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The elastic scattering of nuclei belonging to an isobaric multiplet is discussed. These reactions in-
volve at least one unstable nucleus. Such experiments are becoming feasible with the advent of ra-
dioactive beams. It is suggested that strong resonances can be found in the scattering of (isobaric)
mirror nuclei at energies close to the Coulomb barrier. A simple model for the collision of mirror
nuclei composed of identical, inert cores and valence nucleons is considered and the coupled equa-
tions, whose solutions yield the direct and charge-exchange amplitudes, are derived.

I. INTRODUCTION

The effect of charge exchange is known to be very im-
portant in nucleon-nucleus scattering. ' This has led to
the identification of isobaric analog states in various light
and heavy nuclei. The importance of charge exchange in
reactions of the type ( He, t) has been studied by Robson
and Contanch who concluded that the effect is very
small. It has been argued that charge-exchange effects in
heavy-ion collisions should become much smaller and can
be ignored in the lowest approximation. This argument
is based on the assumption that charge exchange is a
volume effect and as such its strength will depend in-
versely on the mass of the colliding nuclei.

During recent years, the elastic exchange process in
the collision of nuclei differing by a single nucleon or a
cluster has been observed in reactions involving stable nu-
clei. 5 These involve reactions of type (' C, ' C), (' C,
' C), etc. , and significant progress has been made in the
critical interpretation of elastic scattering, in particular
by Imanishi and Von Oertzen who utilize a dynamical
molecular orbital approach. The fusion of such systems
has also been studied and the interesting feature of fusion
oscillations at low energies has been interpreted in terms
of a parity dependence of the optical potential. Imanishi
and Von Oertzen' have also suggested that a strong spin
dependence observed in the optical potentials at energies
near the Coulomb barrier arises from the exchange of the
valence nucleon between the two identical cores.

We had suggested some time ago" that one may be
able to study charge dependence in nucleus-nucleus po-
tentials by the analyses of the elastic scattering of isobaric
mirror nuclei such as (' C, ' N) or (' 0, ' F) at energies
close to the Coulomb barrier. Once again, one has two
nuclei with identical ("inert") cores but now there are
two valence nucleons which differ in the Z component of
the isospin. There would be strong coupling of the two
nuclei due to different possible exchanges of the valence
nucleons (as well as the cores) and, at energies close to
the Coulomb barrier, the explicit charge exchange part of
the neutron-proton interaction will have an important

effect. This expectation is based on the assumption that
at these energies the absorption effects will be small and
unlikely to swamp the effect we wish to observe. In addi-
tion, at energies close to the Coulomb barrier, recoil
effects are small and reaction times are large so that it is
possible to study the importance of multiple charge ex-
change between the colliding nuclei, which may exhibit
itself as a resonance. Evidence of strong coupling in near
barrier energy collisions has been observed in a number
of cases' and the important role of the valence nucleon
in the collision of ' 0 by Pb has recently been pointed
out. ' However, to our knowledge multiple charge-
exchange effects have not been observed in elastic scatter-
ing of strongly interacting systems. The detailed depen-
dence of these expected large cross sections and the possi-
ble resonances will provide a sensitive tool to explore the
density distributions of valence nucleons and charge-
exchange mechanisms. Resonant charge exchange in the
scattering of atomic systems has been known for many
years' and serves as a provocative analog.

In this paper we develop the formalism for the charge-
exchange reaction referred to in Ref. 11 in detail. We
consider a model comprised of two identical (inert) cores
and two valence nucleons. With the aid of simplifying as-
sumptions, we obtain a set of coupled equations whose
solutions yield the direct and charge-exchange ampli-
tudes. With a further, no-recoil, approximation, we show
how those coupled equations can be decoupled into eigen-
channels. The expressions for the direct and exchange in-
tegrals as well as the nonorthogonality overlap are gath-
ered together in the Appendix.

II. FORMALISM

We consider a reaction of the type

(C, +n)+(C +2p)~(C, + )+n(Cz+p)

B B

~(C, +p)+(Cz+ ),n
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where C, and C2 are two identical cores and the colliding
system is left in the elastic channel. We shall refer to the
first reaction as a direct process and the second as a
charge-exchange process. The two processes are experi-
mentally indistinguishable and the physical elastic ampli-
tude will be a superposition of the two. The nuclei A and
8 are mirror nuclei.

The coordinate system is shown in Fig. 1. We shall
make the approximation of ignoring the shift in the
centers of mass of nuclei 3 and 8 from those of the cores
C, and C2 (the no-recoil approximation' ). We thus ap-
proximate the separations of the centers of mass A and B
by R. The general formalism remains the same even
without invoking the no-recoil approximation. It only re-
sults in a coupled integro-differential equation to be
solved where the rearrangement kernel becomes nonlocal.

The total Hamiltonian of the system can be written as

H=(Hc +Kc + Vc )+(Hc +Kc + Vc )+K„~

C2

FICx. 1. Coordinates used in the description of the charge-
exchange reaction. C& and C2 represent the cores of the two
nuclei while n and p represent the valence neutron and the
valence proton or the valence neutron hole and the valence pro-
ton hole as appropriate to the system.

+(Vc +Vc +Vc c +V„)

=(Hc, +Kc, + Vc, )+(Hc, +Kc,„+Vc,„)

+Kii „+(Vc +Vc +Vc c +V„),
1n 2p 1 2

where H& and H~ are the internal Hamiltonians of the
1 2

cores C& and C2, respectively. K
&

is the kinetic-energy
operator for the relative motion of the fragments a and P
and V & is their interaction potential. Since we treat the
cores as inert we shall omit their internal Hamiltonians in
the discussions below.

For the exact scattering wave function of the system
we shall make a two-state approximation:

4'+'= [4„C, n )@ii(C2p ) ]F,(R; )

+ [4'z ( C|p )4 ~ (C2 n) ]F2(Rf )

where R, and Rf are the channel vectors for the initial
(direct) and final (charge-exchange) channels. In the no-
recoil approximation we have

R;=R R = —R.f (4)

4"+' is assumed to be a solution of the equation

(H E)%'+'=0—.

The equations for F, and F2 are obtained by multiplying
Eq. (5) by [C&z(Cin)@z(C~p)] and by
[&bii (C, ep)@~.(C, n )] and integrating over all the
internal variables. This results in coupled equations for
the functions Fi(R) and F2( —R) given by

[K~+ Vc c (R)+b, v (R)—E]F,(R)= —[K~+ Vc c (R) —e]S(R)F2(—R)—b, v (R)F2( —R),

[K~+ Vc c (R)+b, V (R)—E]F2( —R)= —[K~+ Vc c (R)—e]S(R)F,(R)—Av (R)F, (R),

where e is the channel energy. 6 V (R) and b, V (R) are the direct and exchange potentials defined by

bv (R)=([4„(C,sn)@ii(C2p)]l Vc + Vc + V„ I4„(C,n)+ii(Cz8p))

=([C&z (C&ep)@4 (C2n )]I Vc + Vc + Vzl[@ii (Cip)@~ (C~n )])

b V (R)=([@ii( Cep)N„( Cn)] VIc + Vc + V„~ [IN~( C, n)N i(iCpp)])

=([4~(C in)N (i'~p)] VIc +Vc +V„ l[C&ii(C, p)4„(C~n)]),

and S(R) is the nonorthogonality overlap defined by

S(R)= ( [4&.(C, p )&P„( CSn )] I [+„(C&n )Nii(C2481p)]) . (10)
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In Eqs. (8)—(10), the integration is only over the internal
variables of the nuclei A and 8. In general, the direct
and exchange potentials as well as the nonorthogonality
overlap will depend upon the vector R. In the case where
the spin of the mirror nuclei is —,, they are functions only
of the magnitude of the vector.

The coupled equations (6) and (7) can be decoupled by
the introduction of new functions

F +(R)= [1+S(R) ][F,(R)+F~( —R) ] .

F+ (R) are solutions of the eigenchannel equations

K +V (R)+ —e F (R)=01+S(R)

(12)

and satisfy the boundary conditions

F+(R) ~ exp(iK R)
g ~ oo

ikR
+ [fd(0, $)+f„(~ o, vr+P)—] R

(13)

= —b, V (R)F,0(R), (14)

where F,o(R) is the (zero-order) elastic-scattering solu-
tion of

[K~+ Vc c (R)+AV (R)—e]F,O(
—R)=0 . (15)

By a comparison of the scattering amplitudes obtained
from Eqs. (14) and (15) with those from Eq. (12), one can
assess the importance of multiple charge exchange.

Finally, a remark about the two functions F+(R). In
the actual collision, there is only one physical elastic-
scattering amplitude. Its separation into a "direct" and
"charge-exchange" part is artificial. Only one combina-
tion (fd+f„) or (fd f„) will represent the—physical
amplitude. If the cores C, and C2 are bosons, it is
(f d+ f„)and one needs to determine only the function
F+ (R).

Expressions for the direct and exchange potentials
hV (R) and b, V (R) as well as the nonorthogonality
overlap S(R) are given in the Appendix. It is easiest to
evaluate them by the use of the Fourier transforms of the
potentials, densities, and density matrices.

In the collision of mirror nuclei such as ' C+' N, the
valence nucleons are very weakly bound. At energies
close to the Coulomb barrier, one would expect the dom-
inant eff'ect to be due to the neutron-proton interaction
because the densities of ' C and ' N at large distances
will be primarily those of the valence nucleons. It would

In writing down Eq. (13) we have utilized the property
that S(R) goes to zero asymptotically. fd and f„are the
direct and charge exchange amplitudes, respectively. If
the nonorthogonal term S(R) is negligible (compared tn
unity) and if b, V is a small perturbation, then Eq. (7) can
be solved in DWBA; i.e., the charge exchange is evalu-
ated from the purely outgoing solution of the equation

[K~ + Vc c (R ) +6 V (R ) —e ]F20( —R)

thus be possible to estimate the charge exchange part of
the n-p interaction.

III. SUMMARY AND CONCLUSION

The scattering of isobaric mirror nuclei was considered
as a four-body system comprised of two inert cores and
two valence nucleons. It was shown that in the no-recoil
approximation, the coupled equations could be exactly
decoupled. The method utilized is identical to that used
in the study of nucleon elastic exchange collisions or
charge exchange in atomic collisions. The two-state ap-
proximation made in Sec. II may, in general, be unrealis-
tic. It may be important to include the excited states of
the nuclei. This was observed to be important in the
scattering of ' 0 by Pb where the nucleon transfer and
inelastic channels were strongly coupled. ' The same is
true in the elastic exchange reactions discussed by Iman-
ishi and Von Oertzen where the coupling of inelastic and
transfer channels built by the molecular orbitals was
found to be significant.

In the particular case of the scattering of isobaric mir-
ror nuclei, the inclusion of excited states poses no addi-
tional problem. Instead of the new functions F+(R) be-
ing solutions of "optical potentials, " they will be solu-
tions of coupled equations.

With the aid of sophisticated and comprehensive pro-
grams such as FREsco, the solutions to these systems of
equations can be attempted. Work on some model calcu-
lations is in progress.

We eagerly await experimental data on reactions with
radioactive beams to test the speculations we have
presented here.
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APPENDIX: Expressions for S ( R ),
hV (R), and AV (R)

Treating the cores C, and C2 as inert we use the termi-
nology

4'~(C)en)=$ (r)), 4'~ (C2n)=P (r2),

a(C~p ) =Pp(p2), ~'a (Ci g p ) =Pp(pi),
(Al)

where the vectors are depicted in Fig. 1.
Choosing the r„p2, and R as the linearly independent

vectors, we have the relations

r2 r1 R, pi —p2+ R, r=p& —r&+R . (A2)

Thus we obtain

S(R)= J dqe'q ~P (q)~

and for the direct potential we obtain

(A3)
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b, V (R) =(2~) f dqp (q)pp( —q) V„e

+ fdqp (q)V(q)e

+f dqp&(q)V(q)e

where

(A4) and

p (q)=(2~) jdre'q'p (r),

V„~(q) =(2~) fdr e'q'V„(r),

p (r)=I/ (r)l'.

(A7)

(Ag)

P (q) =(2~) fdr e'q'P (r), (A5) The exchange potential is

r g2 2

fdqe"'"ld. (q)l' fdq. '" e—,' lpp(q)l'

p2 2

+ fdqe 'q'
~pp(q)~ fdqe'q e iP (q)i +(2~) fdqlF (r)i V~(q), (A9)

where

F (R)= (2~) jdr P*(r )P(r R)e 'q'—

Equations (2)—(10) constitute the complete expressions
for the various terms needed to evaluate the potentials
and overlaps. The details of the angular momentum of
the single-particle states have not been specified. The la-

bel o, , for instance, represents the quantum numbers n, l,
j, and rn where n is the principal quantum number, I and
j are the orbital and total angular momentum, and m is
the z component of the total angular momentum of the
valence nucleon. If j =

—,', the overlap S(R) and the
direct and exchange potentials b, V (R ) and 6 V (R ) are
dependent only on the magnitude of R. (They are mono-
pole in character. )
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