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Adiabatic time-dependent Hartree-Fock theory with the Skyrme interaction
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A derivation for reducing the adiabatic time-dependent Hartree-Fock theory with the consistency
condition to an efFicacious form, in which the evolution of the single-particle states is given by a
time-dependent Hartree-Fock-like equation while the consistency condition is given by a one-body
equation, is discussed. The density-dependent Skyrme interaction is included in the derivation.

I. INTRODUCTION

The adiabatic time-dependent Hartree-Fock (ATDHF)
theory for the microscopic description of the large-
amplitude collective motions of nuclei, e.g. , fission,
fusion, etc. , has been formulated by Villars, ' by Baranger
and Veneroni, and by Goeke and Reinhard. In Ref. 4,
the formal identity of the approaches was established
while arguing that, for consistent exploitation of the
TDHF variation principle in the adiabatic limit, the
second-order ATDHF equation, in conjunction with the
zeroth- and first-order (Villars) equations, has to be taken
into account. Nonuniqueness ' of Villars equations was
lifted by imposing the consistency condition derived from
the zeroth- and second-order equations via the elimina-
tion of the curvature term. Use of a formal but analytic
operator algebra method then showed that the simul-
taneous fulfillment of Villars equations and the consisten-
cy condition results in a unique path following the bot-
tom of the valley of the many-body potential-energy sur-
face for any adiabatic process. The canonicity condition
completes the above proof regarding the valley by deter-
mining the Lagrange multiplier.

Instead of including an outline of the ATDHF theory
in the state-vector formalism, in Sec. IIA, we give a
short account of the theory in the density-matrix form
for reasons to be understood in the course of this paper.
The one-body form of the ATDHF equations given in
Sec. II A is written, in Sec. II B, in the particle-hole (p-h)
space which is defined as the representation in which the
time-even density matrix is diagona1. The Villars equa-
tions are combined to yield a TDHF-like equation for the
evolution of the single-particle states with respect to the
collective coordinate q. The consistency condition is re-
duced to a one-body form involving only the occupied
(hole) single-particle states. The advantage of this reduc-
tion of the ATDHF equations is that they do not require
the knowledge of the infinite number of unoccupied (par-
ticle) states and thus do not need to be simulated by the
effect of continuum, as has been done in random-phase
approximation (RPA) calculations.

In recent years, the mean-field description of nuclear
dynamics was used by several workers in describing

various nuclear processes. While in Refs. 9—13, the
ATDHF formalism was used, in Refs. 14—16 and 17—20,
the TDHF and constrained HF+ BCS formalism was in-
voked. In the context of the ATDHF formlism, a trun-
cated version of the THDF-like evolution equation de-
rived here was used by Cxoeke et al. ' but they have
not used the consistency condition which should be
fulfilled by the single-particle states during their evolu-
tion according to the TDHF-like equation in order that
the extracted solution is the optimal valley path.

In the mean-field approximation, the effective two-
body interaction used is predominantly density depen-
dent. The Skyrme interaction ' was used in the HF cal-
culations as well as in the TDHF calculations. ' In the
TDHF theory, the Skyrme interaction is included formal-
ly by Engel et al. In Sec. III we give an account of the
coordinate representation of the ATDHF theory with
Skyrme interaction.

Several local densities can be constructed from the
one-body density matrix, the later being a solution to the
TDHF equation and having no specific behavior under
time reversal. A set of these local densities, e.g. , particle
density, kinetic-energy density, spin current tensor, is
even under time reversal while the other set, e.g. , spin
density, momentum density, kinetic-energy density (vec-
tor part), is odd under time reversal. Under the adiabatic
expansion of the (time-mixed) density matrix of the
TDHF equation, it has been shown in Sec. IIIA that,
while the time-even local densities are expanded in even
powers of the adiabaticity parameter p, the time-odd lo-
cal densities are expanded in odd powers of p. In Sec.
IIIB, using these expansions of the local densities, the
collective Hamiltonian is obtained in the classical form in
which the collective mass and the collective potential are
given as algebraic functions of the local densities. In Sec.
III C, following Engel et aI. , the ATDHF equations with
the Skyrme interaction are obtained in the same form of a
TDHF-like evolution equation and a one-body consisten-
cy condition; only the HF Hamiltonian in different orders
ofp is given as a function of the local densities.

Section V contains the conclusions of the present work.
A preliminary version of a part of the present work ap-
peared in a conference report.
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II. ATDHF THEORY
WITH THE CONSISTENCY CONDITION

ment, usually called the canonicity condition, is
fulfilled

A. One-body form of the ATDHF equations Tr[q, —iP]po= 1 . (10)

h =t +Trvp . (2)

Here t is the kinetic-energy operator and v is the two-
body interaction potential. The matrix elements of the
trace are defined as

The time-dependent Hartree-Fock equation in the
density-matrix form is given by'

ip=[h, p],
where the one-body TDHF Hamiltonian h is given by

Here P is a one-body time-odd (p-h) operator defined
through

Expanding the TDHF equation (1) under the adiabatic
decomposition (4) in powers of p gives, respectively, the
zeroth-, first-, and second-order ATDHF equations in the
density-matrix form

(alTruplb &
= g (aalulbP)(/3lpla & . I:Oo po]=o (12)

Here la &, lb &, Ia&, IP& etc. , are the single-particle states
and the parenthesis matrix element of the two-body in-
teraction potential v stands for the usual direct minus ex-
change matrix element.

It is well known ' that the density matrix p appearing
in the TDHF equation (1) does not have any specific be-
havior under time reversal. p(t) contains both time-even
and time-odd components. In the adiabatic approxima-
tion, such a (time-mixed) density matrix is parametrized
as' 4

[O„po]=0, (14)

Oo =ho —kq, (15a)

0, =[ho, Aq]+h, +i P, — (15b)

where the one-body operators Oo, O„and 02 are given
by

p( t) =p(p, q) = exp( ipq )p—o(q)exp(ipq ) . (4)
Oz = —

—,'([[ho, lq], Aq]+2[h, , kq]+hi)
Here po(q) is the time-even density matrix derived from
the time-even Slater determinant @(q), which is
parametrized in terms of the collective coordinate q and
thus satisfies the idempotent condition

po po

)~2 dm

m dq dq
(15c)

The TDHF Hamiltonians h to dN'erent orders of p are
given by

B%q=
~

p=
3p Bq

where the collective Hamiltonian & is given by

(6)

In Eq. (4), p is the small adiabaticity parameter and q is
assumed to be a one-body time-even Hermitian (p-h )

operator. The coordinate q and the adiabaticity parame-
ter p, the later playing the role of conjugate momentum,
should satisfy Hamilton's equations

ho = t +Trvpo,

h, =—h, =Tru [A,q, po],

where

X2
h2=Tru[~q, [~q po]]

2p

(9a)

(9b)

(9c)

(16)
2

&(p, q)= + V(q) .
2m (q)

(7)

ho =t +Trvpo (9a)

Here the collective mass m (q) and the collective poten-
tial V(q) are given by

m '(q) =Trho[[q, po], q]+Tr Tr[q, po]u[q, po],
V( q) =Trt po+ —,

' Tr Trpou po,

where

All these equations given above in the density-matrix
form are the same as those in the state-vector form de-
rived earlier. ' ' The identity of the ATBHF equations
(12)—(14) and those in the state-vector form can easily be
established from well-known results of many-body
matrix elements between determinantal states.

In a manner similar to that followed in Ref. 4, the con-
sistency condition is obtained by eliminating the curva-
ture term dq /dq from Eq. (14) and the equation obtained
by differentiating Eq. (12) with respect to q in the form

Hamilton's equation (6) follows from the TDHF variation
principle provided the following normalization require-

[O„po]=0,
where

(17)
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0, = —
—,'([[ho, kq ],kq ]+2[h „Aq]+h~)

r

dho+—[ho, —iP]+
m dg

too(q)= (& /m) .
1 d 2

2A, dq

—A.coo(q)q,

(19)

B. Representation in p-h space

—iP =c (q) [Poe(q)(1 —Po)+(1 —Po)e(q)Po] .

In deriving Eq. (21), Eq. (20) has been used. Here,

e(q)=[ho(1 2po)ho po]+h

h i
=Trv [ho,po],

c (q) =m (q)/A. (q) .

(21)

(22)

(23)

(24)

The evolution of the time-even density matrix po is
thus given by Eq. (11) where the evolution operator iP—
is given in Eq. (21) in terms of known quantities.

The evolution of the occupied single-particle states
i/i, (q) ) are therefore given by

lych(q) & =c(q)(1—po)e(q) lych(q) &

Bq

The similarity of the ATDHF evolution equation (25) or
(ll) with the TDHF equation (1) is readily seen; only the
TDHF evolution operator h should now be replaced by

iP which —is given in Eq. (21).
The consistency condition (17), after the substitution of

the operators A,q and —iP from Eqs. (20) and (21), respec-
tively, reduces to the one-body form

[R,po] =0,
where the consistency operator R is given by

R =[ho, e)+h, —coo(q)ho .

Here,

(26)

The ATDHF equations (12), (13), and (17) should be
solved in a representation in which the time-even density
matrix po(q) is diagonal. In this section we cast the Vil-
lars equations (12) and (13) and the consistency condition
(17) in the said representation.

Equations (12) and (13) represent the fact that the p-h
and h-p matrix elements of the operators A,q and

i (A,—/m)P are equal to those of the operators ho and
e = [ho, kq ]+h „respectively.

Since, by definition, the p-p and h-h matrix elements of
Q and P vanish, we have

A,q =(1 po)hopo+po" o(1 po)

(29)

lych(qo+~q)

& =exp[ '~qP(qo)]lko(qo) & .

We note here that the prescription

(qo+5q) &
= [1 '5qP(qo)]lgh(qo) &

(30)

(30a)

is a first-order truncation of Eq. (30). In contrast to Eq.
(30) or (25), the scalar product of the single-particle states
during the evolution with q in accordance with Eq. (30a)
is not preserved. Thus, initializing with an orthonormal
set Ph(qo)), the evolved set lych(qo+5q)) does not
remain orthogonal. Using the prescription (30a), Goeke
et al. ' have orthogonalized the evolved set

i/i, (qo+6q)) to obtain a new set lych(qo+5q)). With
the use of the new set i/i, (qo+5q) ), the collective mass
and collective potential is extracted which, in turn, gives
the physical observables like fusion cross section, etc. , in
the Wentzel-Kramers-Brillouin (WKB) approximation.
In the context of the Schmidt orthogonalization pro-
cedure, we note here that, from n linearly independent
vectors, one can construct at least n sets of possible
orthonormalized vectors depending on the choice of the
vector (from the linearized set) used to initialize the or-
thogonalization procedure. This fact may raise the con-
fusion that the ATDHF solutions, i.e., Ph obtained in
Refs. 9—12, are nonunique and, hence, the results ob-
tained in these works are ambiguous. However, rotation
of hole states among themselves without invoking the
particle states leaves the density-matrix invariant. Since,
in m(q) and V(q), the single-particle states enter only
through the convolusion of relevant operators with the
density matrix, the outcome of the theory is the same for
all such sets of states Ph that are related to each other
through rotations among themselves.

III. COORDINATE REPRESENTATION
WITH SKYRME INTERACTION

A. Adiabatic expansions of the local densities

Note from Eqs. (21) and (27) that the evolution opera-
tor —ip and the consistency operator R do not require
the knowledge of an infinite number of particle states.

We thus have a representation of the ATDHF equa-
tions in which the occupied single-particle states evolve
in accordance with the TDHF-like equation (25) so that
the numerical methods' of solving the TDHF equation
can be used here with minor modifications. Further, in
order to obtain the valley solution from the infinite num-
ber of solutions of the Villars equations (12) and (13) or,
equivalently, Eq. (25), we are required to fulfill a one-
body consistency condition (29).

The set of single-particle states i/i, (qo+5q)) at
q =qo+5q in terms of the initial state i/i, (qo) ) at q =qo,
following Eq. (25), is given by

hq =Tru [e po]

h2=Tru[(1 —po)hopo+poho(1 —po), [ho po]] .

The p-h matrix elements of Eq. (26) give

(28b)

(28c)

The Slater determinantal state
l
%(t) ) comprised of the

single-particle states lych(t) ), which are the solutions to
the TDHF equation (1), does not have any specific behav-
ior under time reversal. The properties of the (time-
mixed) density matrix p(t) of such single-particle states
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p(r, r') = g p(rcr, r'cv), (32a)

s(r, r')= g p(ro, r'o')(cv'~(cv}o ),
o, o

(32b)

and p(ro, r'o') is t.he coordinate representation of the di-
agonal part in the isospin space of p. These scalar p(r, r')
and vector s (r, r') parts have the time-reversal properties

p (r, r')=p(r', r),
s (r, r')= s(r', r)—.

(33a)

(33b)

p(r, r') and s(r, r') can be used to define real local densi-
ties which have specific behavior under time reversal.
They are the following:

(i) Particle density.

p(r)=p(r, r) .

(ii) Kinetic-energy density,

r(r)=[V V'p(r, r')]„

(iii) Spin current tensor,

(34a)

(34b)

J (r)= . [(V„V„')s (—v,r')]„—
2l

(iv) Spin density,

s(r)=s(r, r) .

(v) Momentum density,

(34c)

(35a)

~ P& (t) ) have been studied by Engel et al.
Let us define the scalar part p(r, r') and the vector part

s(r, r'),

p(ro, r'o') = ,' [p(—r,r')+5 .+ (cv ~o ~o. ') s(r, r')], (31)

where

s' '(r)=0 (40)

However, since p, and p2 are not density operators con-
structed from Slater determinants and thus do not satisfy
the idempotency condition, analogous local densities can-
not be defined. Nevertheless, since Eq. (32) is completely
general, the coordinate representations p"'(rcv, r'cv') and

p
' '(ro, v'o. ') of p( and p2 can be used to define the scalar

and vector parts P"'(r, r'), s'"(r, r') and p' '(r, r'),
s' '(r, r') which do not have the time-reversal properties
(33). Now, using these scalar and vector parts, the local
functions p"'(r), s'"(r) and p' '(r), s' '(r) can be con-
structed but they are not densities and do not have the
properties (38). However, in Appendix A we show, by
using time-reversal properties of p, and p2, that

p ( i)( v) —0

s(2)( v) —0

(41a)

(41b)

(time-mixed) density matrix p(t) and they follow from the
construction (32).

In the adiabatic expansion of the (time-mixed) density
matrix p(t) we have

p(rcv, v'o ') = p' )(rcr, r'cv')+pP' "(rcv, r'cr')

+p p
( '(ro, r'o'). + .

Here p' '(ro, r'cr') is the coordinate representation of
the time-even density matrix po while p

' "(r cr, r 'cv' )

and p
' '( rcv, r'o') are those of the time-odd oper-

ator p, = [A, qp o] and the time-even operator
p2= [[Aq,po], po], respectively.

The time-even density matrix po, which, by Eq. (5), is
derived from the time-even Slater determinant ~4&(q)),
can be used to define the local densities p' '(r) and s' '(r)
and it follows from the construction (32) that

j(r)= —.[(V —V')p(v, v') ]„=„.1

E

(35b)
Utilizing Eqs. (40) and (41) in the adiabatic expansions

of the local densities p(r) and s(r), which are obtained
from the expansion (39) of p(rcr, r', o'), we have

(vi) Kinetic-energy density (vector part)

T(r) = [V.V"s (r, r') ]„ (35c)

p(v) =p' '(v)+p'p '"(v)+

s(r)=ps("(r)+p s( '(r)+ .
(42a)

(42b)

Let us introduce the compact notation

p(v)
p(r) = 7-(r)

J(r)
s(r),

s(v) = j(v)
T(r)

(36)

(37)

Thus, under the adiabatic expansion, the time-even local
densities are expressed in even powers of p while the
time-odd local densities are expressed in odd powers ofp.

B. The collective Harniltonian

The Skyrme interaction ' consists of a two-body
term U' ' and a three-body term v' ', which, in the coordi-
nate space, are

It follows from Eqs. (33) that the local densities (36) are
time even, U' '(r(, rz)= t (lo+x PO)5(r, —rz)

p' '(v)=p(v),

while the local densities (37) are time odd,

s (r) = —s(r) .

(38a)

(38b)

+ ,' t, [5(r, —rz)IC +K' 5(r, ——r2) ]

+ t2X'. 5(r, —r2)E'

+i Vso(cv(+(72)K'X5(r, —r2)K, (43a)

The time-reversal properties (38) are obeyed by a general U' '(r„r2, r3) t35(r, —r2)5(rz —r3)
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Here P =
—,'(1+a,. cr2) is the spin-exchange operator,

K = (1/2i)( V, —V2) operates on the left, and
K'= —(1/2i)(Vi —Vz) operates on the right.

The many-body Hamiltonian is then given by

q =Trdpo ~

which gives

Tr[d, —iP]Po=0 .

(51)

(52)

h

i &j i&j&k
(44)

=c '(q) =Tr[d, e ]po, (53)

Multiplying Eq. (52) by c '(q), we have, using Eq. (21),

The expectation value of H in the TDHF Slater deter-
minantal state ~'Il & has been derived in Ref. 24. It suffices
to note here that one can write

(45)

where the Hamiltonian density functional &(r) is given
in Appendix B.

It is easily seen that, under the adiabatic expansions
(42), the total energy reduces to the classical form

2

E =&(p, q) = + v(q),
2m (q)

(46)

where the collective mass m (q) and collective potential
V(q) are given by

V(q)= f d r V(q, r), (47a)

m (q)= f d r JR(q, r) . (47b)

Here the potential density V(q, r) and the collective mass
density At(q, r) are given in Appendix B.

C. The ATDHF equations

f [SE—n&e~i a/ar )e&]dr =0. (49)

Variation of the (time-mixed) single-particle states
gk(rcr) with the adiabatic decomposition (4) gives s the
ATDHF equations in the form of Eqs. (12)—(14) in which
the coordinate representation of ho, h &, and h2 are given
in Appendix C. Note here that the result could also be
obtained from the relation

The variation of the binding energy E which, for the
Skyrme interaction (43), can be written, following Ref.
24, as

5F- = g f d r g [ 5/k(r, o )h (r)gk(r, cr )
o.q k

5/k(r, a)h (r—)gk(r, cr)], . (48)

where h (r) has been derived in Ref. 24 and, for complete-
ness, the expression is repeated here in Appendix C.

The TDHF variation principle is given by' '

where the last equality is obtained by using the cyclic
property of the trace. The choice of the parameter q ex-
pectedly determines the scaling of the single-particle
states during their evolution with q. In addition, we have
another normalization condition namely, the canonicity
condition (10). Substituting p and Q from Eqs. (20) and
(21) in Eq. (10), we have

Trpo[e(1 po)ho ho(1 po)e]po . (54)

V. CONCLUSIONS

In this article, the ATDHF equations are reduced to a
computationally amenable form in which the evolution of
the single-particle states is given by a TDHF-like equa-
tion while the consistency condition is given by a one-
body equation. The density-dependent two-body interac-
tion is included in the derivation. Numerical calculation
of fission event of Be following the method described in
the text is in progress and will be reported elsewhere.

The author thanks Prof. M. K. Pal, Prof. K. Goeke,
Prof. D. Pal, Prof. M. Veneroni, Prof. H. Flocard, Prof.
D. Vautherin, and Prof. G. DoDang for useful discus-
sions and acknowledges the involvement of Prof. M. K.
Pal in the early stage of the work.

Combining Eqs. (53}and (54) we obtain the parameters A,

and m separately while the potential V(q) is obtained
directly from Eq. (8b) or (B2a).

Though given a nonsingular initial condition, the
TDHF-like equation can be solved in a manner similar to
those used in TDHF calculations, ' the method of
fulfillment of the consistency condition is not clear. A
method to achieve the optimal solution of the Villars
equations with the use of the consistency check derived in
earlier sections and with the HF configuration as the ini-
tial state has recently been proposed in Ref. 30 where the
method is successfully applied to explore the valley path
in the soluble three-level model.

5E =Trhp

with the use of Eqs. (42}.

IV. EVALUATION OF THE OPTIMAL PATH

APPENDIX A

The time-reversed local densities p (r) and s (r) con-
structed from the time-reversed partner p of p satisfy
Eqs. (38) and thus,

The evaluation of the single-particle states ~PI, (q) & is
given by Eq. (25) in which the evolution operator e(q) is
given in Eq. (22). The choice of q is expressed in terms of
the measuring operator d through'

p (r)=p(r)
=p' '( )+pp'"( )+p'p "( )+

s (r)= —s(r)= —ps'"(r) —p s' '(r)

(Ala)
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where Eq. (40) has been used. Let p "'(r), s '"(r) and

p ' '(r), s ' '(r) denote the local functions constructed
from (32) with the time-reversed partners p) and p 2 of p)
and p2, respectively. The local densities p (r) and s (r)
can also be expanded as

p (r)=p' '(r)+pp '"(r)+p p
' '(r)+, (A2a)

T(1)( i) (1)(

s "'(r, r') = s"—'(r, r'),
T(2)( i) (2)( I)

s""(r,r') =s"'(r, r') .

(A4a)

(A4b)

s '(r) =ps '"(r)+p s ' '(r)+ (A2b)

Comparing Eqs. (Al) and (A2), we find that they are con-
sistent if and only if

P
—T(1)( )

—(1)( ) T(1)(
) (1)( )

p
T ( 2 )

( r ) p ( 2 )
( «) s T ( 2 )

( r ) s ( 2 )
( r )

(A3a)

(A3b)

However, since p, is time odd and p2 is time even, it fol-
lows from the definition (32) that

P '"(r)= —P"'(r) s "'(r)= —s'"(r),

p )(r) —p( )(r) sT(2)( ) (2)(
)

(A5a)

(Asb)

Comparing Eqs. (A3) and (A5), it follows that they are
consistent if and only if

p (r)=0, s (r)=0 . (A6)

The local functions constructed from p] and p2 therefore
have the time-reversal property

APPENDIX 8

As derived in Ref. 24, the Hamiltonian density functional &(r) introduced in Eq. (45) is given by

&(r)= T+ —,'t()[(1+—,'x() )p —(x()+—,
' )(p +p„)+—,'x()s —

—,'(s„+s )]2'
+ 4(t) +t2)(PT j )+ ~(t2 t)) g (Pqrq jq+sq'Tq Jq)+ )6(t2 3t))PV P

q

+ —,', (t2+3t, ) g(P V P +s V' s ) ——,
' Vso g (1+5 )(s VXj +P V J )

qq

+ ,'t3[pp(p„—s„)+—p„(p),—s), )] . (81)

In the adiabatic approximation, the total energy reduces to the classical form (46) where the potential-energy density
V(q, r) and the mass density JM, (q, r) introduced in Eqs. (47) are given by

V(q, r)= T' '+ —'t()[(1+—'x())p' ' —(x()+—')(p' ' +p'„' )]+—,'(t, +t2)p

( (t 3t )p(0)V2 ( )+ ) (t +3t ) ~ (0)V2 (0)+ ) (t t ) ~ (p(0)T(0) J (0))2
2 1 P P pp 2 1 ~pq Pq 8 2 1 ~ Pq q q

q q

qq

2

~(q «)= T"'+-' Oxos'" —
—.'to(s'" + .'" ) ——,'(t)+t»j'" + —,', (t2+3tl ) X2'

)(t t )y(s(1)T(1)j(1)))yy(1+$)s(1)VXj(1))t (p(0)s(1)+p(0)s(1))
q qq'

+ 1 (t +t )[p(0)T(2)+p(2)T(0)]+ ) (t 3t )(p(0)V2 (2)+ (2)V2p(0))

+ )
( t +3t ) y (p(0)V2P(2)+p(2)V2P(0) )+ 1 (t t ) y (p(0)&(2)+p(2)&(0) )

q q

qq'

(82a)

(82b)

The variation of the energy functional &(r) gives 5E in the form of Eq. (48) where the TDHF Hamiltonian h is given
b 24

h 1
h (r)= —V V+ U +—(Vo.B +Il .Vo ) —V (o"C )V'+o" $ +—(V'.I +I V),

2m*(r) q 2i
q

(C 1)

where m *, U, 8, C, g, and Iq are given in Ref. 24 [see Eqs. (82)—(87) of Ref. 24].
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Substituting the expansion

Pk(r, o )= g f d r'(rcr exp(ipq) r'o')P&(r'o'). (C2)

into Eq. (48) and remembering the fact that, in the variation of gk(rcr ), only the variation of Pt, (r, o ) automatically in-
cludes' the variation of q one obtains up to second-order in p,

oF- = g f d rid r25&j*, (r~, o i) ho(r)5(r& —r2)+ip(ricri~[ho, q]+hi ~rzcr2)

2 2+, &ri~il[[ho q] q]+2[hi tq]+h2lr2o~& yk(r„~2)+H. c. ,2!

where

2

h)(r)= —V. V+U' '(r)+ —.[V TtB ' '(r)+B ' '(r) Vo],
2m "'*(r)Plq

(&)
h f(r)= —[V I'"(r)+I"'(r) V] —V (o.C"')V+ $ o

2l
q

(C4a)

(C4b)

2

h )(r)= —V V+U' '+ [Vo B—'.'(r)+B ' '(r) Vcr],2m' '*(r) q

where the zeroth-, first-, and second-order quantities m' ' '*, U' ' ', B ' ' ', I"', C"', g"' are obtained by expanding
m *, U, B, I, C, and g in powers ofp with the use of Eqs. (42).
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