~~ and p~~ and the densities p~z
and p». As p» and p» are positive and p ~~ and p»
are negative, and, moreover, the direct effective interac-
tion is attractive, then the Hartree-d-type kernel gives the
repulsive contribution to the nucleus-nucleus interaction.
As the overlap of the densities p ~ z and pzz with the den-
sities p~~ and p~~ becomes larger when the angular
momentum gets larger, then the repulsion of Hartree-d-
type kernel becomes stronger. This nature emerges as the
angular momentum dependence in the nucleus-nucleus
interaction.

The incident-energy dependence of the nucleus-nucleus
interaction is mainly produced by the Fock-type-
interaction kernel. The Fock-a-, -b-, and -c-type kernels
are attractive interactions and the strength of their at-
tractions becomes weak with the increase of the relative
momentum. On the other hand, the Fock-d-type kernel
is repulsive and its repulsion becomes weak in the high
relative-momentum region. The incident-energy depen-
dence of the nucleus-nucleus interaction is composed of
such behavior of these kernels. While the incident-energy

dependence brought by the Fock-a- and Fock-b-type ker-
nels only traces to the disappearance of the effect of an-
tisymmetrization, the one by Pock-c- and Fock-d-type
kernels traces not only to the disappearance of the effect
of antisymmetrization but also to the form factor of the
exchange effective interaction.

In this paper the investigation is restricted to systems
in which both the target and the projectile are spin-
isospin-saturated closed-shell nuclei. For other systems
the kinetic-exchange kernel has explicit angular momen-
tum dependence, and the other combinations of state
dependence of the effective interaction in addition to the
direct and exchange ones appear in the interaction ker-
nel. However, it may be true of the other systems that
the angular momentum dependence mainly originates
from the Hartree-d-type kernel and that the incident-
energy dependence in the wide range is basically pro-
duced by the Fock-type kernel. It is because the appear-
ance of such dependence is essentially due to the effects of
the antisymmetrization such as investigated in this paper.

On the question whether the characteristic features of
nucleus-nucleus interaction investigated in this paper are
peculiar to the many-body theory CMWP, it can be said
that the same features are expected, for example, in the
semiclassical version of the resonating-group method. It
is already shown that the kernels of RGM+WKB are
connected with the CMWP kernel by the simple transfor-
mation. ' And also the numerical results given by these
two methods coincide with each other quite well. Then it
is natural to think that the structures of the nucleus-
nucleus interaction discussed in this paper are commonly
seen as the general features in the total-antisymmetrized
many-body theories.

On the basis of the investigation in this paper the fol-
lowing two points should be noticed.

The structure of the distribution functions, such that
some parts are positive and that other parts are negative,
is obtained as a consequence of not only the antisymmetr-
ization but also the proper treatment of the finiteness of
the nucleus-nucleus system. The finiteness is taken into
account by using the localized single-particle wave func-
tions. Such statement seems to be a matter of course.
However, for example, Izurnoto et al. used the matter
approach in the g-matrix calculation for the nucleus-
nucleus systems. "' Though their works are challenging
and quite interesting, there may be the underestimation
of the role of finiteness in their method. Although in
nucleus-nucleus systems it is not known to what extent
the proper treatment of finiteness is necessary or to what
extent the matter approach is valid, it is important to
take the effects of such finiteness into account properly in
the microscopic studies based on the g-matrix theory.

The second point is on the incident-energy dependence.
It is doubtless that there is a "dispersionlike" relation in
the nucleus-nucleus interaction. More precisely, there
are contributions of the dynamical polarization potential
to the incident-energy dependence. However, the disper-
sion relation itself breaks down because of the antisym-
metrization. And as shown in this paper, both the effects
of total antisymmetrization and the realistic form factor
of nucleon-nucleon effective interaction produce the large
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incident-energy dependence in the nucleus-nucleus in-
teraction. Then the studies' ' in which the dispersion
relation is applied to the nucleus-nucleus interaction and
where the attempts to explain the incident-energy depen-
dence on the basis of the dispersion relation are made
seem to be questionable. It is emphasized that care
should be taken in the investigations of the basic natures
of nucleus-nucleus interaction such as the incident-energy
dependence.

In a forthcoming publication we will discuss the
incident-energy dependence of the nucleus-nucleus in-
teraction by the use of the total-antisymmetrized many-
body theory and of the microscopic complex g matrix
which has the density- and starting-energy dependence
and which satisfies the dispersion relation.
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APPENDIX A

According to the method similar to the one appearing
in Appendix A of Ref. 16, we can get the explicit formula
for the kinetic-exchange kernel.

It is shown in Ref. 16 that when both the target and
the projectile have SU(3)-scalar internal wave functions,
we can get the following formula:

A+8
2 2 3 2 2 a

&Z~ g (r, —RG) ~Z&= g (r, —R„) + g (r, —Rs) + ++(Z +Z ) JV(s)+ s JV(s),
2v Bs

A+B'= ~+B .~, " '

g (..—R.)' =&y;„,l y (r. —R.)'iy;„, & (~=~,B),
aEa a aCa

(A2)

(A3)

R =—g r, ( =crt, B),
aEa

where p;„, (n = A, B) is the internal wave function of each
nucleus.

What we must obtain this time is the analytical expres-
sion of &Z~g, E „+zt,—Ts ~Z &. In order to get it we use
the following relations:

«~ I lP „'„l &~ i & =2''pv(n+-', ),

As a result, we get the following formula:
A+B

&ZI g t. —T ~Z&
a=1

2
t(&) +g(B) +int int

2fPl
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(A5)
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2fpz Bs
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And we get the kinetic-energy kernel

p2
T„(R P)= g t, —TG
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