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Three- and four-nucleon ground-state wave functions are displayed graphically in coordinate
space as well as the Faddeev amplitudes from which they are constructed. In the four-body case
only two-particle correlations are taken into account in the integro-differential equation approach,
which consequently allows us to make a direct comparison between the Faddeev amplitudes for
three and four nucleons and to demonstrate their high degree of similarity in shape. We also inves-
tigate the effect of the inclusion of the hypercentral potential in the definition of the (modified) Fad-
deev amplitudes. It is shown that the Faddeev-type components calculated in the adiabatic approxi-
mation are rather similar in shape to those calculated by means of the exact solution of the system
of coupled integro-differential equations in two variables. The mixed symmetry component of the
Faddeev-type amplitudes show the greatest sensitivity to the number of nucleons, the inclusion of
the hypercentral potential, and to the adiabatic approximation.

I. INTRODUCTION

In the first paper' of this series of applications of the
integro-differential equation approach (IDEA) to three-
and four-nucleon bound-state problems, we compared
binding energies obtained by solving the two-variable
integro-differential equations for central forces with those
found by other means of other methods. In particular,
we also considered spin-dependent Malfliet-Tjon forces
leading to two coupled integro-differential equations. If
the local potential acts in all partial waves, we demon-
strated that the inclusion of the hypercentral potential in
the definition of the Faddeev components both for 3=3
and 4, which we called the IDEA, results in a consider-
able improvement in the binding energy as compared to
the approximation of the local potential by its S-wave
projection (SIDE). ' For such a fully local potential,
even in the case of the three-body Faddeev equation, a
large system of coupled integro-differential equations in
various partial waves must be solved. The IDEA, howev-
er, does not require more numerical effort than the treat-
ment of an S-wave projected potential, since the inclusion
of the hypercentral potential does not increase the num-
ber of coupled equations, although it takes the effect of
the higher partial waves in the interacting pair largely
into account.

This is also true for the four-nucleon system. In that
case two-variable integro-differential equations, in both
the SIDE and IDEA, only take the two-body correlations
exactly into account, but have been shown to give excel-
lent results for the binding energies as compared to, e.g.,
the essentially exact Green's-function Monte Carlo
(GFMC) method. ' In Ref. I we demonstrated that all

our previous conclusions concerning the SIDE and IDEA
for spin-independent forces remain valid for spin-
dependent ones. In particular, we found that the interpo-
lated binding energy obtained from the extreme adiabatic
approximation (EAA) and the uncoupled adiabatic ap-
proximation (UAA) is in good agreement with the result
obtained by the exact solution of the integro-differential
equations.

However, good agreement of the binding energies does
not necessarily mean that the wave functions are also
good approximations, as seen from the example of varia-
tional methods. It is therefore important that we also
compare the wave functions of the adiabatic approxima-
tion to the exact solutions.

In this paper we extend our previous calculations of
the binding energies and present three-dimensional
graphical plots of the Faddeev components and the wave
functions of the triton and He ground states calculated
with MT-V and MT-I/III forces. Our study is in the
same spirit as the work on graphical plots of the Faddeev
components and the wave functions for the triton
presented by Friar et al. However, we also treat the
four-nucleon system. Since we restrict ourselves to two-
body correlations only, which means that our equations
remain two-variable equations for any 2 ~ 3, our Fad-
deev components for 2=4 cannot completely represent
the exact four-nucleon wave function. The exact Fad-
deev components in this case are obtained by adding the
relevant Faddeev- Yakubovsky components which are
functions of three variables for S-wave projected poten-
tials, while our Faddeev components depend only on two
variables. They have a higher degree of symmetry in the
coordinates not referring to the interacting pair defining
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the Faddeev component. Consequently, our Schrodinger
wave function is also only an approximation of the exact
one. This is an unavoidable consequence of the restric-
tion to two-particle correlations only in our approach. It
is the price we have to pay for dealing with manageable
two-variable integro-differential equations for four and
more nucleons, and we have already shown' that this
price is not too high as far as the binding energies are
concerned.

By comparing the Faddeev components obtained by
the exact solution of the two-variable integro-differential
equations to those found by means of the adiabatic ap-
proximation, we can establish whether the adiabatic ap-
proximation is not only good for the binding energies, but
also for the wave functions, particularly for the four-
nucleon system. Another interesting aspect is that our
approach allows us to compare the Faddeev components
for three- and four-nucleon systems directly, since the
latter only include two-particle correlations and therefore
only depend on two variables. The considerable improve-
ment resulting from the inclusion of the hypercentral po-
tential in the IDEA as compared to the SIDE also lends
considerable interest to a direct comparison of their Fad-
deev components, to give us an indication of why the
IDEA is so successful.

In Sec. II we briefly summarize the formalism which
was fully explained in Ref. 1, while in Sec. III the graphi-
cal plots of the triton and a-particle Faddeev components
and Schrodinger wave functions are presented and dis-
cussed, followed by the conclusions in Sec. IV.

II. FORMALISM

In Refs. 1 —3 the integro-differential equation approach
to the many-body bound system has been reviewed and
explained in detail. The three-nucleon system with tensor
forces was treated in Ref. 5, while the extension to four
nucleons interacting with spin-dependent forces only was
given in Ref. 1, the first paper of this series.

To clarify the meaning of the Faddeev components in
the four-nucleon case, which will be presented in Sec. III,
we recall that in the so-called IDEA we define 3-body
Faddeev-type components of the wave function V(x),
where x represents all the particle coordinates and
r;~ =r; —r with r; being the coordinate of particle i, by

r

T+ Vo(r) Eg; (x)—
2

(2.1)

Here the hypercentral potential Vo(r) represents the first
term of the potential harmonic expansion of the interac-
tion. For S-wave projected two-body potentials, Vo(r) is
set equal to zero and we revert to the SIDE.'

For pure Wigner forces like the MT-V potentials, Eq.
(2.1) reduces to a single integro-differential equation and,
for spin-dependent central forces like the MT-I/III po-
tentials, to a set of two coupled integro-differential equa-
tions in two variables, namely, the hyperradius given by
r =2/Agr,

~
and the coordinate z=2r; r 1 for three-. —

and four-nucleon ground states. In terms of the coordi-

where s and t refer to spin and isospin, co;. to the angular
coordinates of r;, ~

A ) and
~
A

~ ) to the fully and mixed
antisymmetric spin and isospin state, respectively, and
the fully symmetric (S) and mixed symmetric (S') spatial
components are denoted by Po and Po. For four bodies
we have

(r; ~P,+(x,s, t)) =r Yoo(co, )

X[A )Po(z, r)+ ~A . )Po (z, r)], (2.3)

in the approximation where only two-particle correla-
tions are taken into account. This has the consequence
that only two variables z and r occur in Eq. (2.3).

In the exact four-body theory, the Faddeev com-
ponents consist of a sum of Faddeev-Yakubovsky com-
ponents, ' which in the simplest case of S-wave projected
potentials are functions of three variables each. It is
therefore obvious that each set (z, r) in the Faddeev com-
ponent of Eq. (2.3) relates to different combinations of
three variables in each of the Faddeev-Yakubovsky corn-
ponents, which together add up to this Faddeev com-
ponent.

The Schrodinger wave function which we obtain by
summing up the six four-body Faddeev components,
represented by Eq. (2.6), is therefore not the exact
Schrodinger wave function. As mentioned above, it only
takes the two-particle correlations into account and
neglects all higher-order correlations. Consequently,
both the Faddeev components and Schrodinger wave
function retain a three-body character for the four-body
system (and for 3 )4) in our approach. We can there-
fore easily compare Fad dec v components and
Schrodinger wave functions for three- and four-nucleon
systems directly.

The Schrodinger wave function 4 for three nucleons
can be written as a sum of its three Faddeev components
and expressed in the well-known form

(2.4)

where the spin-isospin states are given in Ref. 1, and
representing the Faddeev-type components g;, by the
functions Po(ij) and Po (ij), the spatial wave functions
may be written as

—5/2
—[P (102)+P (203) P+(301)],2v'

—5/2

[Po (12)——,'Po (23)——,'PO (31)],2v'
—5/2

[PO (31)—Po (23)] .
2 2v'

(2.5)

nates z and r, the even Faddeev-type component
g,+(x,s, t) can, after projection on the r; space, be written
for three bodies as

(r; ~P,+(x,s, t))=r ~ Yoo(a), )

X [~ A &P'(z, r)+
~
A )P' (z, r)],

(2.2)
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TABLE I. Three-nucleon binding energies in MeV and S and S probabilities in %.

Force Method
Exact solution

P (S) P (S')
EAA
P (S) P (S')

Faddeev
E

MT-V
MT-V

MT-I/III
MT-I/III

SIDE
IDEA
SIDE
IDEA

7.54
7.68
8.54
8.86

100
100
98.05
97.14

1.95
2.86

7.83
8.03
8.99
9.40

100
100
99.29
97.65

0.71
2.35

7.541 (Ref. 4)
7.736 (Ref. 8)
8.536 (Ref. 4)

—
—,'[Po (23)+Po 31)

+Pa (24)+Po (41)]]

(2.6)

—4
—[Po (31)+Pa (24) —Po (23)—Po (41)] .

2 2

This result can be derived from the definition of the
Schrodinger wave function %' as

V(x) = g P;)(x),
i(j~ A

(2.7)

or, alternatively, by substituting [Po(ij)+Pa(kl)] for
Po(ij) in Eq. (2.5), both for the S and S' components, and
writing r instead of r ~ . Here (ijkl) represents any
cyclic permutation of (1234).

In Ref. 1 the projection of the total wave function 4 on
the r, . space was also derived. For three-nucleon systems
it is given by

(r,) ~% (x,s, t)) =r Yoo(co;,. )

X [~ W )11;(z,r) +
~
3 )11' (z, r)],

(2.8)

where

Z+
IIO(z, r) =Po(z,r)+, j Po(z', r)dz',

[3(1—z )]'

(2.9)

For the four-nucleon system, the Schrodinger wave func-
tion is of the same form as in Eq. (2.4), but

—4

Po(ij),+ i (j~4
—4
—IPO (12)+PO (34)

2

IIO (z, r) =Po (z, r)— 1 + I

Po (z', r)dz',
[3(1—z )]'

(2.10)

III. RESULTS AND GRAPHICAL PLOTS

The numerical methods employed to solve the (cou-
pled) integro-differential equation(s) for the spin-
(in)dependent MT-V (Ref. 8) and MT-I/III (Ref. 9) cen-
tral potentials have been described in Ref. 1, as well as
those used for the solution of the corresponding extreme
adiabatic approximation (EAA) and uncoupled adiabatic
approximation (UAA). These methods have been extend-
ed to larger nuclei, like the 16-fermion system' interact-
ing by means of the MT-V force, with no increase in the
numerical effort required. In fact, it has been found that
the difference between the EAA and UAA, which pro-
vide variational upper and lower bounds to the binding
energy of the 2-body system, decreases rapidly with in-

with z+ =
—,
'

[
—z+[3(1—z )]'~ I. For four-nucleon sys-

tems we find

( r;~ ~

g+ ( x,s, t ) ) = r Yoo(co;i. )

X [~ W ) 11;(z,r) +
~

A ) II' (z, r)] ,

(2.1 1)

where IIo(z, r) for S and S' are now given by more compli-
cated expressions derived in Ref. 1. By means of Eq. (2.1)
and (2.8)—(11), the coupled system of two integro-
differential equations for Po(z, r) and Po (z, r) has been de-
rived in Ref. 1, for both the three- and four-nucleon sys-
tems. They can be solved exactly as two-variable equa-
tions or by means of the adiabatic approximation as de-
scribed in Ref. 1.

TABLE II. Same as in Table I, but for four nucleons.

Force Method
Exact solution

E P (S) P (S')
EAA
P (S) P (S')

Other
methods

E
MT-V
MT-V

MT-I/III

SIDE
IDEA
SIDE

MT-I/III IDEA

28.47
29.37
29.74

31.02

100
100
99.27

98.51

0.73

1.49

28.91
29.91
30.45

31.78

100
100
99.20

98.60

0.80

1.40

30.36 (Ref. 11)
29.6 (Ref. 12)
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MTV SIDE MTV S IDE

0.005— 500—

0.000— 0—

-0.005

FIG. l. Exact three-nucleon Faddeev amplitude P;, for the
MT-V potential in the case of the SIDE, displayed in terms of
the coordinates r and z.

FIG. 3. Exact four-nucleon Faddeev amplitude i(;, for the
MT-V potential in the case of the SIDE, displayed in terms of
the coordinates r and z. Note that the values of the z axis are
enlarged by a factor of 10 .

creasing A. The very simple EAA therefore rapidly be-
comes rather accurate for larger values of A. In this pa-
per, however, we restrict ourselves to the triton and a
particle and to the MT-V and MT-I/III forces, but also
consider the case, as in Ref. 1, where these potentials are
not only treated as S-wave projected potentials, but also
are assumed to act in all partial waves like a fully local
potential. In the latter case we solve Eq. (2.1), including
the hypercentral potential Vo(r), in our definition of the
Faddeev components. We call this approximation the
IDEA. If Vo(r) is canceled in Eq. (2.1), we revert to the
SIDE for S-wave projected potentials. The binding ener-
gies calculated for the triton and He in the IDEA and
SIDE with these forces have already been given in Ref. 1.
Some of them are again represented here together with
the probabilities P(S) and P(S') of the fully and mixed
symmetric components for the MT-I/III potential in

MTV Diff.

2I 21„

po(z, r)= g g c „s (z)s„(r), (3.2)

MTV D lf'.

Tables I and II. For completeness we also present bind-
ing energies calculated by alternative methods.

In order to solve the coupled system of integro-
differentia equations in Po(z, r) and Po (z, r), these func-
tions have been expanded in terms of Hermite splines.
The resulting system of algebraic equations has then been
solved by means of the orthogonal collocation tech-
nique. ' Writing

e "po(z, r)
Po(z, r) = (3.1)

(1—z) (I+z)ii '

with E =Pi ir /m, a=(D —5)/2, and Ii= —,', where
D =3(3 —1), the function po(z, r) is represented by

0.005

500—

0.000—
-500—

-0.005

FIG. 2. Dift'erence between the IDEA and SIDE for the ex-
act three-nucleon Faddeev amplitude it;, for the MT-V poten-
tial, displayed in terms of the coordinates r and z.

FIG. 4. DifFerence between the IDEA and SIDE for the ex-
act four-nucleon Faddeev amplitude P;, for the MT-V potential,
displayed in terms of the coordinates r and z. Note that the
values of the z axis are enlarged by a factor of 10 .
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MT I —I I I S IDE MT I - I I I S I DE

500—

0—

-500—

400—

300—

200—

100

-0 ' 5 ~(
1

0

5
4

FIG. 9. Exact four-nucleon Faddeev amplitude 1(';, for the
MT-I/III potential in the case of the SIDE, displayed in terms
of the coordinates r and z. Note that the values of the z axis are
enlarged by a factor of 10 .

FIG. 11. Exact four-nucleon Faddeev amplitude P';, for the
MT-I/III potential in the case of the SIDE, displayed in terms
of the coordinates r and z. Note that the values of the z axis are
enlarged by a factor of 10 .

employed by these authors.
Another major reason for plotting them is, of course,

to compare the Faddeev-type components f, (z, r) for t"he

triton and a particle, which in our case can easily be per-
formed as previously explained, because of our restriction
to two-particle correlations only in these amplitudes.

In Fig. I we plot the exact g, (r, z) (2 =3) for the MT-
V potential in the SIDE and display the difference be-
tween the IDEA and SIDE in this case in Fig. 2. It is
clear from these figures that both amplitudes are very
similar, which is not unexpected in view of the rather
small increase in the binding energy of about 0.14 MeV
between the IDEA, due to the inclusion of Vo(r) in the
definition of its Faddeev components, and the SIDE. As
in the plots of Friar et aI. , our amplitudes g;~(z, r) as-

sume positive and negative values. Most intriguing, how-
ever, is the similarity in the shape of g; for 2 =3 and 4,
particularly for the SIDE, but also for the IDEA, al-
though of course the normalizations differ. This can easi-
ly be confirmed from our plots of g,z(z, r) in Figs. 3 and 4.
We also note that the relatively small difference between
the binding energies in the IDEA and SIDE for 3=4 of
about 0.9 MeV corresponds to very similar shapes of the
P; (z, r). In Figs. 5 —8 we compare our exact amplitudes
P, (z, r) for 3 =3 and the MT-I/III force, which means
that we plot g;' (z, r) and g', (z, r) for both the SIDE and
IDEA. For the SIDE again our results are identical to
those of Friar et ah. , except that we employ the coordi-
nates z and r instead of Jacobi coordinates. In this case,
however, comparison between the P;"(z, r) for the SIDE
and IDEA shows a striking diff'erence in shape, while for

A=4 MTI —III D f f. MT I —I I I IDEA

500— 400—

300—

200—

-500—

0.5

0.0

-0.5

8
7

5
6

3
4

2
0

FICx. 10. Difference between the IDEA and SIDE for the ex-
act four-nucleon Faddeev amplitude 1Y; for the MT-I/III poten-
tial, displayed in terms of the coordinates r and z. Note that the
values of the z axis are enlarged by a factor of 10 .

FIG. 12. Exact four-nucleon Faddeev amplitude P, for the
MT-I/III potential in the case of the IDEA, displayed in terms
of the coordinates r and z. Note that the values of the z axis are
enlarged by a factor of 10 .
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FIG. 25. Exact four-body wave-function component Pi for
the MT-I/III potential in the case of the SIDE, displayed in
terms of the coordinates x and y. Note that the values of the z
axis are enlarged by a factor of 10.

considerable difference in P, for these cases, reflecting the
corresponding situation for the Faddeev amplitudes.

Our results confirm the conclusion of Friar et al. that
the Faddeev amplitudes are relatively smooth compared
to the Schrodinger wave-function components for the
trinucleon and show that this remains true even for the
modified Faddeev components of the IDEA, which in-
corporate the hypercentral potential in their definition.
Our simplified He Faddeev amplitudes and Schrodinger
wave functions (restricted to two-particle correlations
only) show a similar behavior.

IV. CONCLUSIONS

We have shown using the MT-V and MT-I/III poten-
tials that the Faddeev components for S-wave projected
potentials (SIDE), or for fully local potentials in the ap-

MTI —I I I Diff .

2

-300—
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-100—

0—
100—

5

FICz. 26. Difference between the IDEA and SIDE for the ex-
act four-body wave-function component P, for the MT-I/III po-
tential, displayed in terms of the coordinates x and y. Note that
the values of the z axis are enlarged by a factor of 10 .

proximation where we incorporate the hypercentral po-
tential Vo(r) in the definition of the modified Faddeev
components (IDEA), are quite similar as far as their fully
symmetric S-state components are concerned, but that
their mixed symmetric S'-state components are rather
different. In our integro-differential equation approach,
which only includes two-particle correlations for 3 ~4,
the coupled system of integro-differential equations for
the Faddeev-type components of the four-nucleon ground
state retains a three-body-like character and depends only
on two variables as for the trinucleon system. These
four-body Faddeev amplitudes can therefore be directly
compared to the three-body Faddeev amplitudes. We
have already previously seen that very good results are
obtained in this way for the four-nucleon binding energy
and even for 16-fermion systems. Here we show that the
four-body Faddeev components defined in this way are
similar in shape to those of the trinucleon system both in
the SIDE and IDEA, in particular for the fully sym-
rnetric S state. Although discrepancies occur between
the shapes of the amplitudes ttj,' for A =3 and 4, these are
not large and are smaller than those between the SIDE
and IDEA occurring for either 3=3 or 4. Of course, the
normalizations of these amplitudes going from A =3 to 4
are quite different (there are six four-body Faddeev am-
plitudes for 2=4 and only three for 3=3). The
differences between the P'," for four nucleons in the SIDE
and IDEA are quite similar to the corresponding ones in
the trinucleon. Our integro-differential equation ap-
proach therefore has the nice feature that it allows us to
investigate the 2 dependence of the Faddeev amplitudes
and their sensitivity to the inclusion of the hypercentral
potential in their definition.

Another important point which needed further investi-
gation is how accurate are the wave functions obtained in
the adiabatic approximation. Previous work has already
confirmed that the extreme and uncoupled adiabatic ap-
proxirnations produce good estimates for the binding en-
ergies obtained by the exact solution of the integro-
differential equations (by means of an empirical interpola-
tion formula). Our present results confirm that already
the Faddeev-type components calculated in the EAA
(which is less accurate than the UAA) are generally in
good agreement with the exact ones, particularly for fully
symmetric S states, but also to a lesser extent for the S'
states of mixed symmetry. In accordance with the known
fact that the adiabatic approximations improve with in-
creasing A, we find the greatest discrepancy for S' states
and 2 =3. Our general conclusion is, however, that the
adiabatic approximations are surprisingly accurate not
only for the binding energies, but to the same degree of
accuracy also for the Faddeev amplitudes, in contrast to
the corresponding behavior of variational binding ener-
gies and wave functions.

To conclude, the most interesting feature of our three-
dimensional graphical plots for the Faddeev amplitudes is
the very high degree of similarity between their shapes
for three- and four-nucleon ground states.

We have also presented the different components g, Pt,
and P2 of the Schrodinger wave function for the three-
and four-nucleon ground states for the MT-I/III poten-



43 INTEGRO-DIFFERENTIAL EQUATION APPROACH. II. 35

tial and confirmed that their behavior is as one wouM
have expected from the fact that they are obtained by
adding the respective Faddeev-type components.

Finally, we confirm the validity of the conclusion of
Friar et al. for the trinucleon that the Schrodinger wave
function has more structure (i.e., is less smooth) than the
Faddeev amplitude, for both the SIDE and IDEA. Go-
ing beyond the trinucleon wave function to four nucleons,
we have demonstrated that, when only two-particle
correlations are taken into consideration, this is also true
for the Faddeev amplitudes and Schrodinger wave func-
tions in that case.
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