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We explore the development of a nontopological soliton model for baryons in which effective

meson fields are generated from extended quark-antiquark pairs within a nonlocal model of
Nambu —Jona-Lasinio type. Meson kinetic and potential energies arise from the Dirac sea. Only
scalar-isoscalar and pseudoscalar-isovector meson fields are retained. Functional methods and bilo-
cal field techniques are employed and we work to lowest order in loops for the retained degrees of
freedom. We identify a mean-field approximation from the effective action obtained through a

Legendre transformation incorporating a chemical-potential constraint. This fixes the baryon num-

ber in terms of valence quark configurations and thereby induces a classical configuration for the
meson fields. After a localization of the meson sector of the effective action, the model is of the
linear sigma type with a nonlocal quark-meson vertex due to the composite extended nature of the
internally generated meson fields. With a self-confining dynamical quark mass, the classical meson

fields provide a region where quarks can propagate and have a defined eigenenergy. A simple model
illustration of this mechanism is provided.

I. INTR(ODUCTIIO)N

The description of baryons in terms of valence quarks
with either bag or nontopological soliton methods contin-
ues to play an important role in the search for e6'ective
low-energy models of QCD. Quark-antiquark lluctua-
tions in the form of meson fields are expected to be par-
ticularly eKcient degrees of freedom for implementing
nonperturbative aspects. Chiral and cloudy bag models'
emphasize the important role of the pion field, and hence
chiral symmetry, for the large-distance physics of the nu-
cleon. In nontopological solitons of the Friedberg-Lee
type, the sharp boundary condition of bag models is re-
placed by coupling the quarks to a dynamical scalar field.
The stabilizing mechanism consists of the classical or
mean-field configuration of the scalar field approaching a
large constant vacuum value as the valence quark density
decreases towards the edge of the soliton. Mean-field
models of this type have been extensively studied, as
have chiral extensions and the inclusion of vector
mesons. Covariant versions of quark-meson solitons
have also been developed. It is not obvious that the qq
substructure of the meson collective modes of QCD is
unimportant for modeling the structure of a baryon. In-
vestigations along these lines must deal with a nonlocal
field-theory model having extended meson fields and a
distributed meson-quark vertex. In this paper we explore
aspects of the formulation of a static chiral soliton model
for a baryon in which the meson fields are generated from
quark fields in the form of qq fIuctuations.

Consider the one-gluon-exchange coupling of local
quark currents shown in Fig. 1{a). A Fierz reordering of
the quark fields produces two bilocal "currents"
q(x )A q{y) that carry, in the color-singlet sector of the
matrices A, the quantum numbers of mesons. This is il-
lustrated in Fig. 1(b) and is the same as the quark-
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FICs. 1. {a)The one-gluon-exchange interaction between local
quark currents. (b) A representation of the same interaction
after Fierz reordering in the space of discrete indices. This
structure is recast as an integral over bilocal boson fields that
have a qq content.

interchange mechanism used for initial consideration of
meson coupling to bag-model hadrons. The introduction
of dynamical meson fields that have such a qq origin is
most easily accomplished within the Nambu —Jona-
Lasinio (NJL) model. This model has proved to be a
useful bridge between aspects of QCD and chiral quark-
meson degrees of freedom. In the simplest form, a con-
tact four-fermion interaction is employed and the vertex
factors A are restricted to scalar-isoscalar and
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pseudoscalar-isovector channels. Auxiliary local meson
fields in the sigma and pion channels can be used to re-
cast the Lagrangian so that the basic quark-meson form
of the linear sigma model is produced. The meson kinet-
ic and potential terms have their origin in the one fer-
mion loop vacuum polarization integral. Nontopological
quark-meson solitons within the NJL framework have
been studied recently. '

It has previously been pointed out that quark-meson
models can be obtained from a nonlocal extension of the
NJL framework to allow for an effective gluon propaga™
tor of finite range. " The required path-integral tech-
niques use bilocal auxiliary fields' so that the bilocal
current-current interaction is replaced by functional in-
tegration over Bose fields % (x,y ) that are Yukawa cou-
pled to quarks. The vacuum configurations X (x —y)
produce a quark dynamical self-energy from gluon dress-
ing. " Fluctuations are treated as meson fields, which are
bare in the sense of an effective Lagrangian, but have a
composite qq structure. The associated meson propaga-
tors at this level are known' ' to contain a meson form
factor with a ladder Bethe-Salpeter structure. This form
factor corresponds to the quark-meson vertex I (k, I' ) il-
lustrated in Fig. 2. The finite extent of the qq content
provides, through the relative momentum k, a natural
regularization for fermion loop integrals. '

The prospect of self-regulation of effective nonlocal
field models is of interest for nuclear physics. It has re-
cently' been argued that the qq Auctuation fields for
meson collective modes obtained from this type of for-
malism can be usefully considered as the basis for relativ-
istic nucleon-meson models by inferring meson-nucleon
coupling from meson-quark coupling. Meson substruc-
ture was ignored in those considerations. If the vertex of
Fig. 2 operates for a quark constituent of a nucleon, there
is a suppression at large momentum transfer P due to the
finite extent of the quark distribution available in the nu-
cleon. At large nucleon momentum, k becomes large and
there is a cutofF provided by I (k, P) due to finite meson
extent.

We retain only the scalar and pionic meson modes in
the soliton model here. With the qq meson degrees of
freedom defined, we continue to use functional path-
integral methods to formulate the mean-field soliton
model. In such an approach, the meson propagators are
generated from vacuum loops produced by integrating

)P

FIG. 2. The quark-meson vertex when the meson is a com-
posite qq object with total momentum P and internal relative
momentum k.

out the quark fields. The retention of valence quarks to
connect such methods with static bag models has been
considered before. " There the baryon number constraint
is imposed through an approximate construction of a
three-quark Green s function to identify the minimizing
energy of the system through a stationary phase method.
We employ here a more direct approach that identifies
the eIFective action I [b, n] through a functional Legen-
dre transformation of the generator 8"[J,p. ] of connected
Green's functions. Here the quark fields have been in-
tegrated out with the constraint of a chemical potential p
to fix the baryon number n, and the fields b(x ) for propa-
gation of the fluctuation meson modes have been coupled
to an external source J(x ) which is eventually set to zero.
At the mean-field level the fluctuation meson fields ac-
quire a finite expectation value due to the net baryon
number. An advantage of this method is that I ~ F. for a
static system, thus identifying the eigenenergy E of the
soliton. ' Also, the loop expansion can be carried to
higher order to systematically define radiative corrections
in terms of fermion loop effects that have not been ab-
sorbed into the meson kinetic and potential terms.

An interesting feature of the type of formalism we are
employing is that the dynamical quark self-energy can be
absolutely confining if there is sufhcient strength in the
effective gluon propagator at low momenta. ' With
confinement embodied in the translationally invariant
amplitude 8 (x —y ), which is both the scalar piece of the
self-energy and the chiral meson-quark vertex, the mech-
anism for self-confining soliion solutions here can be
quite different from that of color dielectric models. ' No
scalar background field is necessary to implement a diver-
gence of the quark self-energy at the edge of the soliton.
Rather, the scalar field appearing here is the chiral
partner of the qq Goldstone pion. With a confining quark
self-energy that is translationally invariant, it is the Auc-
tuation meson fields that are necessary to provide a re-
gion where quarks can propagate and have a defined en-

ergy eigenvalue. A simple illustration of this mechanism
is provided.

In Sec. II A the existing bilocal field methods we em-

ploy here are summarized in the context of the global
color symmetry model (GCM). ' This model of QCD is
of the nonlocal NJL type and is parametrized by an
effective two-point gluon propagator having a running
mass with logarithmic falloff characteristic of asymptotic
freedom. The transformation of quark fields to incorpo-
rate the chemical-potential constraint is made in Sec. II 8
and the coupling to o. and ~ meson Auctuations in chiral
format is also discussed. The energy functional for the
static soliton solution is obtained from the Legendre
transformation in Sec. III at the lowest level of the loop
expansion. The equations of motion for both the meson
and quark sectors are also obtained. Particular attention
is paid to the self-consistency in the valence quark
eigenenergies that arises from the dynamical content of
the self-energy, and the corresponding wave-function re-
normalization factor is incorporated. In Sec. IV the soli-
ton formation mechanism in the presence of a self-
confining quark se1f-energy is illustrated schematically.
Summary and discussion follow in Sec. V.



2810 M. R. FRANK, P. C. TANDY, AND G. FAI 43

II. FORMALISM

A. Global color symmetry model and bilocal fields

,' —fd x d y j„'(x)D(x—y)j„'(y)

,' —fd x d y d (x,y)D(x —y )8 (y, x ), (2.4)

The GCM is defined in Euclidean metric by the ac-
tion'

2

+ j„'(x)D„(x—yj)'(y )p

where 8 (x,y)=q(x)A q(y) acts as a bilocal source.
These two forms are illustrated in Figs. 1(a) and (b). The
discrete index 0 ranges over the terms of distinct trans-
formation character in Lorentz, Aavor, and color space
produced by the Fierz reordering relation

(2.5)

(2.1)

where the quark current is j„'(x ) =q(x )(&'/2)y„q(x ).
In the limit as the small current quark mass m —+0, the
GCM has, for the case of two quark flavors employed
here, SU(2)LI81SU(2)i, chiral symmetry. Also, as the
name indicates, the GCM has global color symmetry.
The GCM can be looked upon as a nonlocal version of
the NJL model. The color algebra, chiral symmetry, and
the association of the function D„, appearing in (2.1)
with an effective two-point gluon function make this
model capable of describing some aspects of QCD."'
For convenience we take the effective two-point gluon
propagator to be diagonal in Lorentz indices
D„(x—y ) =6„+(x—y ). The point of view of the GCM
is that D(x —y) is a parameter function for the model
which is to contain at least a running coupling constant
a, (q ) to incorporate the asymptotic freedom of QCD at
large Euclidean momenta. A variety of forms have been
employed for numerical work within the GCM (Refs. 11
and 13) and in other studies. ' For present purposes the
typical form

D(q)= f d x e '~ D(x)=' (2.2)

Z[i), i)]=N fDq Dq exp S[qq]+ f d4x(i)q+qi)) . .

(2.3)

In the limit of vanishing quark sources g and g, this is
equivalent to the canonical partition function of statisti-
cal mechanics. The implicit couplings of quarks to com-
posite qq fields carrying meson quantum numbers could
be revealed by perturbative construction of the quark
propagator through functional differentiation. However,
the auxiliary bilocal field method provides an e%cient and
nonperturbative way to expose such degrees of freedom. '

Fierz reordering applied to the quark Grassmann fields
transforms the current-current term so that

shall suffice with a, (q ) = 12'/33ln(1+r+q~/A~) where
A —200 MeV is the QCD scale parameter
parametrizes the infrared strength. The GCM has
proved successful in the description of the low-mass
meson spectrum and dynamics. '

The Euclidean space generating functional for fermion
Careen's functions is given by

The A are direct products of Lorentz, flavor, and color
matrices. In the present case wherein D„ is taken to be
diagonal, terms that Lorentz-transform as scalar, vector,
pseudoscalar, and axial vector are produced. With two
flavors of quarks each A is either isoscalar or isovector.
The Fierz reordering of the color A, matrices yields
color-singlet and color-octet terms. We follow the boson-
ization procedure"' in which the bilocal quark current
structure of Eq. (2.4) is translated into a functional in-
tegration over auxiliary Bose fields carrying the quantum
number sets 0. Fluctuations in these fields will be inter-
preted as effective meson fields. For the Auctuations we
will ignore the color-octet sector and deal only with
color-singlet effective meson fields. This is not complete-
ly satisfactory, since part of the color structure of the
model action is thereby discarded. However, it has been
shown' that the complete color structure may be kept by
the use of a further Fierz reordering so that bilocal com-
binations of quark fields that are not color singlets appear
only in the form of diquark fields q(x )q(y ) and q (x )q (y ).
In this work we seek a static mean-field quark-meson
model, and the retention of just color-singlet composite
fields can be viewed as ignoring correlations that are ex-
pressible as diquark degrees of freedom.

With the bilocal form (2.4) for the quartic dependence
on quark fields, the generating functional is

Z[ ), i)]i=N fDq Dq exp (qGO 'q)—

+ (8 Dd" )+(gq+qg)
2

(2.6)

where the bracket notation is meant to signify the usual
space-time integrations, d(x, y ) =d(y, x ), and
Go '(x,y)=(y. 8+m)5(x —y). The quartic current-
current term can be translated into a functional integra-
tion over auxiliary Bose fields by first inserting into (2.6)
the constant factor

N'=[det(1/g D)]

4 q X (x,y)% (y, x)DXexp — d x d y
2g D(x —y)

(2.7)

where the notation fD% stands for fDX 'DX '
and 0 is summed in the integrand. With a shift
X (x,y)~X (x,y)+g D(x —y)cf (y, x), the current-
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current term is eliminated in favor of a term quadratic in
S and two terms bilinear in 8 and %. The two bilinear
terms are equal due to symmetric integration, and, after
adjustment of the normalization constant, the generating
functional is reexpressed in the equivalent form

Z[ iI, li]=N fDq Dq DXexp —(qG 'q)

where

z
X + (i)q+ qg)

g 2D

(2.8)

6-'(x,y)=() a+m)5(x —y)+A'X'(x, y) . (2.9)

S[X]=T L G '[S]—f d d
2g D(x —y)

(2. 1 1)

In the limit of a local NJL model, D(x —y ) ~5(x —
y ) in

(2.4), and the corresponding limit of (2.11) becomes
[D(x —y)] '~5(x —y). At this point we take il=i)=0
and consider the vacuum-to-vacuum amplitude, since we
are not prepared to investigate the quark propagator un-
til the level of approximation for the Bose fields X has
been defined.

B. Valence quarks and effective meson fields

To deal with a ground-state configuration with valence
quarks, we add a constraint on the baryon number
through a chemical potential p. After the canonical
transformation of quark fields

q(x)~q'(x)=e" 'q(x), (2.12)

The quarks are Yukawa coupled to the auxiliary Bose
field variables of integration with bare vertices A . The
action in (2.8) is now bilinear in the quark fields allowing
the Grassmann integration to be performed in the stan-
dard way. The result is a generating functional which is
written completely in terms of the bilocal Bose fields

Z[ ),7)i]=N fDXexp[S[X]+(i)Gi))I, (2.10)

where the bosonized action is

The constraint for the baryon number nb is imposed
through

n —= nb fdx4= InZ[p] .
Bp

(2.15)

In the case of statistical mechanics, where the range of x4
integration is the inverse temperature P, (2.12) is the
fugacity transformation that takes the canonical partition
function into the grand canonical partition function with
appropriate adjustment of boundary conditions. Besides
the familiar shift of the time derivative, the additional p
dependence in (2.14) is due to the nonlocality of the Bose
fields. The four-fermion interaction that is recovered
upon integration over X remains independent of p. In
later developments, a propagator G associated with (2.14)
will be required. With appropriate boundary conditions,
the p dependence of G will serve to shift the pole struc-
ture in the momentum component conjugate to x4 —y4,
so that valence and vacuum configurations are treated to-
gether in the usual way. Upon Grassmann integration
over the quark fields, the ground-state amplitude (2.13)
becomes

Z[p]=N fDzexpS[p, M], (2.16)

with the vacuum action given by

S[%]=Tr LnG '[@=0,%]——
g 2D

(2.18)

We choose this separation in order to define effective
meson fields from an expansion of the vacuum action.

For expansion of S[X], the vacuum configuration of
X(x,y) should be identified so that propagating boson
fluctuations above that may be exposed. We follow the
treatment of Cahill and Roberts" and expand the action
about the saddle point Xo(x,y), defined by 5S/5%o=0.
We work only to zero order (iri ) in % field loops, and at
this level the vacuum expectation value and the saddle-
point configuration go coincide. Since from (2.9)

where the bosonized action can be written as

S[p,,X]=Tr(LnG '[p, X]—LnG '[@=0,$])+S[%],
(2.17)

the ground-state amplitude from (2.8) is reexpressed as Tr LnG '[Xo]= tr(A 6 [%o;y,x ]),
5%0(x,y )

(2.19)

Z[p] =N fDq
' Dq' DM exp . —[q 'G '(p)q'] where tr denotes the trace on discrete indices, transla-

tionally invariant solutions for each Xo satisfy the self-
consistent equation

Xo(x —y)=g D(x —y)tr(A 6[%0;x—y]) . (2.20)

(2.13)

where the chemical-potential dependence induced for the
inverse propagator is

6 '(p;x, y)=e '6 '(x,y)e

The vacuum quark self-energy produced at this level is
therefore identified from (2.9) to be X(x —y )
=A %0(x —y ), and (2.20) produces the self-consistent
equation

=(y.8+ m —y~)5(x —y ) X(x —y)=g D(x —y) y„G[Xo;x —y] y„. (2.21)

+e 'A X (x,y )e (2.14) Here the Fierz reordering has been reversed to emphasize
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that the structure is a Schwinger-Dyson equation for X
with bare quark-gluon vertices and a self-consistent
quark propagator. The momentum space form of (2.21)
is

X(p)=if[A(p ) —1]+B(p )

(2ir) 2 "if+ m+y(q) 2

(2.22)

and the structure is illustrated in Fig. 3. Numerical solu-
tions for the amplitudes 3 and B have been obtained in
recent studies. ' ' For the remaining formal develop-
ments we shall assume that convenient forms for the am-
plitudes A and B are available. We are particularly in-
terested in retaining the dependence of the final soliton
field equations upon these amplitudes for two reasons.
First, for suitable infrared strength of the effective gluon
propagator D, the resulting quark self-energy can be self-
confining. ' This provides the possibility of a cavity for-
mation without the assistance of the additional scalar
field that is often employed for soliton models. Second,
the amplitude B is directly related to the distributed ver-
tex for coupling of quarks to the qq Goldstone modes.
This feature is of interest to us even in the circumstance
that the self-energy contribution is approximated by a
constant constituent mass.

The nature of the qq fluctuations above the %0(x —y)
configurations can be investigated from the associated
propagators. The latter can be constructed to the desired
level in the loop expansion through functional expansion
of the vacuum action S[X] in powers of the fluctuations
S defined by

X (x,y ) =X (x,y ) —$0(x —y ) . (2.23)

We shall limit our considerations to the composite Auc-
tuation Bose fields that are scalar isoscalar and pseudos-
calar isovector in character. The corresponding pair of
bare vertices A from the Fierz reordering (2.5) are

A = [l, iy, r],u'2
(2.24)

and the four associated fields S may be denoted by

a center-of-mass coordinate R =(x+y)/2 for the bilocal
meson fields. We wish to limit the number of degrees of
freedom by restricting consideration to the internal
meson eigenstates of lowest mass. The dependence of the
fields o. and m upon r will then be described by the associ-
ated form factor, and the remaining dependence upon 8
will be taken up by local dynamical field variables.

A general procedure for this localization is the follow-
ing. ' The vacuum action from (2.18), with an explicit
lowest-order fluctuation term, can be written

X2)s '(p, q;P )X (q; P ) —R [X],
(2.26)

where R [g] contains the remaining higher-order terms
and 0 is summed over the cr and ~ channels. In (2.26) we
have used a momentum representation in which p and P
are Euclidean momenta conjugate to r and R, respective-
ly. Analysis reveals that Xls is Hermitian, with eigen-
functions I „and real eigenvalues 6„' satisfying'

42)s '(p, q;P)I „(q;P)=As „'(P )1 s(p;P) .

(2.27)

The total momentum of the propagating meson mode is P
while p or q are relative momenta for the qq content. The
eigenfunctions I „describe the internal structure for the
nth mode. The condition for on-mass-shell free meson
modes is evidently b, &

„'( —M )=0, where M is the invari-
ant mass. For these physical modes (2.27) becomes a
ladder Bethe-Salpeter equation for bound states. This
structure is dictated by the inherent ladder content of the
self-consistent equation (2.20) for the bilocal field
configurations that determine the self-energy X.

From (2.26) and (2.27), only the projections of % onto
the eigenstates I enter the quadratic term of (2.26). With
a truncation to the internal states of lowest invariant
mass, the resulting projected field variables shall be
denoted by d(P) and ~(P). In the pion channel, for ex-
arnple, the eigenfunction expansion is truncated to the
single term

(x,y)=X (r;R )= —[o.(r;R ), m(r;R )] (2.25) n(q;P)=I „(q;P)n(P), (2.28)

It is convenient to use a relative coordinate r =x —y and or, in coordinate space,

m(r;R)= Jd R'I (r;R —R')n(R') . (2.29)

FIG. 3. An illustration of the self-consistent equation of the
Schwinger-Dyson type that arises for the quark self-energy
when the bilocal boson fields are evaluated at the saddle-point
level. See Eqs. (2.21) and (2.22).

A corresponding form is used for the & field. For zero-
current quark mass, b, '(P =0)=0=m, and Eq. (2.27)
for the form factor reduces to the Schwinger-Dyson equa-
tion (2.22) for the scalar component B of the self-energy,
that is, I (q;P =0)=B(q ). This qq tluctuation is thus
the Goldstone mode associated with the breaking of
chiral symmetry through the generation of dynamical
quark mass. The o. and m components mix freely under a
chiral transformation, and only a single form factor
I (q ) = I (q ) =B(q ) is required.

In this limit, fluctuation fields with the form
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A B (x,y)=B(x —y) o
x+y +l $5'7 7T

where

U(&(R ), n(R. ))= V(y (R )) ,'f—m—& (2.35)

d PS[M]=S[X ]
—

—,
' f [&( P)b —'(P )&(P)

(2m )

+n.( P)b,„'(P—)vr(P)] —R [&,~), (2.31)

where now

b, e '(P )=J B(p )2)e '(p, q;P)B(q ) .
d4p d4q

(2~)
(2.32)

With retention of the first two terms in the momentum
expansion about P =0, we have b, e '(P )=fe(P +me)
in terms of decay constants fe and masses m&. The
remainder R [&,m ] collects terms beyond second order in
the fields and contains derivative as well as local terms.
Contact with local models of the linear sigma type may
be made after neglect of the derivative terms of R. In
this case, and with a zero-current quark mass, (2.31)
reduces to the local form"

S[S]=S[X]+Jd R[ ,'f o(R) &—(R)

(2.30)

used in an earlier consideration" of soliton models of the
present type, are seen to be appropriate for the zero-
mornentum Goldstone modes. The localized meson fields
in (2.30) are dimensionless. The factorized form in x —y
and (x+y)/2 is an approximation due to use of the
P =0 vertex for all P Th.e expansion (2.26) for the vacu-
um action becomes

where the constant S[XO] has been discarded, and the no-
tation

(&,6 '&)= Jd R &(R)( — +m )o(R) (2.37)

has been used. The chemical potential appears only in
the fermion Tr Ln term of the action in (2.36) and this
term will generate a meson source from valence quarks.
The inverse quark propagator occurring in (2.36) is, for
p=0,
G '(x,y)=GO '(x,y)+B(x —y)f

x+y . x+yX o +t y5v-m

where
(2.38)

G '(x y)=y B„A(x—y)+m5(x —y)+B(x —y)

(2.39)

When the fields are rescaled to absorb the decay constantf, the complete action from (2.17), including the valence
quark component, is

S[p, &, vr] =Tr(LnG '[p, &, vr] —LnG '[0,&,~])
—

—,'(&, b, '& ) ,'(n. , b—, —'m ) —U[&,vr],

(2.36)

+ ,'f n(R ) —„~(R)
—V(y (R ))], (2.33) =(y 8, +m )6(x —y)+X(x —y) . (2.40)

where cr(R )=1+&(R ) and g (R )=o (R )+sr (R ).
Here m =0, and a closed-form expression for the self-
interaction V(g (R )), which contains the o. mass term, is
given in Ref. 11. It has turning points at g =0 and at the
vacuum configuration y =1 corresponding to a local
maximum and an absolute minimum, respectively. A
simplified form that respects these properties is
V(y ) =c(y —1), where c =f„m I8. With a small
current mass m included in the quark propagators that
make up V, a pion mass term with m o- m is generated.
The quark loop integrals that give the meson parametersf, m, m and the interaction V(y ) from expansion of
the vacuum action are automatically regulated by the
meson form factors. Explicit expressions can be found in
Refs. 11 and 19. Typical values that can be obtained this
way" are f =72 and m =940 MeV, while the experi-
mental pion mass is fitted through use of a current quark
mass of about 10 MeV.

The vacuum portion of the action that we shall take for
a soliton model is therefore

The scalar term B(x —y ) in G o
' serves as the vacuum

value of the total bilocal scalar field. For @&0, the in-
verse propagator is obtained from the above via

G '(p;x, y ) =e 'G '(x,y )e (2.41)

and one may identify the valence quark self-energy in the
absence of meson fields as

X(p, x —y)=e X(x —y)e =e A Xo(x —y)e

(2.42)

III. ENERGY FUNCTIONAL FOR A STATIC SOLITON

In a representation in terms of the momentum com-
ponent or frequency conjugate to x4 —y4, there will be a
p-dependent shift of the frequency for the self-energy
function. This induces a self-consistency for the frequen-
cy location for poles of the associated propagator that
will be retained in the subsequent analysis.

S[&,vr] =S[%]—S[XO]
= —jd R I ,'f &(R)[— z+m )o(R—)

We shall use b (x)=[o.(x),n.(x)] to denote the four
mesonic fields so that the action (2.36) can be written in
the compact form

+ U(&, m)], (2.34)

+ ,'f n.(R )[ — ~+m —)n(R).S[p,b]=Tr(LnG '(p, b] —LnG '[O, b])
—,'(b, ~.-'b ) —U[b], (3.1)
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where b, '(x,y)=( — +m )5(x —y) with a common
mass for the three m. components. To initiate a treatment
via a loop expansion, we introduce external sources J (x )

for the meson fields and identify the standard generating
functionals Z and 8 through '

Z[J,p]=N jDb expS[p, b, J]=e 1 "} (3.2)

where N (x ) is the quantum field operator corresponding
to the c-number field b (x) occurring in the functional
path integral of (3.2). Both n and b, are functionals of J
and p. Inversion of these relations allows n and b, to be-
come the independent variables of the eff'ective action
I [b„n] introduced through the Legendre transforma-
tion

where I [b„n]=W[J,p] —(J,b, )
—pn . (3.12)

S[p,b, J]=S[p,,b]+(J,b ) . (3.3)

5 S[p, bo, J]=0,
5bo(x )

in the form

S[p,b, J]=S[p,bo, J]+S[p,bo, b],

(3.4)

(3.5)

where the shifted action is

The loop expansion for W[J,p] is developed from the ex-
pansion of S[p, b, J] about the saddle point bo(x)
defined by

Since the source that produces a given classical field

b, (x ) is determined by

5I [b„n] = —J (x),
5b, (x )

(3.13)

the physical limit J—+0 identifies the required physical
ground-state expectation value b, (x ) as a saddle point of
the effective action I . The equation of motion for b, (x )

in the physical ground state constrained by n is, there-
fore,

S[p,bo, b]= —
—,'(b, h b ) —U[bo, b] . (3.6)

5I [b„n] =0
5b, (x)

(3.14)

S[P bo J] 8 ] [P bo]

(3.7)

(3.8)

The functional 8', defined above is at least of order A' in
meson loops, and of order A in fermion loops. The
saddle-point action is of order A in meson contributions
and of order R in fermion contributions (from the Tr Ln
terms). The lowest term in the loop expansion is obtained
by discarding W, for the result

W[J,p] =inN+S[p, bo, J] . (3.9)

A. Legendre transformation

Here b (x ) =b (x ) bo (x ) a—re the shifted fields, and U
collects all terms of second and higher order in b except
the explicit second-order term that is diagonal in a. The
saddle-point fields bo are functionals of p and Jwhich, by
definition, vanish in the vacuum limit. However, for
finite p, the fields bo retain condensed values due to the
net baryon number. The inverse propagator 6 ' is a
second-order functional derivative of 5 and includes the
bare inverse propagator 6 ', contributions from the
self-interaction term U[b] and a qq loop from the fer-
mion Tr Ln terms. With (3.5), the generating functional
Z [J,p ] from (3.2) becomes

To impose time-translation invariance (ensuring a defined
total energy E) the fields b, (x) are taken to be static:
b, (x ) =b, (x), and I is directly proportional to the ener-

gy functional, ' viz. ,

I [b„n ]= E[b„n ]
—Idx4 . (3.15)

I [b„n ]=lnN+S[p, bo]+(J,bo b, ) pn, — —(3.16)

where the source-dependent terms have been collected to-
gether. The saddle-point fields bo(x) and the classical
fields b, (x) are defined differently and do not cancel in
general. However, the difference bo —b „which origi-
nates from the functional W, defined in (3.7) and (3.8), is
of higher order in A than the level at which we are
presently working. In particular, the result b, =bo(x)
follows directly from the source derivative of the lowest-
order W[J,p, ] given by (3.9) after employing the saddle-
point condition (3.4) that defines bo [J,p]. The effective
action at the (Hartree) level of zero meson loops and one
fermion loop is therefore

The explicit form for I to lowest order in the loop ex-
pansion is now required. Combination of (3.9} and (3.12}
yields

The variables from which an energy functional for a
mean-field soliton is to be constructed are the baryon
number

I [bo, n ]=S[p, bo] pn— (3.17)

58'n—:iib Idxg-
6p

and the field expectation values

(3.10)

b;(x)= =—&0+i@ (x)io-), y&0+io-), ,5J (x) Jp Jp &

(3.1 1)

=Tr(LnG '[p, bo] —LnG '[O, bo]) pn—
—

—,'(bo, h 'bo ) —U[bo] . (3.18)

n = S[p, bo, J]—= Tr LnG '[p, bo] .
a

6p ' ap
(3.19)

Here we have chosen the normalization constant so that
the vacuum value of I is zero. The functional p[bo, n ] is
to be treated as the inversion of the baryon number ex-
pression (3.10), which at the present level is
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Although bo is a functional of p, the saddle-point condi-
tion (3.4) has been used to obtain the second equality with
a partial derivative. From (3.15) and (3.18), the energy
functional can be separated into a quark component E
and a meson component E . That is,

g „(x)=(2m) '~ u (x)e

With (3.23), the states u satisfy

f d y G '(co;x, y)u (y)=X (co)ui(x) .

(3.28)

(3.29)

E[bo, n]=E [bo, n]+E [bo, n], (3.20)
If we set Ai( ,co) =iy4AJ (co), then the relation to energy ei-
genvalues is

where

E [bo, n] — dx4

=Tr(LnG '[p, bo] —LnG '[O, b o]) pn—, (3.21)

A,) ( co) = co i E—
q

(co). ,

where (3.29) is equivalent to

f d'y H(co;x, y)u, (y)=E, (co)ui(x) .

(3.30)

(3.31)

and

B. Quark sector

The valence quark energy contribution can be ex-
pressed in terms of eigenenergies through spectral
decompositions of the fermion propagators required by
(3.21). With static meson fields, 6 '(x,y) depends on
time only through the variable ~=x4 —y~, and it is con-
venient to use the Fourier representation

G '(co;x, y)= fdre ' 6 '(w;x, y) . (3.23)

E [bo n]
= f d xI —,'bo(x)[ —CI, +m ]bo(x)+U(bo(x))] .

(3.22)

f d x u '(x)ui(x) =5, (3.32)

The spectral expansions of the propagator and its inverse
are

and

6(x y)= i g f d—coP, (x) P, (y)
1

J
(3.33)

The index j labels the set of distinct states of the spec-
trum for a given value of co. The physical values of the
frequency variable m will subsequently be identified from
the pole structure of the contour-integral form of the
quark Tr Ln terms in (3.21). Equation (3.31) will need to
be solved explicitly only for the few co values necessary to
provide the valence states to reproduce the baryon num-
ber and Aavor of the ground state.

%'e choose the normalization condition

The explicit form can be written as y4G '(x,y)=i g fdcopl „(x)A, (co)gt (y) . (3.34)

6 '(co;x, y)=(y4ico+y. B +m)5(x —y)

+X(co;x—y)+ V(co;x, y)

=y~ico5(x y)+y4H(co;x, y—), (3.24)

V(co;x, y) =B( ;coxy)f „'

where a Hamiltonian has been defined. The term describ-
ing interaction with the meson fields is

The standard Feynman boundary conditions are incor-
porated in the Euclidean form of G(x,y) with the in-
tegration contour C taken along the real co axis with clo-
sure in the lower half plane, as shown in Fig. 4. In the
presence of a chemical potential p, the appropriate
boundary conditions for 6(p;x,y ) are implemented
through use of the same contour with the replacement
Ai(co)~ki(co+i@) The Tr L.n term of the valence quark
energy functional becomes

x+yX o. +sysv m
x+y

2
(3.25)

Tr[LnG '(p, ) —LnG '(0)]

A,, (co')
(3.35)

and the self-energy is

The time-translation invariance of 6 (x,y) allows sta-
tionary eigenstates and associated eigenvalues R~ (co)
which satisfy

f d y G '(x4 —y4;x, y)g~ „(y)=X~(co)P (x),
where

(3.27)

X(co;x—y)=B(co;x—y)+(y4ico+y cl )

X [A(co;x—y) —5(x—y)] .

(3.26) l CORI
coX (co )

2m A,l. (co')

cot,J (co )
( —f dx~)

co

(3.36)

where A,,'(co) =dA, , (co)/dco.
The term pn, which must be subtracted from (3.36) to

obtain the valence quark energies, can be cast in a similar
form. From (3.19) and (3.35) we have

where co'=co+i', and the limit g —+0+ is implied. In-
tegration by parts yields

Tr[LnG '(p) —LnG '(0) ]
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To evaluate the residues of the spectral integral in
(3.39), one may expand A, (co) about co given by (3.40) to
obtain

)( . ~ (+)
LEj

A,&.(co)=co lej. (co)—(co co& )Z&. (co, co& ),
where

Z, (co, co ) =Xi(co~)+ —,'(co —co~)A,J"(co )+ . (3.43)

Thus ki(co)/Ai(co) has unit residue at the poles, and
(3.39) yields

E [b on]= gE,'+'0(p E,'+—') . (3.44)

FICx. 4. Integration contours in the Euclidean frequency (or
fourth component of momentum) plane for evaluation of the
quark contribution to the soliton energy.

n:n„ f—dx4= g f e ' "ink (co')f dx4,4 Sp, Z~

(3.37)

Then from (3.21), the valence quark energy functional is

co k& ( co ) coA, j~ ( co )

The required chemical potential p is identified as the
highest occupied single-particle level consistent with the
baryon number, spin, and isospin of the system. The
Dirac-sea contributions present in the individual terms of
the formal expression (3.21) have canceled out to produce
the finite result in (3.44). That is, both 8'[J,p] and pn
can be divergent due to contributions from the Dirac sea,
but the eQ'ective action I" is produced from their
difference via (3.12) and is finite. The final result is
equivalent to formulating the Legendre transformation
with the finite subtracted quantities W[J,p]= W[J,p] pn[—p=O] and n =n[p] n[p=O]—. The set
of constants

Z =Z (co,co )=A,i(cop)=1 iE—(cu') (3.45)

produce wave-function renormalization so that the resi-
due of the propagator G(x,y) from (3.33) involves states
Z '~

hatt „(x). If the self-energy functions A(x —y) and
8(x —y) as well as the interaction V(x,y) with rnesons
are taken to be static, the familiar result ZJ ~uJ AuJ- is
obtained.

(3.38)

where the first term of the integrand is related to the
second by the frequency shift co'=~+i@. The integra-
tion contour C is the real ~ axis with closure in the lower
half plane. A shift of integration variable to cu' for the
first term of (3.38) produces a shifted contour C' with the
result

C. Meson sector

According to (3.14), the equation of motion for the
meson fields bo (x) is

6I [bo, n ] (E [bo, n]+E [bo, n])=0 .
6bo(z) 5bo(z)

(3.46)
Q)A,

~
(co)

J ~J
(3.39) With (3.22) for E and (3.44) for E, we obtain

0= [—,+I ]bc (z)+ U' (bo(z))
The contours C, C' and O' —C are shown in Fig. 4 along
with the positions of poles given by A,, (co )=0, which is
equivalent to

y 0(+ E(+))E(+)6

Sb;(z), (3.47)

CO =i E&. (CO ) (3.40)

This condition identifies the physical eigen values
E = —iso to be obtained from the self-consistent DiracJ P
equation, which from (3.31) is

f d y H(iE;x, y)u. (y)=E)ui(x) . (3.41)

Only the positive energies in the interval [O,p] are re-
quired. This is the equation of motion for the valence
quark states.

where the last term provides the valence quark source for
the meson fields. Both the chemical potential p and the
energy eigenvalues E'+' have a functional dependence
upon the meson fields. The dependence of E'+' upon the
meson fields can be obtained from the interaction term of
the Dirac equation (3.41), but due to the self-consistency
evident in the energy dependence of the Hamiltonian ap-
pearing there, this can be ambiguous. The physical E is
the special value of the function s [co, bo ] given by
Ej=a, [eo=iE,bo], where there is both explicit and im-
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(3.48)

where co is the location of the pole whose residue gives
the physical E'+', and Z is the wave-function renormal-
ization constant identified earlier in (3.45). Thus the
above-mentioned ambiguity is eliminated by leaving ~ as
a free variable until after differentiation with respect to
bo(z). From the Dirac equation (3.31), together with the
normalization condition (3.32), we obtain

5E (co)

5bo(z)
5 (ujlH(~, b, )luj &

5bo(x)
(3.49)

(3.50)

In (3.49) we have employed a braket notation for three-
space matrix elements, and in (3.50) the normalization
condition (3.32) and the Hermitian nature of H have been
used to eliminate the terms involving derivatives of the
states. The only term of H which depends on bo is the
linear interaction term y4V. We thus have, for the o. and
~ equations of motion, the explicit forms

0= [—,+m ]o (z)+ U' (o.(z), n (z) }+Q (z) (3.51)

and

plicit dependence upon bo. A reliable procedure is to re-
turn to the contour-integral form for the valence quark
energies, such as (3.39). There one deals with the quanti-
ty A[co, ., bo]=co —iEJ [co,bo], where co is an independent
variable and the bo dependence is simpler. We show in
the Appendix that this procedure yields

5E (co)
E [bo, n]= ~ 8(p E'+—')

5b (z)
'

Zj 5b (z)

and (3.52) contain nonlocal coupling to valence quark
sources, and the quark equation of motion (3.41) contains
a translationally invariant dynamical self-energy. The
scalar self-energy component 8(x —y) also plays the role
of a distributed vertex for meson-quark coupling. The
mechanism for soliton formation reduces to the familiar
one in the local limit B(x —y)~85(x —y). To investi-
gate the soliton mechanism in the presence of distributed
coupling and a dynamical self-energy, we consider here
the valence quark Dirac equation in momentum space
with zero current mass and only a scalar meson field.
This is

[iaaf A (p }+8(p ) ]u (p)

d p p+p+f 'f,B o(p —p')u(p')=0,
(2') 2

(4.1)

where p4=p'4=iE and E is the energy eigenvalue. The
self-energy amplitudes A(p ) and 8(p ) depend upon the
phenomenological gluon propagator employed. An in-
teresting situation is created when the employed gluon
propagator has sufhcient strength in the low-momentum
region to produce an absolutely confining dynamical
mass. ' In that case, there is no solution (discrete or con-
tinuum) to i/A (p )+B(p ) =0 for timelike p (0.
Hence p +M (p )%0, where M(p )=8(p )/A(p ) is
the dynamical mass which prevents quark propagation in
the vacuum. A condensed meson field can modify the
mass and so provide a region where quarks can propagate
so that an energy eigenvalue is possible. Consider the
simplified case where the meson field is spatially con-
stant, so that in momentum space o (p —p')
—+(2~) f o5(p p'), where —o is a dimensionless con-
stant to characterize the strength. Then the eigenvalue
equation (4.1) becomes simply

0=[—,+m ]n.(z)+U' (o(z), n.(z))+Q (z), (3.52)
p +M (p )(1+o ) =0 . (4.2)

where the meson sources provided by valence quarks are
A physical eigenvalue E is obtained if there is a solution
to (4.2) for timelike p

—= E+p (0. This—requires
knowledge of M(p ) in the non-Euclidean region. For
the sake of discussion, consider the behavior
M (p )=C —p shown in Fig. 5 as the upper solid line.
This absolutely confining form obtains in the extreme
limit of an effective gluon propagator that has only a zero
momentum mode, " viz. , g D(q)=(2m) 3C /45 (q).
The strength parameter C can be thought of as a charac-
terization of the gluon condensate. We use C=0.5
GeV corresponding to the strength of the dynamical
mass obtained from typical numerical solutions' ' of the
Schwinger-Dyson equation (2.22).

In this schematic model, then, the effective dynamical
mass is M(p )=M(p )(I+o') and a scalar meson field
with strength below the vacuum value, i.e., o. &0, leads to
a reduced slope for M (p ). This is illustrated in Fig. 5

by the lower solid line with o. = —
—,'. For p )0, a more

realistic behavior is indicated by the long dashed lines in
Fig. 5 to represent typical results from recent numerical
solutions of the Schwinger-Dyson equation. We are in-
terested only in the timelike region for the present discus-
sion and we take the behavior shown in Fig. 5 to be typi-

X5 —z u, (y)
x+y (3.53)

alld

Q„(z)= g f d x d y u. (x)8( E;x y)i@&r- —
j 17 J

X5 —z u (y).x+y
J (3.54)

In the limit of point coupling where the above function B
is replaced by 85(x—y), the sources reduce to the usual
local form.

IV. SOLITON FORMATION WITH SELF-CONFINING
DYNAMICAL QUARK MASS

The present soliton model departs from standard mod-
els in two main ways. The meson field equations (3.51)

Q (z)= g f d'x d'y u, (x)8( E, ;x y)— —1

j vr
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M {p) {GeV )

For the case considered here, the point coupling limit
produces a 30%%uo change in the constituent mass. In a
realistic finite-range situation similar eff'ects might be ex-
pected for the quark energies. A program of numerical
investigations of this soliton mechanism in the finite-
range case is under way.

V. SUMMARY AND DISCUSSION

—0.25 0

p {GeV )

4 ~ ~ ~ 4 O~
0.25

FIG. 5. The square of the dynamical quark mass is plotted
versus Euclidean p, The upper solid line corresponds to no
dynamical meson field and employs a frequently used schemati-
cal model for the self-energy which is absolutely confining and
described in the text. Distributed coupling to a spatially con-
stant and negative scalar meson field value produces the lower
solid line for the effective mass squared with an intercept indi-
cating physical propagation and a defined energy. The dotted
line obtains in the limit of point coupling as described in the
text. The long dashed lines indicate a behavior more realistic
than that of the schematic model.

M'=C "+ '
1 —(1+cr )

(4.3)

and M, may be considered a constituent mass. The
quark energies in the medium characterized by o. are
given by E (p) =p +M, . With a meson field of finite ex-
tent a number of discrete states of finite extent should be
possible for the valence quarks in a self-consistent way.
The confining dynamical mass should induce a large dis-
tance decay for the quark wave function that is faster
than the characteristic exponential form of constant mass
solutions and a baglike behavior might be expected.

If the point coupling limit is applied to the above uni-
form model, the eff'ective dynamical mass becomes
M(p )~M(p )+Co The beha. vior of M is no longer
linear, and for o. = —

—,', the result is shown by the dotted
line in Fig. 5, where the upper dashed line tail has been
used for M(p ). A physical intercept in the timelike re-
gion occurs for o. (0 and is given by

1
——

~2 —C2 (4.4)
2o

cal. Physical solutions to (4.2) occur for —2(o. (0 at
p = —M, where

In this work we have studied the development of a
chiral quark-meson soliton model in which the meson de-
grees of freedom are composite objects produced from a
previously developed bosonization of the action of the
global color symmetry model of QCD. The only dynami-
cal meson fields that we retain are the o. and ~, and they
include form factors that describe internal structure. We
adopt the approximation of Cahill and Roberts wherein
the scalar portion of the dynamical quark self-energy pro-
vides the quark-meson vertex or form factor for both o.
and w in the limit of zero momentum and exact chiral
symmetry. For the development of a soliton with valence
quark configurations, we depart from previous work
through the use of a chemical-potential constraint to
define the energy functional from the eff'ective action
functional and we retain the nonlocality of the quark-
meson vertex. In this way the valence quark contribu-
tions can be separated from those quark sea contributions
that make up the meson kinetic and potential terms.

Only the lowest (Hartree) level of the loop expansion of
the eff'ective action functional is retained. No attention
has been paid to the topic of spurious center-of-mass
motion which is characteristic of mean-field approxima-
tions. The meson field equations of motion for a mean-
field static soliton are given in Eqs. (3.51)—(3.54). The
source terms due to valence quarks have a nonlocality
due to meson substructure and also contain wave-
function renormalization factors arising from the dynam-
ically generated quark self-energy. Without these ele-
ments, the soliton equations reduce to the form expected
for solitons from a linear sigma model.

Due to the bilocal nature of the employed boson fields,
the dynamical quark mass is translationally invariant and
depends self-consistently upon the quark energy. If the
dynamical mass is self-confining, then solitons with abso-
lute confinement are possible without the assistance of an
additional scalar background field beyond the chiral
partner of the pion. In Sec. IV, we have examined the
Dirac equation for valence states with nonlocal meson
coupling and a crude model for a self-confining dynami-
cal mass. The role of the meson field in providing a re-
gion where quarks can propagate and have a defined en-
ergy eigenvalue is illustrated.

In point coupling relativistic field models of nuclear
matter such as the Walecka model, in which nucleons
interact with scalar o. and vector co mesons, the high-
momentum behavior of quantum baryon loops generates
troublesome instabilities and difticulties with convergence
of techniques such as the loop expansion. An example
is provided by the incorrect singularity structure of the o.

propagator from loop momenta at the nucleon mass
scale. At such short distances the relevant degrees of
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freedom lie outside the assumed elementary hadronic
fields of the model. An alternative strategy is to consider
effective Lagrangians in which the hadronic fields are ac-
countable to some aspects of QCD substructure through
derived distributed vertices. The soliton model for
baryons in terms of quarks and composite mesons that we
consider here may be useful in that regard.

The quantum & field that arises from the qq correla-
tions in the procedure we have adopted is not likely to
correspond closely to the empirical a field employed in
nonchiral nucleon-meson models such as the Walecka
o. —co model. There the 0 mass is required to be in the
range 500—600 MeV for a successful description of the
bulk properties of saturated nuclear matter. As men-
tioned earlier, the chiral cr mass arising from (2.32) is typ-
ically 1 GeV. This is characteristic also of the chiral cr

model description of low-energy mX dynamics. The self-
interactions imposed by U[o, n]to .produce scalar (crier)

correlations appear to provide a net effective scalar field
with the lower mass needed for successful phenomenolo-
gy of the midrange XIV attraction. At this stage we
are concerned with just the formation of a soliton model
for a single nucleon in which the nonlocality
[8(x—y)WB5(x —y)] of meson-quark coupling is in-
cluded. The above considerations will be of concern if
o.X coupling is to be deduced from such a model.
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APPENDIX

We provide here details of the derivation of (3.48) for
the meson source contribution 5E /5bo(z) due to
valence quarks. From (3.21), (3.35), and (3.37), the
valence quark energy functional can be written as

A.
~

(co')
E~ [bo, n ]= —g f e '""ln +pnb . (Al)c 2~ A, .(co)

Here C' —C is the p-dependent contour shown in Fig. 4.
Since from (3.40) and (3.42) we have
A,i(co)=(co—co~)Z~(co, co ) where the pole position is at
co =is (co ), evaluation of (A4) produces

5s (co)
E bo, n = % 8(p E'+')—

5bo(z

Here the integration is along the p-independent contour
C shown in Fig. 4, and we recall that co'=co+i@ and which is the result given in Eq. (3.48) of the text.
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