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Particle number Auctuations in the moment of inertia
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The nonphysical eAects due to the false components introduced by the nonconservation of the
particle number in the BCS states are eliminated in the theoretical values of the moment of inertia
calculated by the microscopic cranking model. The states of the system are obtained by successive
projections of the BCS states in the occupation number space. The moment of inertia appears then
as a limit of a rapidly convergent sequence. The errors due to this false component have been nu-

merically estimated and appear to be important both in the BCS states and in the matrix elements of
the angular momentum. The predicted values of the moment of inertia satisfactorily reproduc~~ the
experimental data over a large number of nuclei within rare-earth and actinide regions with
discrepancies ranging from 0.1% to 8%.

I. INTRODUCTION

Within the framework of the BCS theory, the pairing
correlation effects, which are thoroughly taken into ac-
count, play a major role in the understanding of the
different types of collective motion of the nucleus. Since
the early works of Belyaev' on the moment of inertia for
the rotation and of Bes on the inertia parameters associ-
ated to the vibrations, the cranking model proposed by
Inglis has had a major impact for such a description.
Since then, many corrections to the cranking model relat-
ed to the moment of inertia have been proposed. The
effect of the interaction between quasiparticles has been
studied following Migdal's theory for finite Fermi sys-
tems. With a formalism based on Green's functions, this
approach allows the calculation of the moment of inertia
while taking into account the reaction of the moment to
the mean field to the collective rotational motion. This
can be done by the introduction of the effective mass aris-
ing from the dependence of the speed of the single-
particle model. Similar results have been rederived by
Belyaev using the formalism of self-consistent field and
confirmed numerically using the generalized Nilsson po-
tential. The shortcomings of the cranking model have
been revealed by Thouless and Valatin using the
Hartree-Fock self-consistent method. However, the
high number of matrix elements of the two-body interac-
tion to be evaluated for the number of particles of the

system makes such a calculation very impractical and ex-
pensive, particularly for nonlight nuclei. This method
has been reviewed and generalized by Kunz and Nix and
the general equation of the cranking model, taking into
account the linear term of the collective motion, has been
obtained from a perturbative treatment of the dependent
Hartree-Pock model.

However, the systematic study of moments of inertia
using this method can only be done with the help of a
very involved computation. Recently, Schaaser and
Brink developed a new analytical formalism of the mo-
ment of inertia of the P and y' bands by using the intrinsic

states of the interacting boson model (IBM). This model,
very close to that of Bohr and Mottelson, ' has been ap-
plied with success by Mishra and Mantri" to the numeri-
cal calculation of the moment of the inertia of the ground
states of many rare-earth and actinide nuclei. However,
this method is not free from phenomenology, and the
good agreement obtained seems to be due to a rather ex-
cessive parametrization of the Hamiltonian of the model.

The different alternatives to the cranking model have
not yet given the expected results for the moment of iner-
tia, as the disagreements between theory and experiments
remain important despite the different attempts to reduce
them. Indeed, the theoretical values calculated since the
cranking model has been developed' for the ground
states of the rare-earth and actinide nuclei are systemati-
cally smaller than the experimental values by a factor of
10—40%%uo. Moreover, neither the use of a realistic mean
field as that of Woods and Saxon combined with a pairing
strength which depends on the density of states in the vi-

cinity of the Fermi sea' nor the use of Nilsson's mean
field with a pairing strength which depends on the isospin
and which may or may not be a function of the parameter
describing the deformation of the nucleus' '" can reduce
the disagreement between theory and experiment. This
disagreement is certainly due to the nonconservation of
the number of particles in the BCS wave functions. In
fact, it has been shown that this nonconservation implies
some nonphysical effects such as the existence of a criti-
cal value for the pairing strength under which there exist
only trivial solutions of the BCS equations'" and the re-
versal of the energy spectrum in the calculations of the
Hartree-Fock-Bogoliubov (HFB) type with a projection
on the eigenstates of the moment of inertia. '"' As is
well established, the fluctuations of the number of parti-
cles affect the electromagnetic' and beta transitions,
which are strongly dependent on the wave functions. In
parallel, the moment of inertia is very sensitive to the
wave functions, and as a result may also be affected by
the fIuctuations of the number of particles. Up to recent-
ly, very few authors have taken into account the conser-
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the conservation of the number of particles in the calcula-
tions of the moment of inertia. By using Bayman's wave
functions, ' which are generated from BCS wave func-
tions, Rich has evaluated the moment of inertia of five
rare-earth nuclei. This method allows the approximate
cancellation of the major Auctuations in the number of
particles and is reduced, in its simplest form, to the usual
BCS approximation. In a later development, Frauen-
dorf studied the Coriolis antipairing eftect in even-even
rare-earth nuclei. By cancellation of the fluctuation in
the number of particles, Frauendorf confirmed the experi-
mental results on the back bending of the rnornent of in-
ertia. He also established that only the cancellation of
the nonphysical components of the BCS wave functions
allows one to predict the angular momentum value for
which the nucleus makes a transition from superAuid to
normal one.

In this paper we propose an analytical and numerical
study of the eAects of nonconservation of the number of
particles in the BCS wave functions on the moment of in-
ertia. The method of projection of the BCS states on the
occupation number space is recalled in Sec. II; the pro-
jected states are then calculated and their corresponding
energies evaluated. Since the projection destroys the
orthonormalization of the BCS states, a new basis of
orthonormal states which conserves the number of parti-
cles and which may represent the states of the system is
built in Sec. III. Furthermore, the moment of inertia is
also given. Section IV deals with the numerical results
obtained. A comparison of these results with both the
experimental and numerical ones obtained by diA'erent
methods is also given.

where the parameters u and U represent the occupation
and in occupation amplitudes of the state ~v).

In the quasiparticle representation, defined with the
help of the Bogoliubov-Valatin transformation, the state
(2) represents the quasiparticle vacuum whose the
creation and annihilation operators a' and a are such
that a,~P) =0 for any v. The excited states of the system
are described by an even number of quasiparticles. How-
ever, these BCS states are not eigenstates of particle-
number operator,

X= g (a,a, +ata ),
v)0

as only the mean value of this operator is supposed to be
constant and equal to the real number of particles. The
quasiparticle states describe rather a superposition of
states of nuclei of neighboring masses. These diAer by an
even number of nucleons and correspond to the same
value of the chemical potential X, as well as the same
half-width of the gap A.

Equation (2) shows clearly that the quasiparticles de-
scribe a superposition of states with 0, 2, 4, . . . , 2Q parti-
cles, where 0 is the total degeneracy of the system.

It has been shown that the sequence of states corre-
sponding to J' pairs of paired particles,

g gkzk 'g (a.+z U, a'-,a-. )I0&+c.c.
jc =0 v&0

II. STRICT CONSERVATION
OF THE NUMBER OF PARTICLES

For the sake of coherence, we briefly recall the princi-
ple of the projection method previously developed. In
particular, expressions for the projected states and their
energies are derived.

A. Projected wave functions

where C„ is a normalization factor and

zk =exp[ik~/(n+1) j,
1 if 0&k (n+1,

if k =0 or k =n+1

(4)

8= g E,(a'a +a a, )
—6 g a a a a„,

~&0 1',P) 0

where the pairing strength G is supposed to be constant
and the state ~v) =a ~0) is the time reverse of the state

~

v ) = a „~0) and of energy e . In Eq. (1) the time-reversal
invariance of H is taken into account, which implies that

In BCS theory the fundamental state is given by

~6) = Q (u, , +v, ,a„a "i)~0), (z)

In the usual BCS theory, the intrinsic motion of 2P
paired particles (neutrons or protons) is described by the
intrinsic Hamiltonian

converges toward the projected BCS (PBCS) state or to-
ward the fixed BCS (FBCS) state. This convergence de-
pends on whether the variational parameters u and U

are evaluated before or after the projection. The relative-
ly high speed at which this convergence occurs, as shown
in Sec. IV, is explained by the fact that the state (4) has
only components which correspond to 2P+21(n + 1)
pairs, where I is any integer. In all that follows, we
denote our discrete method of projection from the usual
ones by SBCS.

In the same manner, the fluctuations of the number of
nucleons can be easily dropped out of the states with any
number of quasiparticles. As the moment of inertia is
writ ten in terms of matrix elements of the angular
momentum operator, the only projected states having a
nonzero contribution are
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n+1
l(v/M)„) =CP g g/, zk

' "a a„Q (u +z/, v, a/a-. )I0)+c.c.
/& =0 j&(v,p)

n+1
l(vv/L/g)„) =C„"" g g/z/,

' "(—v +z/, u, a,a )a„a„g (u +.zkv a a-. )I0)+c.c.
/& =0 jX(v,p, 7/)

(5a)

(5b)

and in general all states with an even number of paired quasiparticles in the states (Iv, ), Iv, ) ), . . . , ( Ivk ), Ivt, ) ) except
in the states ( I/u ), I g ) ):

n+1 S
Vl '''VP'g

l(v/v/, . . . , v, v„pg). & =C. ' '""
& g/, z/& g ( v/+zku/a/'a

/& =0 /=1

Vi
'' V P'g

where the coefficients C„",C„"",C„' ' are normalization factors.

JAVA). . . , V

(uj +z/, v~aj a )IO. ) -+. c.c. (Sc)

B. Energies of the projected states

It may appear at erst glance that it is difficult to evaluate the matrix elements of physical operators with the help of
Eqs. (4) and (5). However, in general these observables commute with the number of particles operator, and further-
more their matrix elements exist only between those components with the same number of particles.

As such, the calculations in the quasiparticle representation are simplified. It is well known that any ketlg) of the
Hilbert space of the states of a physical system described within the BCS method allows the following:

IP&=IN&&Pig&+ &all@&&/la. lg&+-,' &atatl@&&@la„-a.ly&+ .

It appears clearly that for zero and two paired quasiparticles, respectively, we have

n+1
lg) =C„g gz„Q (u, +zv ) 1+(z„—1)g A, + . +cc. Ig),

/& =0 (u, +z&v, )
(6a)

n+1 Qj UJ
I(vM)„) =C /' g g/, z/,

' " Q (u +z/, v ) 1+(zk —1) g A++ . +c c. a a lg), (6b)
k =0 jW(,p) jW(,p) ~j /& Uj

expressions in which A, =a e is the pair creation operator for paired quasiparticles invariant under time reversal. It
is shown below that it is unnecessary to write explicitly the development of the states (5b) and, in general, the states (5c)
or their energies because they do not contribute to the moment of inertia.

The Hamiltonian H and its canonical transform in the quasiparticle representation connects only those components
with the same number of pairs and keeps the number of nucleons invariant. As a result,

E.'= &@.IHIP'. & =2(n+1)C. &@.I~I@&,

E„"=&(vp)„IHI(vp)„) = 2( n+1) C„" &(v/M)„ IHa, a Ig) .

(7a)

(7b)

Using (6a) and (6b) allows (7) to become

n+1
E„=E +G g u u„v„v 2(n+1)C„Q g/, z/, (zk —1) g (u +z/, v. )+c.c.

y& 9 k=0 i&(r n)

n+1
E„"=E+E +E„+G g u u„v„v 2(n+1)(C„'") g g/zk

' "(z/, —1) g (u +z/, v )+c.c.
y, 7/X(v, p) /& =0 j&(v,p)

and the real part of (7) gives

n+1
E„=EO—4G g u~u„v„v~ 4(n+1)C„Q g'/, sin x/, Rg"cosset/j"

9 /& =0

n+1
E„""=Eo+E,+E„—4G g u u„v„v 4(n+1)(C„'") g gksin (x/, RP~")cos(g/, "r"+2x/, )

y, q&(v, p) /& =0

where Eo and E are the BCS and quasiparticle energies, respectively, given by

EO=2 g (E —A, —Gv„)v —6 IG,
v&0

E,=[(E,—A. —Gv ) +5 ]', A=G g u„v, .
v)0

(Sa)

(Sb)
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The normalization factors C, and C,"are given by
n+1

4(n+1)C„Q jkRkcos)(/k =1,
k=0

n+1
4(n. +1)(C„'") g jkR/, /"cos(g/'/" +2x„)=1 .

k=0

In Eqs. (8) and (9) we have chosen

y =2u v, $ =u2 —v2,

k=k /[2(n+1)j, Rk= Qp,„,

(9a)

(9b)

i/i/,
= y y k +(0 2P )x—/„p, /,

=(1—y,sin xk )'
k

tang k= —5 tanx/„ lP kl ~/2,
VI ''V(

Rk
VX

V 1 ) ' Vl

Pvk ~

VXV)). . . ) V(

/() „+(fl 2P+2l—)xk .

Although they are complicated forms, expressions (8) and (9) can be evaluated quite easily numerically.

III. MOMENT OF INERTIA

A. Orthonormalization of the projected BCS states

States (4) and (5), although they are normalized to unity, cannot be used to calculate the moment of inertia for they
are not orthogonal and therefore cannot describe the excited states of the system. A basis of orthogonal states which
keeps the number of particles strictly invariant can be obtained following the Schmidt procedure. The first two states of
such a basis are the orthogonal states (4) and (5a). The projected state which is orthogonal to both (4) and (5a) and built
from (5b) can be written as

1 (vvpg)„& = N( vol) l(vvpg)„& —lg„& & P„ l(vvp)1)„& —g l(kl )„&& (kl )„l(vvpg)„&
kl

(10a)

where N„(v, p, q) is a normalization factor.
In general, the orthonormal state having (2s+2) quasiparticles of which 2s are paired is obtained from the re-

currence relation

, v, v, p l)„&/

v, pn) l(v/vi, , v, v,pg). &
—Iy. & & q. I(v)v(, . . . , v, v, pg). &

L

—g l(kl )„&& (kl )„l(v, v„. . . , v, v, pg)„&
kl

s —1

l(t, t, , . . . , t„t„kl )„& &(/t, t, , . . . , t„t„kl )„l(v, v„. . . , v, v, pg)„&
r=l t&

. t kl
(10b)

for s =1,2, . . . .
In fact, it is not necessary to write explicitly the states of this new basis because the only ones that have a nonzero

contribution to the moment of inertia are the projected states with two quasiparticles. Indeed, as

C„
"„, &kIJ;l»~gU/l(kl)„&, /=x or z,

where J, is the i component of the angular momentum operator, and as the angular momentum keeps the number of
particles invariant, we have

&g. IJ;l(vp). & =(c„/cp)& viz, lp&(t/. U, —&„U.) . (12)
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Those relations show that the projection in the occupation number space changes the matrix elements of J, in the quasi-
particle representation by the multiplying factor C, /C„. As for the other projected states, their contribution to the
moment of inertia is zero. For example, for the state with four quasiparticles, we have

& &„ I/, l(vvpg)„& =N„(vpq) & @„IJ, I(vvprl)„& —g & @„IJ, l(kl)„& & (kl)„ l(vvprj)„&
'

ktt

=2(n +1)C„'""N„(vprI) & tttI I, I(vvpq)„& —g & tel I, lkl & & kl I(vvprI)„&
ktt

and using the closure relation, it can easily be verified that

& tt'tl J, I(vvpg)„& = g & pl~, I
k» & ki l(vvpg)„&,

ktt

and so

& q„ I J, l(vvpq)„& =o .

In general, for an even number of quasiparticle states, we still have

v. v.pV)

=N. (v&, . . . , v, prl) & &. IJ l(v&v& v v pal). &
—& &&. IJ l(kl ). &&(kl). l(v&v&

. v, v, prl). & =O .
k1

B. Theoretical relation of the moment of inertia IV. NUMERICAL RESULTS: DISCUSSION

The cranking method allows the formulation of the
moment of inertia without the fluctuation of the number
of particles using the orthonormalized states previously
developed. Let Oz be the symmetry axis for the nucleus
supposed to be adiabatically cranked around the Ox axis.
The moment of inertia is given by

I & tt't„ I/„ l(vp, ), & I

~vp @0

and with the help of (12), we get

In order to show the numerical importance of the non-
physical effects contained in the BCS wave functions, the
discrete projection method developed previously (see
Secs. II and III) is apphed to the rare-earth and actinide
nuclei in their ground and fission isometric states. The
energies and single-particle states of the Woods-Saxon
mean field explicitly dependent on the nuclear shape have
been chosen for this work. The elongation and neck pa-

1.0

g2J=
2

' C„' I&vl J. lp, &I'
(u v —u UÃ)C~P ~~@ ~Q v P, P, 1~

/1 n

(13b)

0.8

where the & vl I lp & are the matrix elements in the
particle-state representation of the operator J„.

The energies of the states of the system in the BCS
method are modified because of the strict conservation of
the number of particles. In addition to the usual reduc-
tion factor (u, u —u„v,, ) that is introduced in the matrix
element & vl I lp. & by the BCS method, the cancellation of
the false components can be seen by the introduction of a
supplementary factor (C„/C„"). This factor is the ratio
of the overlap integral calculated between the wave func-
tions written with the BCS and SBCS methods for two
quasiparticles over that of the same for zero quasiparti-
cles. Regarding the energies, as can be noted from (8),
the fluctuation of the number of particles implies a
second-order approximation which can be neglected in a
first approximation. However, this fluctuation can modi-
fy considerably the matrix elements of J and hence the
values of the moment of inertia.

A 04t: rP

V

0.8

0.6

0.4
1.0 1.2 1.4 1.6

FICi. 1. Variation of the overlap integral of the BCS and pro-
jected wave functions versus the elongation parameter c for the
fundamental state of the {a) proton and Ib) neutron systems of
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TABLE I. Evolution of the energy difference of the zero quasiparticle projected states and BCS as well as the moment of inertia of
neutrons, protons, and nucleus systems versus the extraction degree n of the false components for ' U and Pu in their fundamental

and isomeric states.

236U

BCS
Fundamental state

1 2 BCS
Isomeric state

1 3 4

Eo —E
(4)„,„,
(4)p„.,
cf

0
81.38
37.79

119.18

—0.59
92.90
39.23

132.13

—1.23
95.01
40.26

135.27

—1.24
95.03
40.26

135.29

0
169.31
74.32

243.63

—0.85
214.17
70.09

284.26

—1.91
218.95
69.14

288.10

—2.11
218.95

240p

E, —E0
(4)„,„,
(4)p„.,
cy

0
73.99
42.60

116.54

—0.05
90.33
42.54

132.87

—2.06
91.97
43.84

135.81

—2.61
92.46
44.06

136.52

—2.63
92.47

136.53

0
171.52
80.88

252.40

—0.17
201.60

84.71
286.31

—0.36
210.84

88.63
299.47

—0.67
210.87

88.64
299.52

rameters of the nucleus c and h, respectively, are those
obtained in minimizing the total deformation energy fol-
lowing the Strutinsky prescription. For the rare-earth
nuclei, those parameters have been calculated using the
deformation parameters ez and E4 (see Nilsson ). The re-
lation between c and h, and c2 and c4, is obtained from
the conservation of the nuclear volume. As for the ac-
tinides, c and h are taken directly from Ref. 13.

The pairing strength is chosen to be different for neu-
trons and protons and linearly dependent on the nuclear
isospin (see Fig. 1).

A. Numerical estimation of the fluctuation

The importance of the fluctuation of the number of
particles and the eKciency of the method developed to
calculate such Auctuations can be seen by numerical
study of the convergence of the series of some observ-
ables. These observables are the moments of inertia
( J )„,„, and ( J )~„, of the neutron and proton systems, the
energy diff'erence (E„Eo)of the ze—ro quasiparticle pro-
jected states and BCS, and the overlap integral. The vari-
ation of these observables evaluated for U and Pu in
their ground and isomeric states for an extraction degree

of false components n between 0 and 4 are given in Table
I. A very rapid convergence is observed for each of these
observables. The corresponding critical value is practi-
cally obtained for n close to 3 or 4 for all the sets. In ad-
dition to the appreciable difFerence between the values
obtained by the BCS and projection methods, the cancel-
lation of the fluctuation is reAected, as was expected, by
an increase of the moment of inertia. Table II gives the
behavior of the overlap integrals of the zero quasiparticle
BCS and projected states as a function of n. It can be
seen in Table II that for the case, chosen as an example,
of wave functions of the neutrons of "Fm, the value of
the overlap integral can be small compared with unity
(up to 37%). This shows the importance of the false com-
ponents in the BCS states and the need for their cancella-
tion. Also, it can be seen that the nonphysical effects are
mainly due to the components corresponding to n =1
and 2, i.e., those components with a number of pairs
equal to P+1, P+3, P+5, . . . and P+2, P+6,
P+1Q, . . . .

Therefore, the main reason for the errors in the calcu-
lation of the moment of inertia is the consideration, in
the BCS states, of the components of the nuclei with a
mass close to that of the studied nucleus.

TABLE II. Convergence of the overlap integral of the zero quasiparticle BCS and projected wave
functions versus the extraction degree n of the nonphysical components for the fundamental state of
neutrons (up) and protons (down) systems.

1566d

164D

76Hf

236U

240p

254F

0.7205
0.7163
0.7071
0.8239
0.7071
0.7049
0.7479
0.7483
0.7073
0.7065
0.7071
0.7071

0.6565
0.6393
0.5497
0.8075
0.5176
0.5892
0.6973
0.7084
0.548
0.5699
0.5000
0.5057

0.6561
0.6386
0.5400

0.4896
0.5866
0.6970
0.7083
0.5330
0.5645
0.4126
0.4585

0.5398

0.4883

0.5328

0.3801
0.4543

0.3730
0.4541
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B. Results of the moment of inertia

The theoretical values for the moment of inertia of a
large number of deformed even-even nuclei are calculated
using (13b). These values are compared to both those ob-
tained by other methods and experimental data. The mo-
ment of inertia of the ground state of rare-earth and ac-
tinide nuclei are given in Tables III and EV, respectively.
The availability of the experimental results allows the
representation of the ratio J,h„P,„„, of the theoretical
moment, calculated by both the BCS and projection
methods, over the experimental one (see Figs. 2 and 3).
For the sake of comparison, in Fig. 2, the ratios, obtained
by Ma and Tsang' using the BCS method and by Mishra
and Mantri" using the IBM model are plotted for the
rare earths. In Fig. 3 the ratios corresponding to the re-
sults of Brack, Ledergerber, and Pauli, ' and the IBM
model" are added for the actinides. Our BCS values for
the rare earths are of the same order of slightly greater
than those of Ma and Tsang. Both of these results lead to
a ratio of 75 —95%. For the actinides our BCS predic-

tions are systematically lower by 25%%uo than those of
Brack, Ledergerber, and Pauli, except in the case of the
californium isotopes, for which the present BCS calcula-
tions are closer to the experimental data. This discrepan-
cy is probably due to the different choice of the pairing
strength. The linear dependence of the nuclear isospin
seems to lead to a better estimation of the moment of in-
ertia than a dependence on the level density in the vicini-
ty of the Fermi sea. Indeed, our results are in good
agreement with those obtained by Sobiczewski and
Bjornholm'" using a Nilsson mean field and a pairing
strength dependent on the isospin as it is in our present
work with a Woods-Saxon potential. Apart from the

U and Pu nuclei, for which the IBM model gives a
perfect agreement, it can be seen clearly from Figs. 2 and
3 that the results obtained by the projection method are
closer to the experimental data than those of any other
method. The good results obtained with the IBM model
are due to the great number of phenomenologica1 param-
eters of the model. The quality of the estimation ob-
tained with the projection method proves the usefulness

TABLE III. Moments of inertia (2J/A ) (MeV ') of rare-earth nuclei in their fundamental states
evaluated by the BCS and SBCS calculations of the present work (the first two columns), the BCS model

of Ref. 15 (third column), and the IBM cranking method of Ref. 11 (fourth column). The experimental
values are in the fifth column.

Nucleus

'"Sm
154S

154Gd

156Gd

158Gd
160

156D

158Dy

160Dy

162Dy
1640
162F

164F

166F

168Fr
170E

166Yb

168Yb
170Yb
172Yb
174Yb

174Hf
176Hf
178Hf

180Hf
180~
182~
184~
186~
184O

186os
188O

BCS
(present work)

41.13
66.06
36.59
61.15
67.27
68.48
36.96
47.90
56.44
63.37
71.67
46.66
53.29
58.48
67.14
56.86
45.35
57.58
60.77
60.55
64.35
56.14
59.98
56.51
48.25
43.82
46.33
45.48
39.86
40.71
36.53
31.46

SBCS
(present work)

49.86
77.39
45.89
71.59
77.97
77.16
47.47
58.90
70.80
76.07
85.34
57.24
65.38
70.35
81.16
70.06
58.68
71.25
73.55
73.17
75.55
66.95
69.94
67.67
60.51
56.80
58.05
56.67
49.04
51.57
46.96
40.99

BCS
(Ref. 15)

40.38
54.97
38.22
50.75
53.26
56.28
38.3
45.6
49.53
53.48
56.88
45.21
50.17
53.98
56.S4
59.19
45.94
50.20
53.51
57.45
59.44
51.77
56.25
54.77
57.96
49.98
53.28
46.07
39.18
48.58
43.20
37.72

IBM
cranking

60.6
73.2
80.6
84
40.2
59.6
64.2
69.2

58.6
64.4
69.2

58.6
64.2
69.2
73.8
78.4

Expt.

49.26
73.17
46.6
67.42
75.41
79.68
46.6
57.4
69.2
74.35
81.74
58.6
65.72
74.44
75.19
75.67
58.94
68.26
71.26
76.24
78.43
65.93
67.87
64.38
64.31
57.91
60.00
53.96
48.98
50.08
43.73
37.4
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TABLE IV. Moments of inertia (2J/A') (MeV ') of the actinide nuclei in their fundamental states

evaluated by the BCS and SBCS calculations of the present work (the first two columns), the BCS model

of Refs. 13 and 14 (the following two columns), and the IBM cranking method of Ref. 11 (fifth column).
The experimental values are in the sixth column.

Nucleus

224R

226R

228R

Th
226Th

230Th

"Th
230U

232U

234U

236U

238U

236p

238p

240p

242p

244p

242C

244C

246C

248C

248cf
250Cf

252Cf
254F

BCS
(present work)

53.9
68.7
89.7
47.1

60.7
88.2
98.7

114.6
119
84.9
97.7

113.4
119.2
116.0
114.1
124.4
116.6
114.7
120.2
121.6
120.2
128.1
127
136.1
133.7
131.3
105.3

SBCS
(present work)

68.3
84.3
99.3
60.5
76.1

98.8
108.2
127.3
132
102.0
110.3
127.9
135.3
131,0
132.2
140.3
136.5
129.0
138.6
138.6
138.1
146.8
142.6
155,4
150.9
147.6
131.8

BCS
(Ref. 14)

64

88
104

114
104
94

111
103
102
108
114
107
108
109
101

BCS
(Ref. 13)

102
118
114
102
140
132
128
146
132
148
144
160
150
128
156
140
130
126
138
140
136
150
136
144
126
118
118

IBM
cranking
(Ref. 15)

103~ 8
112.2
120.4
128.6

116.6
122.8
129
135.4

130.2
135.2
140.4
145.8

Expt.

68
88

100
62
82

104
113
120
126
116
126
138
132
134
135
136
140
135
133
142
140
140
138
142
142
136
136

of canceling the nonphysical components due to the Auc-
tuations of the number of particles. The modifications of
the moment of inertia due to this projection are approxi-
mately the same for all the nuclei within the same region.
Indeed, the gap ~ J, —JBcs~/J,„, is practically constant
and is of the order of 0.13 for the actinides and 0.18 for
the rare earths. Moreover, a surprising agreement be-
tween the projected and experimental moments for the
translational nuclei as the Ra and the light Th isotopes is
clearly observed. Contrary to this observation, the
disagreement for the other methods, previously attribut-
ed to a possible nonapplicability of the rotational model
for these nuclei, is in fact mainly due to the important

fluctuations of the number of particles. The cancellation
of the false components in these nuclei leads to an impor-
tant increase of the pairing factors in comparison with
other actinide nuclei. For example, in Table V some of
the ratios (C„/C„") are given for levels of the Th in
the vicinity of the Fermi level. This shows that the ratio
is generally higher than unity. Table VI gives the values
of the moment of inertia for the isomeric states of the ac-
tinides, calculated by the diA'erent methods mentioned in
this paper. The intrinsic quality of the results obtained
using the di6'erent methods cannot be appreciated be-
cause of the lack of experimental data. However, for the
three nuclei U, U, and Pu, the projection method

TABLE V. Values of the (C„/C, ", "') ratio for the closest levels to the Fermi level for the proton and neutron systems of ' Th.

44
45
46
47

1.060
1.134
1.232
1.043

Protons
44

1.152
1.265
1.062

1.418
1.141 1.216

70
71
72
73

1.076
1.089
1.215
1.076

Neutrons
70

1.096
1.228
1.084

1.252
1.099 1.189
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FIG. 2. Comparison between experimental and theoretical

values of moments of inertia for rare-earth nuclei in their funda-
mental state. Points ( + ——+ ) are our BCS results,
( — ~ ) our SBCS results, (A —A) show the calculations
of Ref. 15 with the BCS model, and ( X ———X ) those of Ref.
11 with the IBM model.

0.5
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FIG. 3. Same as Fig. 2 for actinide nuclei. Points
(+ ——+) are our BCS results, ( ) our SBCS results,
(A ——A) show the calculations of Ref. 13 with the BCS
model, and ( X ———X ) those of Ref. 11 with the IBM model.

Nucleus

224R

226R

Ra
224Th

226Th

228Th

234Th

230U

232U

234U

236U

238U

236p

238pu
240p

242p

244p

242C

244C

246C

248C

248Cf
250Cf
2$ )Cf
— 4Fm

SBCS
(Ref. 14)

194
180
198
184
196
184
172
308
294
196
276
286
288
300
284
290
300
294
290
304
302
298
284
292
292
298
276

292
314
294
294
315
298
287
280
302
294
339
350

TABLE VI. Same as in Table IV for the isomeric states of actinide nuclei.

BCS SBCS BCS
(present work) (present work) (Ref. 13)

187.9 214.5
172.3 196.2 142
179.7 201.2
159.1 187.2
159.0 188.7
155.8 182.5
168.6 194.8 269
240. 1 269.0 291
240.6 270.6
175.4 200.3
231.3 255.3
241.2 264.2
243.6 288. 1

249.8 298.5
244.4 287.3
254. 1 293.8
252.4 299.5
258.4 294. 1

260.3 309.4
259.0 302.0
262.9 310.9
267.7 310.0
265.9 308.0
264.9 317.7
259.8 315.5
268.2 301.4
261.8 320.7

Expt.

298
306

300
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leads to results in excellent agreement with the experi-
mental values. Furthermore, it can be seen that the BCS
estimation of the present work is systematically lower by
about 15% than that of the projection method. It should
be noted that the SBCS results are closer to those of
Brack, Ledergerber, and Pauli than those of Sobiczewski
and Bjornholm, while for the fundamental states we have
better agreement with the results of Sobiczewski and
Bjornholm than those of Brack, Ledergerber, and Pauli.

V. CONCLUSION

We have studied the effects of the fluctuations of the
number of particles inherent to the usual BCS method on
the moment of inertia of many even-even rare-earth and
actinides nuclei. The nonphysical effects due to these
fluctuations have been canceled by a discrete projection
method on the eigenstates of the particle-number opera-
tor. After having built new states which strictly conserve
the number of particles and the corresponding energies, a

new expression for the moment of inertia was deduced
using the usual cranking method.

The cancellation of the nonphysical effects is reAected
by the variation of the usual pairing reduction factor of
the matrix elements of the angular momentum. This pro-
jection method is found to be easy, powerful, and well
adapted to the numerical calculation. The theoretical
predictions of the moment of inertia are in good agree-
ment with the corresponding experimental values both
for the rare-earth and actinide nuclei. Some improve-
ments to these calculations could be obtained by relaxing
some restrictive hypothesis such as the taking into ac-
count of the rotation-pairing interaction term or the
nonaxiality of the mean potential, which can modify the
values of the moment of inertia of some nuclei as the
light actinides.

The authors express their gratitude to Dr. N. Melike-
chi for help in translating the manuscript.
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