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The hyperspherical harmonics method is used to solve the a+N+N three-body problem. The
resulting wave functions and corresponding densities are, with satisfactory result, tested against a
variety of weak and electromagnetic data as well as nucleon-induced quasielastic reactions (p,p ),
(n,p), and (p, n ) on Li as target. A procedure is outlined which generates reliable transition densi-
ties for the (projectile, ejectile) part of Li-induced inelastic and charge-exchange reactions
3( Li, b)B, b= Li*, He, and Be.

I. INTRODUCTION

Calculational procedures for lighter nuclei with pro-
nounced multicluster features have now been developed
which successfully reproduce a variety of observables for
such systems. This coincides with increased experimental
possibilities to make beams, both radioactive and exotic
(such as "Li) of multicluster nuclei.

In this paper we present recent calculations for Li,
He, and Be within a formalism based on hyperspherical

harmonics. Recent interest in charge-exchange reactions
induced by Li has accentuated the need for accurate
transition densities ( Li, He) and ( Li, Be) if reliable in-
formation about the target-residual nuclei is to be ex-
tracted.

Charge-exchange reactions induced by Li(g.s. ; 1+,
T = 1) have the following special features: (i) The (projec-
tile, ejectile) overlap is maximal for ( Li, He) as reflected
in the log(ft) values (M& =const/ft) (see Table 1 in Ref.
1). (ii) In Li~ He and Li~ Be transitions, only the
Gamow-Teller (GT) (EL =0, AS=1, and b, T=1) is al-
lowed. Since the Li and He nuclei are very similar in
structure, this GT transition is superallowed, with a
minimal log(ft) value. (iii) Since the He ejectile has only
one long-lived state (0, T = 1) and Be one narrow reso-
nant state (0+, T=1), the Li-induced reaction has an
advantage compared with charge-exchange reactions in-
duced by heavy ions, where many ejectile states usually
are possible. (iv) Even starting from energies as low as
E( Li) =10 MeV/nucleon, the reaction can be described
as a one-step process due to the loose binding in the sys-
tem.

A large number of experimental and theoretical papers
have been devoted to investigations of properties of the

2 =6 nuclei. Keeping aside the history of the problem,
there is strong evidence that a three-body a+2N model
( Li~a+n+p, He~a+n+n, and Be~a+p+p) is
sufhcient to describe the main properties of 3 =6 nuclei
(see, for example, Refs. 3 —9).

In this model the intrinsic degrees of freedom are treat-
ed in an approximate way and pairwise NN and aN in-
teractions fitted to experimental phase shifts and other
experimental characteristics. Therefore, the six-particle
task is reduced to the three-body problem with the Pauli
principle treated in an approximate way. Eigenvalues
and eigenfunctions are found by solving the dynamical
Schrodinger or Faddeev equations. Nevertheless, up to
now such a program with checks against weak and elec-
tromagnetic characteristics has only been carried out
within the framework of variational calculations with
projected Pauli forbidden states ' and integral equation
methods. '

In Ref. 9 a microscopic exploration of 2 =6, J =0+
(T= 1) nuclear states was carried out within the hyper-
spherical function method using the n+2N model with
simple aN and NN potentials. Formalism of the method
and some results are outlined in Ref. 9. The distinguish-
ing feature of the method is a controlled accuracy of
computations and great advantages connected with (i) the
possibility of analytical calculations for most characteris-
tics and corresponding physical transparency of the re-
sults. These facts are due to rotational and permutational
invariance in the collective hyperradial variable; (ii) addi-
tional approximate symmetry in the dynamics (a single
dominating hypermoment K =2, ; (iii) the possibility to
include into the problem any realistic NN potential with
repulsive core and tensor forces, and also more realistic
l-dependent local aN potentials. '
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TABLE II. Weights (squared norms in %%uo) of different (LSI l~ ) components of 3 =6 states.

'He(0+)
I.=l, =L
'L (0.)

I„=I =L
6B (0+ )

I.=l, =L

S=0
L=0

82.87

82.05

78 ~ 53

S=1
L=1

13.96

14.37

17.22

S=0
L=2

2.31

2.59

2.99

S=1
L=3

0.69

0.81

1.09

S=0
L=4

0.58

0.11

0.81

S=1
L=5

0.06

0.08

0.09

S=0
L=6

0.002 6

0.003 6

S=1
L=7

0.000 52

0.000 72

L =0, S=1 L =1, S=O L=1, S=1 L =2, S=1

Li(1+ )

I =0
I =0
91.93

I =2
ly =2

1.11

I =1
I =1
3.23

I =3
Iy =3
0.11

I =2
I =2
0.24

I =0
I =2
0.28

I =2
I =0
3.10

repulsive s-wave aN potential. The NN interaction in-
cludes repulsion at small distance, 1.s, and tensor forces
[the Gogny-Pires-De Tourreil (GPT) one]. ' The
Coulomb part of the aN and NN interactions were treat-
ed in standard manner; details are given in Ref. 10.
These types of interactions reproduce the binding energy
of the 0+ triplet and give a ground-state binding energy
for Li(1+) to within 0.2 MeV (less bound) of the experi-
mental value, 2.73 MeV.

The calculations were performed up to a K „value
large enough to stabilize the wave function and the bind-
ing energy. For He (l =l ~ 7) it was found that the
contributions from l, l )3 are negligible (-0.14% of
the norm) and also that the contributions from hypermo-
menta K )6 to the norm of the WF are small ( ( 10 ).

The lowest hyperharmonics with K =0,2 exhaust 95%
of the norm (90% for K =2 only). This suggests that the
hypermoment K is a "good" quantum number for many
applications.

Table II gives the components (squared norms) of the
wave functions for He, Li, and Be. The WF of Be(0+ )

was calculated with a bound-state boundary condition.
Table III contains the geometrical characteristics (rms

relative distances and radii) for the same wave functions
and also for the excited 0+ (3.56 MeV) of Li. The
matter radii are defined by

8 „„,= —,'(2R~+4A +4(r ) „„,),
with (r )' =1.49 fm. The spatial structure of the WF

\

for the ground states of He and Li is displayed in Figs.
1(a) and (b) by the density distribution

~(rNN r (NN) )

1
rlvNr (NN) & J l pJ~(x, y) l'&x &y

In both cases two density peaks are present, correspond-
ing to (i) a dinucleon configuration component with the
two valence nucleons located together outside the n par-
ticle, and (ii) a cigarlike configuration with the valence
nucleons positioned on opposite sides of the o, particle.

The reason for these particle correlations, "Pauli focus-
ing, " is the Pauli principle which forbids the valence nu-
cleons from occupying the ls, &2 shell. ' Qualitatively,
similar results were obtained earlier by other authors
who employed a variational calculation with "Pauli
blocking" included in the o.N potentials.

To explore the spatial structure of, for example, the
He wave function, further, we switch off the NN interac-

tion. As was to be expected, the dinucleon peak is now
attenuated. The peak positions remain the same, but the
peak heights are now nearly equal. An approximate ana-
lytic expression for the peak positions can be obtained if
one assumes that the hypermoment K =2 is a "good"
quantum number, and approximates the full wave func-
tion by the K =2, L =0, S =I„=/ =0 component. This
results in a density which behaves as

TABLE III. Geometrical characteristics (rms radii) for He(0+ ), Li* (0+ ), Be(0+ ), and Li(1+ ).
The quantities rz and r are rms radii from the c.rn. of the system.

(fm) (fm) (fm) (fm)
rmat

(fm)

expr mat

(frn)

He

Be
'Li

4.99
5.30
6.14
3 ~ 80

4.52
4.70
5.12
4.06

3.54
3.70
4.11
3.06

1.25
1.29
1,36
1.20

2.58
2.66
2.87
2.35

2.57+0.1'

2.45+0.1

Recently, due to the availability of radioactive heavy-ion beams, a special investigation (Ref. 13) was
carried out to extract an accurate matter radius for He.
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NN r (NN) ) ( ~)p [X20O(p)] (9)

and the positions of the maxima correspond to 0=~/8
and 3'/8 for fixed po. Taking into account the relations
between r» and r [») and p, O, one easily finds that
r~& ——0.54po, r [»~ —-0.80po for the dinucleon peak andD D

r& —-1.3po, r f&&~
—-0.33po for the cigarlike peak. TheC

ratios r»/r i»i, respectively, 0.86 (D) and 3.94 (C) ob-
tained from these simple estimates, are very close to the
calculated values [see Fig. 1(a)].

III. COMPUTATIONAL PROCEDURE
FOR TRANSITION DENSITIES

By definition, the transition density is given by

5(r ri, )—
psS's )r, ) )S=r ))p))J'T') =(S T X, &rss))s)ss))s) &'&')

k rk
(10)

where T~z~(k) is a spherical tensor of the rank J,

TL&JM(k)=g(, LpSv~ JM & YL (rz)o (k),

which acts on the spin-angular coordinates of particle k. The diagonal ones (f =i) will just be referred to as densities.
t is very convenient to calculate the transition densities in the "eigen" Jacobi coordinate system because of the col-

inearity of the c.m. coordinate rk and the Jacobi coordinate yk, which are connected by the simple relation

r& = [( 3;+Az )/& 3& ]' y& =ay&, i j,k =1,2, 3 (12)

with g = g, + g.+ g„and cyclic permutations of (1,2,3). Hyperradial components y(p) of the total wave function are
invariant with respect to transitions from one Jacobi coordinate set to another. They transform via Raynal-Revai
coefficients'

I I t

lx. y.J J

Conservation of the quantum numbers E,L,M~ and parity implies the selection rule

lx + Iy
—lx + ly

—even
t i J j

The spin-angular part of the reduced matrix element is well known and follows from standard tensor algebra
r

I I I 1 L 1 1 i gi L L Lf i

.L 'L fS 'S fJ 'J.5(If, t' ) X
Jf

(13)

(14)

where 3 =(22+1)' . The isospin reduced matrix of the rz(1) operator can be expressed via the single-particle re-
duced matrix element ( rfi))wz. (1)))wi & in usual manner:

f fTi
(16)

The spin- and isospin-reduced single-particle matrix ele-
ment equals (6)'~ . Reduced matrix elements and phases
of the angular functions are defined according to Ref. 16.

Keeping in mind that the spin and isospin operators
act on both nucleons, the full result is obtained by multi-
plying with the factor [1+(—1) + + +

] obtained
by a transposition )12&~)21 & in the spin-isospin part of
the wave function.

The radial matrix elements in (10) are reduced to one-

dimensional integrals with varying lower limit (see Ref.
10):

f fy (x,y)[5(r —rz)/r&]y'(x, y)y dy x dx

=(1/a ) f g (p, 8)y'(p, o)fp (r/a) ]' p dp, —
r/a

where
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I Ix"(p ~)=p '"xVi((p»)+~'(())

IcosO=
ap

In addition to the operators (11), the full transition densi-
ties contain operators of the type [ PJ ()r„)1. )( k) ] l

which correspond to the convectional part of the current
in electron sattering. But, for the transition densities
0+~1+, with change in isospin 1~0, these matrix ele-
ments are equal to zero. This result is easily obtained by
invoking the specific symmetries of the formalism. To
find the action on the individua1 nucleons we transform
to the appropriate "eigen" Jacobi coordinate system, us-
ing even permutations. The hyperradial wave functions
are invariant under such transformations, and hy-
perangular components are symmetrically transformed
via Raynal-Revai coefficients. This leads to an overa11

T +T.
multiplication factor [1+(—1) f '] which is equal to
zero for such transfers.

IV. TRANSITION DENSITIES

)Il( Li)=a( S, )+P('P, )+y( D ))+5( P, ),
(z +p +y +6 =1,
4'( He) = A('S())+B( P()),

(19)

+B —1.
From Eq. (10) we obtain

(6L) )
—000, 0

ties are exponentially decreasing but with decay constant
corresponding to a binding energy = 15 MeV. This value
is significantly greater than what would correspond to
He and Li binding energies and is caused by the nu-

cleon correlations and different asymptotics of the three-
body wave functions.

Addressing the differences between the diagonal
(matter, charge) Li density and off-diagonal (transition)
densities Li~ He and Li~ Be, two seem to be present:
(i) some difference in the asymptotic slope and (ii) the
asymptotic magnitudes of the diagonal densities are
different from ofF-diagonal ones. The latter was probably
to be expected and can be explained in terms of a spectro-
scopic representation of the wave functions:

Numerical calculation has shown a power-law behav-
ior r of the transition densities p

' (r) in the small-r re-
gion, where v is close to the value 2 from naive shell mod-
el with two p-shell nucleons. A difference is, however,
found in the density obtained by the three-body ap-
proach. From the shell model, the asymptotic behavior is
expected to be

p(r) —exp( k; r —kf—r )

consistent with single-particle asymptotics with

=~'&'s) llpll's) &+p'& 'P) llpll'P) &

+ r'&'D) IIPII'D) &+&'&'P) II@II'P) &

p( Li He) =p' "
= [a A &'s, Ilpl's &

PB(3) ' —&'P
II II

P &](3)

(20)

(21)

k (f)
A' (/lE (f))

From Figs. 2(a) and (b) it is seen that the calculated densi-

It is obvious that p ' would be significantly greater
than p' ' ' if the signs of p and B were the same. But cal-
culated amplitudes have opposite signs, caused by the

4 6

r(fm)
10 4 6

r(fm)

FICi. 2. Densities and transition densities in r space, for (a) Li~ He and (b) Li~ Be. Curve 1, matter density for Li; 2, transi-
tion density p' ";3, transition density p' ".
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— density He, responsible for a larger matter radius than in Li.
The magnitudes of the p are strongly infIuenced by the
relative magnitudes of the different components in the Li
and He wave functions. In the spectroscopic notations
(19),p' ' ' is defined by (21) while

10-4

I ! I I 3 J

121, 1
( g )1/2P~ ( 3P

II II
IP )

+2(3)' )'w('s llpll D

+3(-') '"~&
& '~o IIPII'D 1 & (23)

FICy. 3. Transition densities p' " for 1, ['Li~'He); 2,

I Li(g.s.)~ Li{0+)j; and 3, I Li(g.s.)~ Be).

spin-orbit splitting. Hence, the magnitude difference is
due to (i) different magnitudes of P ap.d 8 (ii) the lack of a
Di component in the p' "density, and (iii) additional

suppression due to the geometry factor (3) '/ in p'o".
Furthermore, transition densities of the Li —+ He,
Li~ Be and Li(g.s.)~ Li(0+ ) isotriplet with T =1

have somewhat difFerent asymptotic behavior in r (Fig. 3)
because of different binding energies and matter (charge)
radii. It should be noted here that the 0 (1.37 MeV,
I =90 keV) state of Be has been calculated as a bound
one, and the exact wave function can be of somewhat
different form and value according to the general
theorem for approximation of a quasistationary state by a
bound state. (This state decays to the channel p+p+a. )

As a consequence, it can lead to a wider radial transition
density p( Li~ Be) and narrower distribution of its
Fourier component.

U. CALCULATIONS OF ELECTROMAGNETIC
AND %'EAK OBSKRUABLES

A. Inelastic transverse M1 form factor of Li

By the isospin selection rule, only the magnetic (spin)
current contributes to the inelastic M1 form factor. The
corresponding matrix element can be written in terms of
the momentum-space transition densities p' "(q) and

121,1( )

The components of the wave function are intimately con-
nected with the dynamics of the system; the P component
depends on the spin-orbit uN force, and the D component
mainly on the XN tensor force.

In Fig. 4 the calculated M1 form factor is compared
with experimental data. ' The theoretical curve repro-
duces the location of the minimum and part of the second
maximum up to q ~2 fm '. As for most nuclei, the
second maximum is underestimated for q )2 fm ' since
well-known contributions from relativistic corrections
and mesonic exchange currents, essential in this region,
have been left out. Almost the same conclusions are ar-
rived at for the elastic M1 form factor. The contribution
from the orbital current is very small =S%%uo and its mag-
nitude is similar to the orbital contribution to the mag-
netic moment.

To comment on the sensitivity of the M1 form factor
to the NN tensor force, we mention that, in spite of the
binding energy and geometrical characteristics being well
reproduced in calculations with purely central XX forces,
the minimum location of the M1 inelastic form factor is
shifted to q =1.6 fm ' and the second maximum is
significantly less than with a tensor force. It should be
noted that our result is very close to that of Ref. 18, ob-
tained by a variational method (but only after additional
a posteriori antisymmetrization of the total WF). It
differs drastically from the result of an integral equation
method. '

1 0 -2

M1 INES . FORMFACTOR OF Li

r (q Ml)=(2~)'/2Z-'Z 'i '(2)'"q

[ (3) 1/2 121, 1(q)+( 2 )1/2 101,1(q)]
r

~tI~ y

p n

X f '(q)/M,
2

(22)

I I I 1
[

I 1 I 1 ( I I I &
)

I & I I ) 1 1 I 1 ]

where g~ (g,") is the gyromagnetic factor of a proton (neu-
tron) while f'(q) is the proton form factor taken in the
dipole approximation. The M1 form factor is a superpo-
sition of transition densities which, in turn, depend on
the correctness of the valence nucleon geometrical
characteristics. These nucleons form a neutron "halo" in

0 1 2 3 4

q(fm ")

FICs. 4. The inelastic transverse M1 form factor of Li. Ex-
perimental data are taken from Ref. 17.
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TABLE IV. Calculated and experimental Li magnetic mo-
ments.

Theory
Expt.

1
ANN

0.0417 0.0071

PNN

0.7946

stot

0.8433
0.822

B. Li(g.s.) magnetic moment

)M
'= g(el'/2M, c ) —,'g,'o (i)

(without spin-orbit, relativistic, and mesonic exchange
current corrections) is very close to that obtained in the
integral equation method' and coincides with experi-
mental value within 2.5% (see Table IV). From Table IV
it is seen that the magnetic moment is mainly determined
by its spin part ( =95%). Some sensitivity (like for the
Ml form factor) to the tensor component of the NN po-
tential is, however, present.

C. M 1 radiative width of Li

The radiative width of the Li M1 transition

0+(3.56 MeV)~1+(g. s. )

is defined by the transverse M1 form factor value at the
photonic point

I ~=2mZ a[(2J;+ 1)/(2Jf + 1)jE, ~FT(q) (25)

where E is the energy of the 0+~1+ transition. The
calculated value I =8. 13 eV coincides within experi-
mental errors with the measured value I &=8.2+0.2 eV.
It should be pointed out that FT(q) at the photonic point
can be expressed with an accuracy of -q —10 by the
Gamow-Teller matrix element of He.

D. He P decay

In the expression for the ft value

ft =2ft(0 ~0+ )/[(g~ /gt )'&(GT) j, (26)

we used ft(0+~0+)=3072.4+1.6 sec. Taking into
account uncertainties in A, =g~ /gz, the obtained value is
ft =776.3+2.5 (PoT =4.923) for A, = —1.268+0.002
(Ref. 21) from neutron P decay; close to experiment
(ft,„=812.8+3.8). The calculation with central NN
force only gives a result which is 12 units less than given
above. This fact once more stresses that the NN tensor
forces play a significant role in the o.+2N dynamics.
(The ft value is insensitive to the I s component of the
aN forces. ) The difference between experimental and
theoretical ft values indicates a possible renormalization

In the standard nonrelativistic approximation the cal-
culated magnetic moment

„=&zjlp. l~J &,

P '= g(equi/2M; c )gt'L(i),

of the axial-vector weak constant A. (taking into account
our good description of Ml inelastic form factors) to a
value k= —1.24, which is consistent with the trend in

g,„;,~(A, ) value in nuclear matter.
In conclusion we find good agreement with experimen-

tal data for electromagnetic and weak properties of low-
lying states of A =6 nuclei which depend on dynamics of
the system and can be expressed in terms of transition
densities. In particular, we emphasize the M1 inelastic
form factor. On this basis we now proceed to study
charge-exchange transition densities for the isotriplet.

VI. QUASIKLASTIC SCATTERING
OF NUCLEONS ON Li

Unlike the weak and electromagnetic processes which
are well understood from a theoretical point of view, the
description of quasielastic reactions of nucleons on nuclei
contains a large number of assumptions where at least
some require a better justification from first principle. In
the intermediate-energy region and for small transferred
momenta, the description is somewhat simplified, imply-
ing a decreased number of approximations and a corre-
sponding increase in the reliability of the theoretical
analysis.

Therefore, we restrict ourselves by investigating the
reactions Li(p, n) Be, Li(n, p) He, and
Li(p, p') Li(0, 3.56 MeV) at energies larger than 100

MeV. In this energy region at small-momentum transfer,
the dynamics of the process can be described as a single-
step transition and the theoretical analysis can be carried
out in the framework of the distorted-wave impulse ap-
proximation (DWIA). In DWIA the amplitude of the re-
action has three input ingredients: (i) the structural in-
formation contained in the transition densities which de-
scribe the response of the nuclear system to an external
field, (ii) the effective interactions between the projectile
and target nucleons, and (iii) the distorted waves describ-
ing the relative motion of projectile (ejectile) and target
(residual) nucleus.

In addition, it is necessary to take into account the
identity of the nucleons in the collision partners, which
brings nonlocality to the reaction amplitude. For calcu-
lations of this amplitude, nonlocal transition densities
would, in principle, be needed. The contribution of ex-
change knock-out amplitudes can, however, be approxi-
mated in the pseudopotential approach. In that ap-
proximation, the nonlocal amplitude is reduced to a local
one; hence, the local densities discussed above can be
used in our cross-section calculations. The eA'ective NiV
interaction was taken from Ref. 23 (t-matrix interaction
describing the free N scattering) and contains central,
tensor, and spin-orbit components.

The optical potential used for calculating distorted
waves was computed in a pt-folding model, where p is
the matter density of Li calculated above. The central
part of the optical potential was derived from the S =0,
T =0 component of the NN forces. It is well known
that, in this channel, there are essential corrections due
to the influence of the nuclear medium which creates the
p dependence of the efT'ective XN forces. The p depen-
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FIG. 5. Comparison between self-consistent 0%'IA calcula-
tions and experimental data {Ref.26) at E~( ) 280 MeV. Curve
1, (p, n); 2, (n,p); and 3, (p,p') reactions.
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dence of the effective forces was introduced in the evalua-
tions of the optical potentials by the simple prescription
suggested in Ref. 24. The spin-orbital part of the optical
potential was evaluated without a p-dependent I.s com-
ponent of the t-matrix interaction.

Thus, our results correspond to "self-consistent" mi-
croscopic DULIA calculations of quasielastic reactions,
with ingredients tested against available weak and elec-
tromagnetic data as discussed above. In this sense there
are no free parameters.

The self-consistent evaluations of cross sections repro-
duce experimental behavior reasonably we11 up to
transferred momentum q ~ 1 fm ' for (p,p'), (p, n), and
(n, p) reactions on Li, populating the isospin triplet.

Results are given in Fig. 5 for the reactions
Li(p, n) Be, Li(n, p) He, and Li(p, p') Li(O+, 3.56 MeV)

at E =280 MeV. The experimental data were taken
from Ref. 26. The description of inelastic scattering and
of the (p, n) reaction is very good. Figure 6 shows
differential cross sections for the reaction Li(p, n) Be at
somewhat lower energies, E =200 and 160 MeV, respec-
tively. The experimental data are taken from Ref. 27.
The description of the experimental angular distribution
is rather good.

VII. SUMMARY AND QUTLQQK

A microscopic three-body formalism based on the hy-
perspherical harmonics Inethod and fundamental pair in-
teractions has been outlined and shown to have advan-
tages such as a controlled computational accuracy related
to a specific approximate three-body symmetry. This
feature also allows one to use analytic representations for
most of the physical observables. In conjunction with a
microscopic nuclear reaction theory„a powerful tool is
available for investigating clustering phenomena in
lighter nuclei and nuclear reaction mechanisms.

By checking in a self-consistent manner against a
variety of characteristics, the Li magnetic moment, the
ft value of He, electromagnetic Ml transitions in Li,
electron scattering from Li, and data on He fragmenta-
tion (which is now available due to experiments with ra-
dioactive beams ), the quality of our calculated wave

FIG. 6. Same as in Fig. 5 for (p, n) at (a) E~ =200 MeV and
(b) E~ = 160 MeV. Experimental data are from Ref. 27.

functions for He and Li was found to be rather good.
The fact that the M1 inelastic and elastic form factors de-
scribe experimental data well gives confidence to the cal-
culated transition densities.

To further check these densities, in a self-consistent
manner, microscopic DULIA calculations were done for
(p, n), (n, p), and (p,p') reactions on Li, populating the
isospin triplet. For a range of projectile energies, a good
fit to data was obtained up to transfered momentum q ~ 1

fm '. It would be very interesting to have data taken for
q ~ 1 fm ' for further checks.

Other possibilities for testing the accuracy of the tran-
sition densities are to study the charge-exchange reac-
tions 3 ( Li, He)B and A ( Li, Be)C for nuclei 3, B, and
C of well-known structure and a well-established reaction
mechanism.

We have emphasized the dual role of quasielastic reac-
tions (charge-exchange, breakup, single-particle, cluster
transfers, etc.) (i) as tools for evaluating the quality of
descriptions of few-cluster systems, and (ii) as means for
probing structure and reaction mechanisms for heavy nu-
clei by using known few-body systems as projectiles. The
latter is of particular interest in connection with the rela-
tive role of proton and neutron degrees of freedom in
heavier systems.

A unique possibility to investigate double-charge-
exchange mechanisms, for example ( He, Be), and the
unusual space structure of He (dineutron and cigarlike
components) due to the Pauli focusing phenomenon, now
exists with the availability of radioactive beams.
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