
PHYSICAL REVIEW C VOLUME 43, NUMBER 6 JUNE 1991

Isovector content of N-N potentials and Pauli-forbidden states

Thomas E. Kiess and Edward F. Redish
Department ofPhysics and Astronomy, University ofMaryland, College Park, Maryland 20742

(Received 1 August 1990)

We study the isospin dependence of nucleon-nucleon potentials by examining solutions to the
Schrodinger equation in paronic (Pauli-forbidden) states. We find a model dependence to the iso-
vector content and discuss its origin. We observe a qualitative difference between meson-exchange-
based models and those that are more phenomenological. This has consequences for a number of is-
sues of current interest.

I. INTRODUCTION

An important issue in nuclear physics today is the ex-
tent to which interactions and processes in nuclear sys-
tems are adequately described in terms of hadrons-
nucleons, mesons, and nucleonic excited states. Central
elements in these descriptions are the nucleonic effective
operators that arise when other degrees of freedom are el-
iminated and the system is described in terms of nucleons
alone.

The operator that has received the most attention is
the nucleon-nucleon potential. Dozens of models have
been described in the past three decades. Meson-
exchange models have recently reached new levels of so-
phistication and offer the possibility of developing a con-
sistent theory of effective operators —electromagnetic and
weak current operators and many-body forces as well as
pair potentials.

In this paper we study the isospin dependence of a
variety of nucleon-nucleon pair potentials for the purpose
of understanding the amount of charge exchange built
into a model at short distances. This should help us de-
velop some intuition about the character of short-range
processes built into the models and therefore to possible
differences and sensitivities in other effective operators.

It is difficult to display the effect of the isospin depen-
dence of a nucleon-nucleon potential for a number of
reasons. It is now well known that the nucleon-nucleon
potential itself is not well determined by the tenets of
meson theory. Realistic potentials that give very similar
results, both for on-shell scattering and in many-body cal-
culations, may have matrix elements that differ by orders
of magnitude. The on- and off-shell amplitudes, however,
do seem to be reasonably well defined. ' It therefore does
not suffice to compare the coefficients of ~&.v.

2 in the po-
tential. One must look at the effect of the potential
summed to all orders —the scattering amplitudes and the
bound states.

It also does not suffice to consider the effect of the iso-
spin dependence on similar states that differ by isospin.
This is because, for two-nucleon states of good isospin,
the available physical states are limited by the Pauli prin-
ciple. One cannot change isospin alone; one must also
change either the space or spin state as well. And since

the nucleon-nucleon force depends strongly on both the
space and spin states, the isospin dependence is obscured.

We have therefore chosen to look at the scattering and
bound states produced by nucleon-nucleon potentials in
Pauli-forbidden states. Although they are not physically
accessible, they permit us to change only the isospin
while keeping the space and spin states the same. We
learn that realistic potentials that give very similar physi-
cal bound and scattering states produce significantly
different Pauli-forbidden states. This clearly demon-
strates substantial differences in the isospin content of the
potentials and suggests that more substantial differences
will be found between models when effective operators
sensitive to short-range mesonic charge fIow are calculat-
ed 27 3

Specifically, we observe that the isovector part of the
potential dominates the short-range repulsion for most
potentials whose short-range behavior is based on meson
exchange, but more phenomenological potentials appear
to have isoscalar cores.

We begin our study of the isospin dependence in Sec. II
by discussing the use of Pauli-forbidden states. With this
method, we can view the impact of isospin-dependent
nonlocalities in the potential on the separation of isospin
effects. When only local terms are included, the ex-
change of isoscalar mesons leads to isoscalar potentials
and the exchange of isovector mesons leads to isovector
potentials. When there are nonlocalities, the isoscalar
mesons can affect the amount of apparent isovector po-
tential present.

In Sec. III we consider three recent versions of the
Bonn-meson-exchange potential, two of them in momen-
tum space. Calculations in p space avoid some of the
nonrelativistic approximations that are typically made to
construct an r-space potential, and can go beyond one-
meson exchange to incorporate more of the two-meson-
exchange processes that are included in the full model.

In Sec. IV we investigate the sensitivity of our result to
the phenomenological strong-interaction form factors
used in the Bonn models. To do this, we compare other
published meson-exchange models that resemble the
Bonn construction but differ in the functional form of the
form factor applied at each vertex.

In Sec. V we report results obtained with phenomeno-
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logical models of the X-X interaction. In these, fewer
predetermined theoretical constructs have prejudiced the
form of the V(r) function ascribed to each of the various
two-nucleon operators. We observe a consistently small-
er degree of isospin-dependent effects obtained with these
models.

II. METHOD

In this section, we motivate looking at the unphysical
Pauli-forbidden states in order to extract isospin depen-
dence.

We begin by decomposing the effective potential of a
two-nucleon Schrodinger equation into isoscalar and iso-
vector components:

+ gi. fry
1S iv 1 2' (2.1)

The scattering amplitudes which depend on the poten-
tial to all orders can also be separated into isoscalar and
isovector components, where each component receives
contributions from both terms of Eq. (2.1). If we write a
Lippmann-Schwinger equation for the scattering ampli-
tude

T= 8'+ WGOT, (2.2)

where W is of the form of Eq. (2.1), then the solution for
the scattering amplitude has the formal structure

1T= 8', (2.3)

which will lead to mixing of the isoscalar and isovector
parts of Eq. (2.1) to form the amplitude in each isospin
channel. As a result of this mixing, one cannot simply
identify isoscalar and isovector parts of the scattering
amplitude as arising from isoscalar and isovector meson
exchange, respectively. We note also that if a nonlocal
potential is replaced by an effective local potential, that
the transformation to local form wi11 mix isoscalar and
isovector parts. This means that the isoscalar and isovec-
tor parts of the effective local potential will each depend
on both the isoscalar and isovector parts of the nonlocal
potential. This is discussed in the Appendix.

Since it is only the amplitude which is reasonably
determined and not the potential„we need to seek a
method for displaying the isospin dependence.

One viable method would be to form some combina-
tion of partial waves that would isolate the effects of the
7

~ T2 operator. Such a combination has been used with
P-wave phase shifts to separate the effects of the T =1
tensor and spin-orbit operators.

Unfortunately, this method cannot readily be used to
isolate r, r2 Although in S .waves many operators (e.g.,
L.s, S,z ) have vanishing expectation value, too many
(e.g., central o, cr2, ~, r2, cr& cJpT] 12) are no'nzero to
form unique combinations of the two S waves that isolate
just one of the operators.

A major contributor to the isospin dependence of a po-
tential comes from the operator o.&.o2m, ~2 which arises
from exchange of vector-isovector mesons. We note that
the expectation value of this operator does not change in

the two S-wave channels, making its effect identical to
that of a unit operator (central potential) and thereby
foiling any comparison of the 'So and S& partial waves
to isolate isospin-dependent contributions. Much of the
isospin dependence present in the potential is therefore
"hidden" by the necessity of changing S as well as T to
respect the Pauli principle.

Since some models possess up to fourteen ' two-
nucleon operators, a program of going beyond S waves to
form linear combinations of phase shifts to identify ~, .vz
effects would require many partial waves, a requirement
that seems prohibitive.

We propose to exhibit the isospin dependence by
changing only the isospin quantum number, keeping fixed
all other two-nucleon quantum numbers defining a partial
wave. The new set of quantum numbers defines a partial
wave that is Pauli forbidden for two nucleons. This
method yields a well-defined procedure for viewing the
isospin-channel effects. The physical potential in the par-
tial wave of interest and the associated potential in the
Pauli-forbidden partial-wave form precisely the two ex-
pectation values ( W;, + W,'„)and ( W,', —3W;„)of Eq.
(2.1) in the two isospin channels. Linear combinations of
these potentials can produce the separate components
8",, and 8",, . Furthermore, viewing the potentials, wave
functions, and phase shifts in the Pauli-forbidden states
gives dramatic visual demonstrations of the strength of
the "hidden" isospin dependence of potential models.

The new, Pauli-forbidden quantum states are readily
formed by changing only the isospinor component of the
two-nucleon state. This has the effect of changing the
isospin quantum number T that goes with the other quan-
tum numbers summarized in the usual spectroscopic no-
tation. We shall refer to the 'So, T=0 combination as
the Pauli-forbidden 'So channel, and the S, , T =1 com-
bination as the Pauli-forbidden S& channel. The changes
we make are similar in spirit to the construction of a
nucleon-antinucleon potential by changing the G parity
of each meson process in a nucleon-nucleon potential, al-
though in the case considered here, the channels are not
realized in nature and our purpose is to gain understand-
ing of the structure of the potential.

We are interested not only in the change in the poten-
tial, but in the effect of the potential to all orders. To
display these effects, we calculate the bound states and
phase shifts in these Pauli-forbidden channels.

The method of creating Pauli-forbidden two-nucleon
states can be applied to any partial wave, but we focus
primarily on the two l =0 partial waves since they are
the most important for low-energy processes. All of the
models discussed in this and the next two sections pro-
duce realistic deuteron parameters and fit low-energy
((300 MeV) phase shifts.

III. THE BONN MODELS

In this section we discuss the predictions of three of
the Bonn-meson-exchange potentials in Pauli-forbidden
states.

In the Bonn models, " the mesonic origins of the
isospin-dependent contributions can be identified. Time-
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ordered perturbation theory is applied to an effective La-
grangian of baryons and mesons to generate the set of di-
agrams inc u e in1 d d

'
the model. Each meson-nucleon-

nucleon vertex receives the form factor
~ n

A —p

where p is the meson mass, A is a cutoff parameter, and k
is the four-momentum carried by the meson.

The Bonn group uses the Blankenbecler-Sugar reduc-
f the four-dimensional Bethe-Salpeter equation to

generate a three-dimensional equation of the ipp
Th otential is identified as the kernel

of the three-dimensional scattering equation. e
Blankenbecler-Sugar reduction guarantees that the poten-

'
1 h de endence on energy transfer in t e c.m.

frame of the two nucleons, but it can depend on e o
c.m. energy (E), the total three-momentum (p) of the two
nucleons in t e c.m. ram,h frame and the three-momentum
transfer (k) in the c.m. frame.

F se of use in calculations, the Bonn group pro-or ease o u
r a roxi-

mations to this structure. The simplest of these is the
energy-1ndepen en r- p

-' d d t r-space model, one-boson-exc ange
otential in coordinate space (OBEPR). In t is mo e,

six one-meson-exchange terms define pthe otential. Each
r F (k ) at eachterm is regularized by the form factor

meson-nucleon-nucleon vertex. The ph o erator v .v2 multi-
1

plies the contribution of the three isovector meson s
(m, p, 5) to the potential. These contributions change
their sign w en we movh ove from the potential in the normal

h 1 t the otential in the Pauli-forbidden channe .c anne o ep
An ambiguity arises in constructing e a

forbidden potentials for Bonn OBEP's since they choose

different in the two isospin channels. The cr in t is onn
model is therefore not purely isoscalar. Its isospin epen-
dence can be viewe as ab

'
d a consequence of the effects (suc

~ ~ ~ ~

as two-pion exchange, and processes involving isobar in-
termediate states a) th t the o. meson is understood to
represent. e onn gr. Th B roup has chosen to represent these

eters rat er thaneffects b isospin-state-dependent parameters rat er t an
by introducing separate isoscalar-scalar and isovector-
scalar o. mesons. e use e. W the Bonn T =1 o. parameters to
construct the Pauli-forbidden S, potential, and the Bonn

potential. We label the results obtained by using the re-
d set of a parameters as "unswitched sigma. "verse se

in the Pauli-The resulting effective local potentials in
forbidden 'So and S& channels are shown in Fig. 1. We

hat the familiar short-range repulsion (usually
thought of as provided by the isoscalar co meso, '

ion er resent. In fact, by dividing the mesons into the
two categories, isoscalar and isovector,
all isoscalar meson contributions to be attractive in the
core region or wfor S waves, with isovector mesons provi ing
the repu sion. is i1

' . Th' nformation is of interest in meson
models of the X-X interaction, since less sophisticate
models (e.g. , with only o and co mesons) have isoscalar
core repulsion.
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FICx. 1. A comparison of the OBEPR S-wave eA'ective local
i-forbiddenpotentials at the deuteron energy with their Pau i- o

counterparts. a( ) 'S ' (b) 'S the Pauli-forbidden potentials of
two newer r-space Bonn models (Ref. 21) behave similarly. e

Ref. 37) of mesonpotentials possess a soft core characteristic e . o rn
models. snce ~„,~

is eS' V energy independent, the only energy
dependence of W' comes from the k term of Eq. (A3).

The net attraction at short range is sufficiently strong
to enable the Pauli-forbidden S& - D

&
system to support a

bound state. The character of this state is very sensitive
to how we treat the isospin dependence o e s'g
t e o. parameh meters are switched, we get a binding energy of
15 MeV and rms radius 0.7 fm. These become e
and 0.3 fm if the o. parameters are unswitched. The D-
state probability is small, at 0.3% and 0.03~o, respective-

.6—1.S fm
region of the potential, the usual attraction has turned
into a repu sion. e p1

'
Th hase shifts in the Pauli-forbidden

S states using OBEPR are graphed in Fig. 2.
The behavior of OBEPR serves as a useful reference to

compare wit e e
'

h th b havior of more sophisticated meson-
exchange models. We have already noted that the r-
s ace o. meson masks some of the more comp icate,
isospin-dependent processes that are p

' '
yex licitl included

8 models. Another reason to comparein p-space onn mo
OBEPR with p-space Bonn models is to judge t e va i i y
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on the potential, but Fig. 3(b) shows that their presence
significantly inAuences the shape of the potential probed
at higher energy. From Fig. 3(b), one would expect t e
absence of the p terms to significantly affect the poten-

change in the physical S, phase shift from —13.8' to
2—9.6' at this energy when the p terms are dropped.

The energy-independent one-boson-exchange potential
in momentum-space (OBEPQ) model is similar to the
OBEPR model, with the same six mesons m.,p,
represented by one-meson-exchange forms. As in
OBEPR, the exponent n of the form factor F„(k) is 1 for
all mesons except the p, for which n =2. The o. mass and
coupling constant are again isospin-channel dependent.

With the OBEPQ potential, the Pauli-forbidden
S - D system supports a bound state at 20 MeeV 2601" 1

ain theMeV if the o. parameters are unswitched. gain,
bound state is almost entirely S wave; the D-state proba-
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FIG. 2. Phase shifts for the Bonn potentials. The solid and
d -d h d lines correspond to the potentials graphed in Fig. l.ot- as e
The dashed line uses the unswitched o. parameters in
(a) 'So, (b) Sl.
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of one of the nonrelativistic approximations tnat is made
in converting from p-space to r-space.

This approximation is an expansion of the nucleon en-
ergies E (i =1 2) up to second order in momenta:I 7

piE;=m~+ + .
2@i~

With the change of coordinates

Pl Pz~ P=2(Pl+Pz) ~

(3.2)

(3.3)

terms quadratic in p [of the form indicate
'

q.d in E . (A1)]
appear in all scalar (cr, 5) and vector (iII,p meson contri-
butions to the resulting r-space potential. Since these
terms appear as a consequence of the noe nonrelativistic ex-
pansion of Eq. (3.2), one could use the influence of these
p terms in the r-space potential to judge the validity o
this expansion. fE. (A3)In Fig. 3(a) we plot the OBEPR S, W' of Eq.
andt e )„,1 o q.h V f Eq. (Al). We see that for low-energy
processes, the presence of the p terms2 has a minor effect
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FIG. 3. A comparison between the full OBEPR effective lo-
cal Sl potential at the deuteron energy and that obtained by re-
moving the p terms, without any other changes to the mode .

the p terms on the deuteron is to weaken its binding energy to
a value of 0.8 MeV. The effect of the p terms is seen to be more
appreciable in (b), where the same curves are graphed on a
larger scale.
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bilities are 0.35% and 0.33%, respectively. The phase
shifts of the Pauli-forbidden 'SD and S, channels are
graphed in Fig. 2.

A more sophisticated Bonn model is D52. This is an
energy-dependent p-space model' containing five form-
factored one-meson-exchange terms. (The i) is omitted. )
Also included in D52 are a subset (the iterative diagrams
of Ref. 4) of time-ordered box diagrams in which 2' or
~p exchange occurs, with an intermediate baryon state of
Nh or AA. Crossed box and stretched box diagrams are
not included. Each meson-baryon-baryon vertex has a
form factor F, (k ). The o parameters in D52 are in-
dependent of isospin channel, a feature which is also
shared by the full model. Figure 2 shows the S-wave
phase shifts of D52.

The 2~ and mp exchanges with delta intermediate
states contribute to the isospin dependence of the model.
The isospin structure of 2~ and ~p exchange diagrams
with XX, X4, or AA intermediate states, can be col-
lapsed to the form 3 +87 j i2 where A and 8 are con-
stants determined by manipulations of isospinor states"
and the use of projection operators' in isospin space.

The Pauli-forbidden S&- DI system fails to support a
bound state in the D52 model. However, the existence of
a bound state is not the only measure of attraction. The
positive phase shift between laboratory energies of 0 and
116 MeV (see Fig. 2) gives evidence for attraction in the
D52 Pauli-forbidden S, system. This behavior is quali-
tatively similar to the normal 'S0 phase shift. The
differences between the D52 and OBE models, as
represented in Fig. 2(b), can be interpreted as indicative
of the additional isospin-dependent processes present in
D52 but absent in the OBE models.

In the OBEPR model, which produces a potential that
is phase-shift equivalent to a local potentia1, the existence
of a low-energy bound state and the Levinson theorem'
enable one to deduce that the phase shift goes to m, rather
than 0, at zero energy. ' Since solving for the phase
shifts involves solving for a quantity S =exp(2i5&), our
phase-shift codes produce phases that cannot be a priori
known within an additive multiple of m. Hence, we need
our knowledge of the existence of bound states in order to
determine 5& to +nm Of cou. rse, such modifications to
the phase produce no effect on physical observables, such
as the cross section. We fix the low-energy phase of
OBEPR by finding the number of bound states numeri-
cally. We adopt the usual convention of setting the phase
to zero in the infinite-energy limit.

The nonlocal nature of OBEPQ and D52 prevents
Levinson's theorem from being applicable. Nonetheless,
we observe the phase approaches an integral multiple of

To compare these phases with those of local models,
we use our knowledge of the number of bound states to
set the low-energy phase to correspond to the behavior of
a local potential with the same number of bound states.

The isospin structure of the D52 model and the full
Bonn model differ due to the fact that different sets of di-
agrams are included in each model. Absent in D52 but
present in the full model are the noniterative (i.e., crossed
box and stretched box) diagrams of 2~ exchange with Nh
or hh intermediate states. Analyses by many

groups' ' ' suggest that the sum of all (iterative and
noniterative) 2ir exchange contributions provides a large-
ly isoscalar interaction (as in term A above), with near
cancellation of the isovector contributions (represented
by term 8). Without the noniterative contributions to
produce this cancellation, the D52 model can be suspect-
ed of having an overly large isovector 2~ exchange con-
tribution.

The full Bonn model has a more complex structure and
we have not carried out our calculation using it. One
should note that a superficial analysis of the additional di-
agrams ' contained in the full model cannot yield a
definitive statement about its isospin dependence since
the parameters are refit to the scattering data.

To summarize the results of this section, we have com-
pared the isospin dependence of p-space Bonn models to
that of the energy-independent, r-space model OBEPR.
The energy-independent, p-space model OBEPQ avoids
some of the approximations made in constructing an r-
space model from p-space amplitudes. The energy-
dependent D52 model possesses a sophistication ap-
proaching that of the full Bonn model. We observe in
Fig. 2 some similarities in the Pauli forbidden states cal-
culated with these three models. Most of them support
one bound state in each channel. All show some attrac-
tion in terms of a positive phase shift. None of the
Pauli-forbidden phase-shift curves follows closely the
normal phase-shift behavior over the entire energy range
of the graphs. We interpret these similarities as showing
that the isovector nature of the short-range region is a
feature that persists when some of the shortcomings of
the r-space model are improved upon.

IV. FORM-FACTOR DEPENDENCE

Isospin-dependent processes such as isovector meson
exchange play an important role in shaping the
intermediate- and short-range regions of the Bonn mod-
els. It is instructive to determine the sensitivity of this
behavior to the way in which the short-range region is
treated, since the choice of vertex functions in the Bonn
models [Eq. (3.1)] is not strongly theoretically motivated.

In this section we consider whether the special choice
of form factor selected by the Bonn group plays an im-
portant role in determining the relative strengths of the
core components. We do this by investigating a variety
of other meson-exchange models that make different
choices.

Although the form factors in a meson-exchange model
are of reasonably short range, they have a structure
which modifies the leading terms in an expansion in
powers of k. Therefore, the long-range behavior of the
function in coordinate space is also affected. To show
this, we note that the low k behavior of the usual p-space
Yukawa form

4

(4.1)

is transformed by the presence of two F„(k) factors to
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A2+k2 k2+ 2

for an arbitrary integer m, can be made to agree in their
behavior to order k if we choose

]. /2
2, 2 2n

(4.8)

2 '2

X 1 — — 1+2n ~ +O(k ) . (4.2)
p A

The coefficients of both 1 and k in Eqs. (4.1) and (4.2)
cannot be made to agree by simply readjusting g, n, and
A if the meson mass p is not changed.

Except for the pion, the ratio (p/A) is often sizable in
meson models. Therefore, when the mass of the meson is
fixed, the presence of the form factor affects even the low
k behavior of the meson-exchange potential function.

The form factors affect the short-range behavior in a
well-known way. For example, the r-space equivalent to
Eq. (4.2), for n =

—,', is obtained ' ' by replacing the Yu-
kawa form

2 JM7

V(p, r)=
4mr

by the function

V(p, r) V(A, r) —.

(4.3)

(4.4)

Higher powers of n in Eq. (4.2) produce more structure.
For example, the use of n = 1 is identical in r-space to the
replacement of V(p, r) by '

V(p, r) V(A, r)+-
A2 p2

2A
V(A, r) .

dA
(4.5)

A2 p2
A2+ k2

1

k +p
(4.6)

and

~ 2 2'(,)2
(A') —p
(A') +k

1

k +p
(4.7)

For n =
—,', the corresponding r-space potential has first,

second, and third derivatives of V with respect to A built
in. It is a general result ' that a higher derivative ap-
pears with each integral increase of the exponent 2n.
These additional terms have a range set by A instead of
p, and therefore primarily modify the short-range region.

With these F„(k) forms infiuencing both the long- and
short-range behavior of each meson contribution, it is
reasonable to question the sensitivity of the results of the
preceding section to the presence of these vertex func-
tions in the model. %'e study the effect of using different
values of n in the F„(k) form by looking at other
meson-exchange models. In order for our study to be
meaningful, we must compare only models that produce
reasonably good fits to the phase-shift data.

One possible way to produce such models is to try to
adjust the cutoff parameter A and the coupling constant g
to preserve the long-range behavior of each meson contri-
bution in OBEPR when we change the exponent 2n by
+1. The two functional forms

and

[1—(p/A) ]
"

[ 1 ( /A& )2]2m
(4.9)

However, such a modification to QBEPR, for
2m =2n+1, produces potentials with unrealistic deute-
ron properties and phase shifts. We conclude that this
modification is an insufhcient way to compensate for the
n dependence of the individual meson contributions to
the potential. The failure of this construction confirms
that the F„(k) forms are significant components of the
model, even at long range.

Our method is to compare Pauli-forbidden S waves
with other meson-exchange models that use vertex func-
tions of the type in Eq. (3.1). Each of these models fits
phase-shift and deuteron data, but with different ex-
ponents, n, used in the F„(k) form. To compare with
the OBEPR model, which uses n =1 for all one-meson-
exchange contributions to the potential, we look at the
Bryan-Scott model ' (n =

—,
' for all mesons), the Ueda-

Green-I model ' (n =1 for all mesons), and the Ueda-
Green-IV model (n =2 for all mesons).

These one-boson-exchange models are similar in con-
struction to OBEPR. The one-meson-exchange form
represents the potential term of the nonrelativistic
Lippmann-Schwinger equation. This three-dimensional
integral equation has the same form as the equation gen-
erated from the Blankenbecler-Sugar method used in the
Bonn models. Aside from the differences in form factors,
the one-meson-exchange expressions for these potentials
differ from the OBEPR expressions in the numerical
coefficients of the p terms, a difference that arises from
the "minimal relativity" ' ' prescription and is the only
vestige of the relativistic starting point of OBEPR. The
Bryan-Scott potential uses, in addition to the familiar a,

cu, and p mesons, a scalar-isoscalar meson and a
scalar-isovector meson. Both Veda-Green models use the
~, g, ~, and p mesons, two scalar-isoscalar mesons, and a
scalar-isovector meson.

In all these models, we observe a substantial attraction
at the origin in the Pauli-forbidden S waves, with graphs
of these potentials similar to Fig. 1. Although two of
these models produce a bound state in the Pauli-
forbidden S, - D& system, the existence of a bound state
is not a well-controlled probe, since the potential needs to
be extremely attractive for such a bound state to form.
We comment in Sec. VI on the nature of these bound
states, which are localized at short range. We resort to
phase shifts as a more meaningful probe of the isospin-
dependent modifications. These are shown in Fig. 4.

As with OBEPR, all these potentials are phase-shift
equivalent to effective local potentials. The transforma-
tion function [ 1+2k co( r) ] that relates the true wave func-
tion R&(r) to the solution u&(r)/r of the local potential
has no nodes. We therefore can use Levinson's theorem
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(Ar)F(r)=
2o ' with A = 1.2 fm

1.0+ (Ar)

in an expression of the form

V(r)= V,„„(r)[F(r)]+V~„,„,(r)[1—F(r)] .

(6.1)

(6.2)

The Paris potential uses similar cutoff expressions to ter-
minate the inAuence of the cutoff beyond 1 fm, thereby
allowing the individual meson contributions to assume
nearly the full value of their one-meson-exchange forms.

A second probe of meson-exchange potentials is a
study that investigates the consequence of freeing the
meson masses to determine the mass values that would
minimize g in the phase-shift fit. Except for the pion
mass, the meson masses migrated to values lower than

the total potential is much weaker than the size of each
meson component. As a result of these large cancella-
tions, the model becomes sensitive to the long-range be-
havior of the form factor.

We need to understand whether the leading isovector
core in these models (arising mostly from single ir and p
exchange) is valid. Two studies shed some light on this
issue.

The sensitivity of the potential to the contribution of
the 6 meson provides one way to judge how well-
controlled meson-exchange models are. Removing the 5
from the model should produce a new model that resem-
bles the original, since the 6 is the heaviest meson of the
model, with a relatively small coupling constant. If a con-
vergent series of meson-exchange processes can be writ-
ten down, then one can think of the processes excluded
from the model as constituting a "remainder term, "
which should have an effect which is hopefully smaller
than, or perhaps of comparable strength to, the weakest
included process. In this context, the changes in phase
shifts resulting from removing the 5 are indicative of the
degree to which such a convergence has been reached.

Removing the 5 from OBEPR causes a nonzero phase
shift of —4.5' at the laboratory energy (264 MeV) where
the phase shift goes to zero in 'So (T= 1), and causes a
nonzero phase shift of +10.5' at the laboratory energy
(288 MeV) where the phase shift goes to zero in S,
(T =0). These effects are small compared to the largest
phase shifts produced by the potential, but they are not
insignificant.

A slow convergence suggests that more processes con-
tribute to meson-exchange models than are represented
by the functional forms used for the potential. These
functional forms must then necessarily model more
meson-mediated processes than they are intended to
represent. Therefore, the functional forms chosen can be
an overly constraining feature of the model.

One way to explore this dependence on the fundamen-
tal forms used is to form Pauli-forbidden S waves using
meson-exchange models that use other functional forms
for the cutoffs. For example, the Nijmegen potential uses
exponentia1 form factors to regularize the behavior of
one-meson-exchange forms, a Stony Brook model uses
eikonal form factors, and the potential of de Tourreil
et al. uses a step-like cutoff

their accepted values, a result that was taken as evidence
for the need to supplement one-meson-exchange forms
with expressions for multi-uncorrelated meson-exchange
effects.

We quote this study to point out that the functional
forms and fixed input parameters of OBEP models pro-
vide some constraint on the goodness of fit to phase-shift
data. It is therefore not unreasonable to explore whether
it is the assumed functional forms of meson models that
lead them to have large isovector core contributions.

C. Elastic electromagnetic form factors

In a consistent meson-exchange model of a11 effective
operators, calculations of elastic electromagnetic form
factors at sufficiently large momentum transfer should be
sensitive to the isovector content of the X-N potential.
Since the isovector contributions of meson-exchange
models come from the charge-carrying degrees of free-
dom, these degrees of freedom should be represented in
the electromagnetic current operator, J„.

To identify the contributions of isovector processes,
one would like to see a calculation in which the same un-
derlying processes defining the N Ninterac-tion (and
hence the nonrelativistic potential and ground-state wave
functions) also determine the form ofJ„.A meson model
represents one way to generate both the nuclear states
and the associated effective operator J„.

The consistency of such a calculation cannot be
achieved with phenomenological models. Nevertheless,
some calculations using phenomenological potentials in-
clude efforts to match the form of J„with the potential.
As an example, a treatment of the mesonic effects in the
electrodisintegration of the deuteron with the Paris po-
tential uses in J„the same strong-interaction form fac-
tors that appear in the potential. Such consistency is not
always practiced in the state of the art theoretical treat-
ments ' of delta and meson-exchange current contribu-
tions to charge and magnetic elastic form factors of He.

We hope that such consistency can place limits on the
degree to which deltas and isovector mesons contribute
to the core region of the N-X interaction, perhaps ruling
out models containing overly large (or small) isovector
meson contributions. Similar calls ' for such consisten-
cy express this aim of improving our understanding of
the X-X potential. Such a consistent calculation serves
to test the simplifying assumption that is made in some
electromagnetic form-factor calculations that the short-
range repulsion between nucleons is isoscalar in charac-
ter.

These calculations show ' a great sensitivity of the size
of meson-exchange current contributions to the value of
the m.XX vertex cutoff; We look forward to improve-
ments in our knowledge of meson-exchange current con-
tributions, from experiments at Continuous Electron
Beam Accelerator Facility (CEBAF) and from consistent
calculations of the type we are proposing. These meson-
exchange currents could be used to explore the present
discrepancy that different analyses place on the +X'
vertex cutoff.
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D. Charge-symmetry breaking

Recently, experiments at TRIUMF and Indiana Uni-
versity Cyclotron Facility (IUCF) have measured ob-
servables in neutron-proton scattering which are sensitive
to the small charge-symmetry-breaking part of the
neutron-proton interaction. The efFective operator that
produces this effect in a meson-nucleon-delta model de-
pends on some of the same parameters that the two-
nucleon potential does. A recent calculation achieves
consistency by using for the meson coupling constants in
the charge-symmetry-breaking (CSB) interaction opera-
tor the same values that are used in the meson potential
model, OBEPR. With this potential defining the nuclear
states, matrix elements using the charge-symmetry-
breaking operator have matched the states with the ap-
propriate effective operators that should be used with
these states. The authors also carry out calculations us-

ing phenomenological potential models which they ac-
knowledge lack this type of matching. This group finds a
substantial difference in the CSB predicted by OBEPR
and phenomenological potentials.

This consistency issue has been explored further. One
analysis has used in the fit to low-energy N-N scattering
data a potential incorporating the dominant charge-
symmetry-breaking effect, that of the n-p mass difference.
The associated T matrix can be used to calculate the CSB
analyzing power. This calculation of matrix elements is
consistent because the CS and CSB pieces of the total in-
teraction are treated on the same footing.

A current challenge is to describe the experimental
difference in proton and neutron analyzing powers with a
calculation using a meson potential model. These calcu-
lations of the isospin-dependent, short-range charge-
symmetry-breaking interactions probe the short-range
isovector content of the potential model. As we have
demonstrated here, phenom enological and meson-
exchange models tend to have substantially different
short-range isovector contents. If information is to be ex-
tracted from CSB experiments, it is therefore critical that
calculations maintain a consistency between the potential
and the CSB operator.

E. Models of the W-6 and 6-6 interaction

Another situation where the effects reported here are
relevant is in modeling the N b, (and b, -b, ) interaction-s.
An N-6 interaction can be constructed from a meson-
exchange model of the N-N interaction by using a
valence quark model of the baryons to relate nucleon-
meson couplings to delta-meson couplings. The sets of
quantum numbers that are analogous to those that
represent Pauli-forbidden partial waves are allowed for
the N-6 system. The meson composition of the N-N in-
teraction then has consequences for the form of the N-6
interaction; in fact, behavior similar to that of the paron-
ic S waves shown in Fig. 1 has been seen in at least one
N-6 potential model. This attractive behavior is not a
feature shared by all N-6 models.

Constraints on these behaviors can come from
demanding reasonable ground-state observables and (elas-

tic) electromagnetic form factors from a Faddeev calcula-
tion of tritium or He that incorporates the delta chan-
nels in a coupled channel approach. " ' ' Even at relative-
ly low ((2.9 fm ') momentum transfers, the discrepant
situation between theoretical and experimental deter-
minations of the isovector charge and isoscalar magnetic
form factors of the trinuclear systems is not fully
resolved. Better treatments of N-6 and 6-6 contribu-
tions to the two-body interaction look promising as ways
to understand the He (Ref. 42) and deuteron ' form fac-
tors and threshold deuteron electrodisintegration ' for

q ) 5 —6 fm '. Such calculations can be thought of as
testing the composition of a meson model of the N-N po-
tential.

F. Direct (p, n) reactions and Gamow-Teller transitions

Because of the change of charge state, the effective in-
teraction operator that drives intermediate-energy (p, n)
direct reactions on nuclei selects the isovector part of the
p -n interaction.

In the distorted-wave impulse approximation (DWIA)
analysis of (p, n) reactions, it has been argued that at
sufficiently high energies (&80 MeV) the free N Nin--
teraction can be used to represent the effective interac-
tion. In the DWIA, the (p, n) cross section at 0' and at
zero momentum transfer depends upon the volume in-
tegrals of the isospin (v& w2) and spin-isospin
(o'& o'zr& r2) components of the two-body potential.
These volume integrals are coe%cients of the Fermi and
Gamow-Teller matrix elements.

The energy-dependent volume integrals have been ex-
tracted from O' A (p, n) A' cross-section data using the
DWIA, for incident proton energies between 5 and 200
MeV. A realistic meson model can reproduce their be-
havior. Phenomenological effective interactions have
been used to produce the same behavior, but do not
make connection with low-energy phase-shift data. Our
work suggests that such phenomenological potential
models not having a strong isovector core might have

difhculty describing the magnitude and energy depen-
dence of these volume integrals. However, the problem
of estimating effects due to medium modifications clouds
this issue somewhat.

G. Tests of the fundamental symmetry
embodied in the Pauli principle

Although we have presented the Pauli-violating states
of the the two-nucleon system as an heuristic (if unphysi-
cal) device for clarifying the isovector content of various
model potentials, there has been some speculation in the
literature that the Pauli principle may be an approximate
rather than an exact symmetry. If this were the case,
then it would be appropriate to ask what form the poten-
tial takes for two nucleons occupying a totally symmetric
quantum state.

A Pauli principle violation is permitted in a theory pro-
posed by Greenberg and Mohapatra. Their commuta-
tion relations allow a system of identical fermions,
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dubbed "parons, " to occupy with small probability a to-
tally symmetric quantum state. Experiments were initiat-
ed and conducted for signatures of paronic electrons in
atomic systems, but no proposals of detecting paronic nu-
clear systems were made.

Greenberg and Mohapatra have since retracted their
theory because the norms of their quantum states are not
positive definite. However, the absence of a valid quan-
tum field-theoretic mechanism does not prevent viola-
tions of the exclusion principle from being posed and
sought within the context of quantum mechanics. One
can still speculate whether some other theory would al-
low fermions to occupy symmetric states. The predicted
X-X potential in these states would then be critical in de-
ciding where to look for such violations.

Our results show that our understanding of nucleon-
nucleon potential models fram nuclean-meson-delta mod-
els is not yet su%ciently stable to offer unambiguous
statements about the nucleon-nucleon interaction in pa-
ronic states. Our prediction of the existence of a paronic
two-nucleon bound system is model dependent.

Most Bonn and other meson-exchange models in this
study produced such bound states, with wave functions
peaked and localized at small (less than 1 fm) separation
between the two nucleons. This result is unphysical. The
existence of a short-range repulsion between nucleons is
used to justify an expansion in the range of the mesons
exchanged. The near-completeness of the processes in-
cluded in the Bonn model is reached only if the ex-
changed mass of the virtual particle(s) is comparable to
the range of the repulsive core. For a state with
significant probability at short range, this expansion in
the range of exchanged mesons would need to include
many more short-range processes; the types of processes
represented in the Bonn model are incomplete in
representing the physics at such short separation.

We note from Fig. 1 that the paronic interaction is
repulsive in to a radius of 1 fm, discouraging two separat-
ed parons from forming a bound state. Without an at-
tractive two-body force, it seems unlikely for nucleosyn-
thesis to incorporate parons into nuclei of more than two
nucleons.

If we assume that paronic bound states exist and have
the properties found using the Bonn OBE potentials, a
number of factors would make them detectable. First, of
course, the diproton would be doubly charged. Even for
the n -p paronic state its difference in binding energy from
that of the normal deuteron would lead to a substantial
isotope shift. A 'So paronic bound state would lack a nu-

clear magnetic moment, leading to the absence of
hyperfine structure. Paronic nuclear systems, which
could perhaps be created in the early Universe or in col-
lisions, could be detected by such signatures. However,
the long-range repulsion reduces significantly the proba-
bility of finding such states even if they are possible in
principle.
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APPENDIX: ISOSPIN DECOMPOSITION
OF THE EFFECTIVE LOCAL POTENTIAL

u(rp)= V, )(r)+(A/M) fp co(r)+co(r)p ], (A 1)

where M is twice the reduced mass of two nucleons and p
is the relative momentum operator.

If Ri(r) solves the Schrodinger equation with the non-
local potential U(r, p), we may transform to an effective
local equation by introducing

ui(r) =r [I+2Aci)(r)]Ri(r) . (A2)

The nonlocal Schrodinger equation for R, (r) then be-
comes a local Schrodinger equation for ui(r). This
Schrodinger equation contains an effective local potential
given by

W' (k, r)= 1

1+2kco( r )

Q2 l2—2A,k co(r)+-1+2lco(r),
Since the function co(r) is of short range, the functions
R&(r) and u (r)i/r have the same asymptotic behavior.
Hence, phase shifts calculated for ui(r) are the same as
the true phase shifts.

The first factor in brackets in Eq. (A3) shows the pres-
ence of nonlinear coupling. Through this factor isoscalar
mesons can contribute to the isospin dependence of 8 ' .

To exhibit the coupling, consider the decomposition in
Eq. (2.1) of the effective local potential into isoscalar and
isovector components. To see how isoscalar parts in the
original form (Al) contribute to the isovector component
of Eq. (2.1), we note that co(r) has an isovector part.
Therefore, we can write the isospin structure of Eq. (A3)
as

%'hen a nonlocal potential is replaced by an effective
local potential, the isospin depend. ence in the origina1
nonlocal form gets mixed when the local form is separat-
ed into parts of good isospin.

To see this, we brieAy consider the treatment ' of p
terms in r-space potentials. Momentum-dependent forms
are readily generated in meson-exchange models, and
have been used phenomenologically with good success. If
the nonlocalities are expanded in momentum space, the
first-order nonlocality takes the form

We thank Q. W. Greenberg for suggesting the problem
of violations of the Pauli principle in nuclear systems.

1 (3+8~, r~),1+C +De)-v2
(A4)
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with

24'(r) =C +Dr, (A5a)

8";, = 3 —CA 3D—B+O(C,CD, D ),
IV;„.=B —CB D—(A 2—B)+O(C,CD, D ) .

(A6a)

(A6b)

V„„,(r) —2Ak co(r) = A +Br, r2, (A5b)

2~ local + ~ nonlocal k

2+ local ++nonlocal k

(A5c)

(A5d)

We have dropped the last term of Eq. (A3), since it is
quite small in practice. In a meson model, the A,co(r) in
Eq. (A3) and V& „ieach contain contributions from both
isoscalar and isovector mesons. We represent isoscalar
contributions by 3 and C, and isovector contributions by
8 and D.

Since ~l.~2 is diagonal in a basis of good total isospin,
any function of this operator will be diagonal in isospin
space. This enables us to treat ~, ~2 as a c number in
forming the expectation value of the IV' of Eq. (A4) in
each isospin channel. Solving for 8 ';, and 8 ';„yields

We have only kept leading terms in C and D since they
are both small compared to l.

We see from Eq. (A6b) that isoscalar contributions,
represented by terms 3 and C, contribute to 8",, . The
terms C and D, the coefficients of the p terms of Eq.
(Al), provide the mixing. Terms like this are generated
by the one-meson exchanges of all scalar and vector
mesons in a meson model. Hence, a nonlocality of the
form in Eq. (Al) enables isoscalar meson contributions to
enter W';, .

This feature prevents a simple separation of the poten-
tial into an isovector part arising from exchange of iso-
vector mesons and an isoscalar part arising from the ex-
change of isoscalar mesons. These p terms can be
significant in shaping the core region (see Fig. 3).
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