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A method of minimal substitution is used to obtain the electromagnetic two-body interaction
current operator associated with a relativistic separable interaction. The result is shown to satisfy a
general restriction obtained from current conservation using the Ward-Takahashi identity within
the Bethe-Salpeter formalism. It is shown that this two-body relativistic current operator can be re-
duced to an effective one-body form. Applications of this method to nuclear few-body systems, rela-
tivistic quark systems, and hadronic resonance processes are discussed. The numerical size of the
interaction current for the pion charge form factor is estimated.

I. INTRODUCTION

It is well known that interaction (exchange) currents
should be introduced, in addition to the one-body im-
pulse current, to satisfy electromagnetic current conser-
vation. The nature of the interaction currents required
depends on the dynamics governing the system, and re-
cently it has been learned how to construct such currents
for two-body systems described by relativistic wave equa-
tions, ' such as the Bethe-Salpeter or its reduced equa-
tions. A relativistic treatment is essential at the large
momentum transfers available today.

It is shown in Ref. 1 that the proper form of the rela-
tivistic two-body current operator can be derived in a
quite general way using the Ward-Takahashi identities
for the one-body current operators and the relativistic
wave equations for the bound states. Furthermore, it was
found that phenomenological strong and electromagnetic
form factors can be introduced without violating gauge
invariance. In Ref. 5, a schematic method for deriving
the gauge-invariant interaction current for a general non-
local interaction was introduced, and the method was
used to calculate the photopion production amplitude
from a nonlocal m.-nucleon interaction Lagrangian. The
electromagnetic field was introduced through minimal
substitution in the momentum dependence of the vertex
function, and this provided a solid mathematical scheme
for deriving the gauge-invariant amplitude corresponding
to a vertex with an arbitrary functional form. In this pa-
per, a phenomenological vertex function is introduced as
part of a separable interaction, which permits us to treat
the composite structure of hadrons.

The use of a separable Bethe-Salpeter kernel is an in-
teresting and simple approach to the relativistic descrip-
tion of bound states. It is not only a mathematically con-

venient way to solve the relativistic two-body wave equa-
tion, but it also is a practical way to investigate the rela-
tivistic three-body problem. Separable interactions also
provide us with a simple description of mesons as an ex-
tended quark-antiquark (qq) system. Here, quarks are
confined by a very complicated many-gluon-exchange
mechanism, which is clearly a nonlocal interaction. In
fact, the instanton-induced nonlocal four-quark interac-
tion can be expressed in a separable form. Another ex-
ample of the usefulness of a separable model is provided
by the Nambu —Jona-Lasinio model of qq mesons, '

which incorporates the physics of a qq (superconducting)
pair by using the simplest form of separable interaction.

Separable interactions are generally expressed in terms
of products of vertex functions. It is therefore a simple
task to apply the method developed in Ref. 5 to the
derivation of the interaction current associated with the
separable force.

In this paper, we derive the interaction current opera-
tors corresponding to a relativistic separable interaction
by using the minimal substitution method. While our
procedure for obtaining the current gives a unique result,
it is important to realize that additional terms could be
added to the current which are separately gauge invari-
ant, so that the interaction current we finally determine is
not unique. It is, however, sufFicient to insure that the
original phenomenological separable interaction model
can be applied to a study of electromagnetic interactions
in a covariant, gauge-invariant manner. The results are
shown to satisfy the general constraint' obtained from
the use of the Ward-Takahashi identity and the Bethe-
Salpeter equation. With an eye to applying the results to
both relativistic few-nucleon systems and covariant con-
stituent quark models of hadron structure, di6'erent
forms of separable interaction are investigated. The ma-
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trix elements of interaction currents are evaluated with
bound-state solutions of the Bethe-Salpeter equation.
The results are reduced into a simple form, so that the
physical significance of this new current operator be-
comes clear. In general, the gauge invariance of the ma-
trix elements requires both the impulse and interaction
terms. Finally, a numerical evaluation of the matrix ele-
ments is carried out for a simple separable model of the
pion, which we regard as an illustration of the general
method. The size of the interaction current contribution
to the pion charge form factor is compared with the im-
pulse contribution.

This paper is organized into five sections and two ap-
pendices. In Sec. II, we formulate the general constraints
on relativistic two-body current operators through the
principle of current conservation. The details of how the
minimal substitution method yields the interaction
current operator corresponding to a simple form of separ-
able interaction are given. In Sec. III, the bound-state
matrix element is evaluated and a simple interpretation of
the new contribution is given. The illustrative numerical

results for the pion charge form factor are given. We ex-
pand the method to more general form of separable in-
teractions in Sec. IV, and summarize our results in Sec.
V. A matrix representation useful for the description of
the fermion-antifermion systems is used in this paper, but
methods and conclusions are general, and apply to other
systems, such as two-fermion or two-boson systems.

II. INTERACTION CURRENTS
OF SEPARABLE INTERACTION

A. Bethe-Salpeter equation and conservation
of electromagnetic current

We start with a general expression for the Bethe-
Salpeter equation for fermion-antifermion scattering am-
plitudes and derive the wave equation for the vertex func-
tion of a bound state. The equation for the scattering
amplitude IFig. 1(a)j is given by

d k"
M ps'(k', k;p)=V psr(k', k;p)+i I V p,) (k', k";p)S)„(k"+p/2)S~, (k" p /2)M„—~, s(k",k;p),

(2tr )' (2.1)

where k' (k) and p are the relative and center-of-mass
four-momenta of the system, respectively, and V(k', k;p)
is the interaction kernel. The fermion propagator with
the mass m is defined by S(p)=i(P —m+ie) ', and
greek characters are used for the Dirac indices. The
presence of a bound state implies a pole at the mass M~
in the M matrix,

r.,(k;p)r„(k;p)
M ps (k', k;p)= +R p s(k, k', p), .

p —M~

X r„,(k";p)S,,(k"—p/2) . (2.3a)

Applying the same procedure to the integral equation de-
picted by Fig. 1(b), we have the equation for the conju-
gate state,

gives the bound-state equation for the vertex function
(Fig. 2),

d4k"r.,(k;p)= J' " ",V, „(k,k";p)S,„(k"+p/2)
(2tr )

(2.2)

where R is regular at p =M~. Substituting Eq. (2.2) into
Eq. (2.1) and evaluating the residue,

lim Eq. (2. 1 ) X (p —Ms ),
p ~MB

d k"
1„(k;p)=iJ', S,,(k"—p/2)r„(k";p)

(2')
XSq„(k"+p/2)V„~s (k",k;p) .

The conjugate vertex I"(k;p) is defined by

r(k; p) = yoI'(k; p) y, , —

(2.3b)

V + V M (a)

where y is the Dirac matrix. The vertex function and
the wave function are related by

~P t)(k,P)=S (k+P/2)I ft(k;P)Ssp(k —P/2) .

k+—P
2

V + M V (b)

FIG. 1. The Bethe-Salpeter equation for fermion-antifermion
scattering matrix M (k', k;p), with a interaction kernel
V(k', k;p). The solid lines with arrows are fermions.

k-—P
2

FIG. 2. The Bethe-Salpeter equation for a bound-state vertex
function [I (k;p) ] indicated by the open circle.
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If an external photon field couples to the bound state of
the fermion-(a) —antifermion-(b ) system, the impulse am-
plitudes (Fig. 3) can be expressed in terms of the solutions
of Eqs. (2.3a) and (2.31),

(J,")= i—f Tr[ ]P (k';p')( i—e, y")
d4k

Q (2 )4 f ~ 0

X]II,(k;p)S '(k —p/2)] (2.4a)

(Jg) = i —f Tr[ 4 (k";p')S '(k +p/2)d k
(2~)'

X %, (k;p)( —iesy")], (2.4b)

FIG. 3. An example of impulse diagram ((J,")) for the
charge form factor, where a photon (wavy line) with the
momentum q couples to the particle "a."

where k'=k +q/2 and k"=k q /2, —f and i denote final
and initial bound states (which need not be the same), and
e, ]b] is the charge of the particle a (b). The impulse form
factor [FR]~ ( q ) ] is given by

F,„(q')(p +p')"= ( Jg ) + ( Jg') .

In Ref. 1 it is shown that electromagnetic current con-
servation requires the presence of an interaction current
associated with the two-body interaction, and the proper

ig =—S '(k +p/2+q) —S '(k +p/2), (2.5)

the divergence of one-body current can be expressed as

form of the current operator is obtained in a very general
way by using the wave equation and the Ward-Takahashi
identity. Here, we brieAy review the method and derive
the restriction. %'ith the use of the Ward-Takahashi
identity

d kq„(J,")= ie, f— 4 Tr[S '(k —p/2)+f(k+q/2;p')S '(k+p/2+q)]II;(k;p)]
(2]r )

d4k
+ie, f 4 Tr[]Tlf(k +q/2;p')S '(k +p/2)%;(k;p)S '(k —p/2)]

(2~)
dkdk'—=e, f f s 0'f (k', p +q)[ V(k', k +q/2;p +q) —V(k' q/2, k;p)]p—.s„%,. (k;p),

(2]r ) y

where the last equality is derived by using the wave equation, Eqs. (2.3a) and (2.31). Likewise,

d'kd4k'—
q„(J|,")=eb ff, 'Pf (k',p+q)[V(k'+q/2, k;p) —V(k'k —q/2;p+q)]p s]I], (k;p) . .(2~)' y$

(2.6a)

(2.6b)

The divergence of the one-body current is not generally zero, and we rely on the presence of a two-body current to satis-
fy current conservation,

q„(J,"+Jg+ JI'„, ) =0 . (2.7)

Thus, we obtain a general restriction to the form of the two-body interaction current, which we can express in terms of
the two-body interaction. If the above relations are to hold for any bound-state wave function, the divergence of the
current must satisfy the following operator equation:

q„J",„,(k', k; [p, q]) =e, [ V(k' —q/2, k;p) —V(k', k +q/2;p +q)]+e~ [ V(k'+q/2, k;p) —V(k', k q/2;p +q)], —

(2.8)

where eb = —eb is the charge of antiparticle b. X') x, X)

B. Separable interactions and interaction currents

%'e now derive the interaction current by minimal sub-
stitution of the photon field into a separable interaction.
In coordinate space, separable interactions have the fol-
lowing nonlocal form (Fig. 4):

X'2 X2 X'2

V psy(x'], x~:x],x2)=h p(x],x~)bsy(x], xp), (2.9)
FIG. 4. A relativistic separable interaction as a product of

two nonlocal vertices indicated by the open circles.
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where we may write the vertex as a Fourier integral,

k1d k2
g &

iklx l ik2x2g p(x'i, x2)= f f b, p(k', , k2)e ' 'e
(2' )

(2.10)

The vertex function b, (ki, k2) [=b,(k;p)], with k
—:(k, —k2 )/2 and p =k, +k2, is generally a 4 X4 matrix
for the relativistic fermion-antifermion system, and can
be expressed in terms of a sum of Dirac matrices. In
momentum space, the most general form of the separable
interaction could be expressed as

Here, 5b, (x'„x2) and 58 (x „x2) are the modifications in
the vertices b, (x', , xz) and b, (x„x2) induced by the pho-
ton field, and they are functions of the photon field opera-
tor. The two-body current operator for the one-photon
absorption process can then be obtained by taking the
matrix element of 6V with the photon field

Jt'.1(xl x2,xi, x2 q)= —(2~)'(015vlat(q)),

where a„(q) is the creation operator of a photon with the
momentum q and the polarization e„.

To obtain the detailed results, we start with the
power-series expansion,

N

V p, s (k', k;p)=g Ci, b'I3(k';p)hsr(k;p),
I', 1

(2.11) f ([k, —k2] )=g C„[k,—k2] ",

V gs (k', k;p)=b p(k', p)As'(k;p),

where

(2.12)

b, p(k';p)=f ([k', —k2l )0 p,
b. p(k;p)= f ([k, —k2] )0 p .

where X is the rank of the interaction, and the channel
couplings are CI &. For simplicity, we chose a rank-one
interaction, since the generalization to cases of higher
rank is apparent but tedious. Then,

in the Fourier integral of the vertex function,

6 p(x„x2)
d4k, d4k,

k -k. 'n- '"""""
(2.14)

Here, C„are the expansion coefficients. (It is not neces-
sary to specify them because the resummation will be tak-
en later. ) This allows us to express Eq. (2.14) as

The matrices Q and 0 are constant matrices, and

f ([k', —k2] ) and f ([k, —k2] ) are scalar functions of
the relative momenta k' and k. (It will be clear after this
simple derivation that the results for higher-rank interac-
tions would give essentially the same conclusions. More
general types of vertices will be explored later. )

The charges e1 and e2 are assigned to particle 1 and
antiparticle 2, and the electromagnetic field is introduced
through the minimal substitution of

8I"~BI'+1'e;2 "(x;)

b, &(x„x2)=gC„I'"'(x„x2)0&,

where

a
BX2

1k ix) Ik2xgXe e

I'"'(x x )=f f [k —k ] "e ' 'e
1~ 2 (2 )8 1 2

f f d4k, d4k,

(2~)s Bx 1

2'

(2.15)

for the momentum of each charged particle. In this pa-
per we do not treat charge-exchange processes, but the
ideas developed here could be extended to include such
interactions. The photon field induces a modification in
the vertex and a corresponding modification of the two-
body interaction. Because the one-photon absorption or
emission processes depend linearly on the photon field,
the modification can be expressed in the following form:

5V(x1 x2 xi x2) 5~(x 1 x2)~ xi x2)

+b(x', ,x2)56(x„x2) .

can be expressed as

5b,"&(xi,x2.q)=g c„Q &(Ol5I'"'(x'i, x2)la„(q) ),

where

(2.16a)

Through the minimal substitutions, r)t'~BI'+ie; Ai'(x;),
the matrix element of the vertex correction defined by

5bi'(x', ,x2.q) =—(Ol5b(x', ,xz ) la„(q) )

2)i

BX2

i J I
ik lx I ik 2x 2e e

BX2

Likewise,

5b,"&(x„x2.q)=g C„Q &(0l5I '"'(x, ,x2)lat(q)), (2.16b)

where
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d k, d k2nl"")(x x )=( —)"ff (22r)s ()x )

a
BX2 ax2

2n
zk

1
x i lk~x2

Here, the double angular bracket is meant to be the minimal substitution

BX2 X1
+ie, A (x, )

a +ie2A (x2)
X2

2

(2.17)

BX2
)q+iZ + 8', (2.18)

where

12
BX2

Z =e1
BA)'(x, ) BA)'(x2)

+e2 +2[e, A "(x, )
—e2 A "(x2)]

Bx", Bx 2 BX", BX

and

W = [ie, A„(x, ) ie —
A2„( x)2]

Zk )X ) Zk2xp 1 1 2 2It should be understood that the differential operators at the last term of Z operate on e ' 'e ' ' or e ' 'e ' ' in
Eqs. (2.16a) and (2.16b). The photon field is quantized and has the usual plane-wave expansion,

A (x)= f [a (q)e ' '+a (q)e' "] .
d4q

P (2 )4 P

With this notation, the inside of the square bracket in Eq. (2.16) can be expressed as

(( ' BX2 ax2
=(,2+iZ+ W)"—( )2)"

=(,2+iZ+ W)(CI, 2+iZ+ W) . ( )2+iZ+ W) —( )2)"

=(,2)" '(iZ)+(, 2)" (iZ)( (2)+ . . +, (2i Z)(, )2" +(iZ)(,2)"

n —1 (,2)" ' (iZ)( )" .
M=O

(2.19)

Note that the third equality is valid for one-photon absorption or emission processes, where (0~ W~a, (q)) and
(0)Z ~a (q) )(X~ 2) do not contribute. Then we find a compact expression

ik'x' ik'x'
gl(n)(X X )

—
( )n f f y ( )n

—1 —M(iZ)(, )Me ' 'e
(22r) M =()

gl't(n)(X X )
—

( )n f y ( )n
—1 —M(iz)o(~ )Me 1 le 2 2

d k1d k2 " 1 —ik x —ik x

M=O

The matrix elements,

& O~W(")(x„x, ) ~a', (q) )

(2.208)

(2.20b)

(0~~1"")(x'„x',) la', (q) )

appearing in Eqs. (2.16), are easily evaluated by using Eqs. (A4) in Appendix A. By using an identity,
n —1 n bn

)n
—1 —M(b)M —a

M=O a —b

and making the resummation with f (X)=g„C„X",we finally arrive at the following expressions for the vertex correc-
tions:
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d k'd k'
5X.,(xI,x2:q)= f f ' „'n.,y

n

f f
d'k', d'k,'

)12 ~P

and

C„u "(n)

[f [k', —k,' —q]') —f([k', —k', ]')]e ' 'e ' 'e
(2k', —2k2 —q) q

(2k', —2k2+q)~
If ([kI —k2+ql') —f ([k'1 —k2]')]e

(2k', —2k2+q). q

(2.21a)

d"k, d k2
5Zs, (x„x2:q)=f f „n„yC„~* (n)

(2~)'

2k —2k +q"
(2~)12 " ' (2k, —2k, +q) q

(2k, —2k2 —q)1'
+ ep

(2k, —2k2 —q) q

X[f([k, —k2 —q] ) f ([k, ——k2] )]e ' 'e ' 'e (2.21b)

where u "(n) and 111"(n) appearing in the intermediate expressions are defined in Appendix A. The momentum-space
representation of the interaction current operator (Fig. 5) is obtained from the products of the vertex (b, ) with the ver-
tex correction (55), so that the kinematical variables satisfy momentum conservation k'1 +k 2

=k1+k2+ q:

t(k I k2 kl k2'q) ~ 13(k 1 k2 )5~5 (kl k2 q)+5~ p(k1 k2 q)~s (kl k2)

where the vertex corrections 5A"&(k I, k2.q) [Fig. 6(a)] and 5bg (k „k2:q) [Fig. 6(b)] are given by

Ip Ip

5b &1(kI, k q2)=Q & e1, [f(S' )
—f (S' )]+e2 [f(S'+ )

—f (S' )]K' .q K'+ q

and

(2.22)

(2.23a)

xi' K"
5b,"p(k„k2:q)= —0 p e, [f(S+ ) —f (S )]+e2 [f(S )

—f (S )] (2.23b).q K .q
Here S"=—k

~ k2 S+ =k
& k2 +q and K+' =—2k'&' —2k2'+q. The matrix element of the interaction current is

evaluated by using the solution of the Bethe-Salpeter equation [%(k;P)],

[ V(k' —
q /2, k) —V(k ', k) ]

K'"
[ V(k'+q/2, k) —V(k', k)] .—e2 [V(k', k —q/2) —V(k', k)]+e2

K -q K'+ .q

d4kd4k—
(JI'„, ) = ff, ez(k';p+q)JI'„, (k', k:[p,q])%,(k;p),

(2~)
where the interaction current operator is expressed in terms of the interaction

K~+ K'"
JI"„,(k', k:[p,q])= —e, [V(k', k+q/2) —V(k', k)]+e, .q

(2.24)

(2.25)

k')

k2

k' -q k+k

FIG. 5. A two-body interaction current operator expressed
in terms of the product of a nonlocal vertex and a vertex
modification (hatched circle).

(a)

FIG. 6. The vertex modification (5A) induced by the substi-
tution of photon field into the vertex (6).
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The divergence of the interaction current is given by

q„JI'„,(k', k:[p,q])=e, [ V(k' —q/2, k)

—V(k', k +q/2)]
+e2 [ V(k'+ q /2, k)

—V(k', k —
q /2) ] . (2.26)

Here, e, and e2 are the charges of the particle and an-
tiparticle. We observe that the interaction current de-
rived here, by the minimal substitution method, satisfies
the general constraint [Eq. (2.8)], obtained from current
conservation.

Because terms linear in the photon field enter into the
final results only, it is clear that the conclusion given by
Eqs. (2.25) and (2.26) is still valid for the case of higher-
rank separable interactions. In Sec. IV, we extend the
present result to separable interactions having momen-
tum dependences in the matrix Q, but continue to restrict
ourselves to the rank-one separable interaction.

III. MATRIX ELEMENTS
OF THE INTERACTION CURRENT

FIG. 7. Matrix element of the interaction current operator,
where the open circles are bound-state vertex functions.

where A' is the normalization constant. Note that
V(k', k) =(g/JV )I (k')I (k). The eigenvalue conditions
1s

d kl=t j [I (k)S(k+p/2)I (k)S(k —p/2)) .
JV' (2~)

(3.2)

A. Theoretical reduction

In this section, we evaluate the matrix elements of the
interaction current operator formulated in the previous
section, by using bound-state solutions of the Bethe-
Salpeter equation. We use the simplest type of separable
interaction employed in the previous section,

V ps (k', k)=gf ([k', —k2] )f ([k, k2] )0 ~Qsr—,

(3.1)

where 0 is a constant matrix and g is the coupling con-
stant, and there is no dependence on the total momentum
p. In this case, the Bethe-Salpeter vertex function does
not depend on p, so we use the notation, I (k) = I (k;p).
The solution for the bound-state vertex function, ob-
tained from the wave equation Eq. (2.3a), has the form

I (k)=JVf ([k, —k2] )&,

(Throughout this section the curly brackets are meant to
be the traces of the Dirac matrices and matrices describ-
ing the other degrees of freedom which enter the prob-
lem. For example, in the quark model the traces of color
and flavor matrices are taken. )

It is possible for the eigenvalue equation (3.2) to have
more than one solution, corresponding to the existence of
excited states. In order to treat the most general case, we
will assume at least two solutions to exist with 'nasses

p —p and p —p
The Bethe-Salpeter equation and the interaction

current operators are covariant, and the scalar matrix
elements should not depend on the frame in which they
are evaluated. We chose the Breit frame. The four-
momenta of initial and final states are given by

p =(P —q)/2 and p'=(P+q)/2 with their respective
masses p and p', and the expression for the current, Eq.
(2.25), becomes

JI'„,(k', k:q)= —e, [V(k', k+q/2) —V(k', k)]—1
[V(k' —q/2, k) —V(k', k)] +(e2 term), (3.3)

where g„=(4k +q)„/(4k +q).q and („'=(4k' —q)„/(4k' —q).q. Hereafter we drop the ez term for simplicity. The ma-
trix element of the current operator describing the transition from a bound state of mass p to one of mass p, both de-
scribed by the same I, is given by

(J ( )) f d k I d k [J~ )(2' ) (2' )

where

I J",„, )
= [S(k' —p'/2)I (k')S(k'+p'/2)]&+f'„, (k', k:q) &s [S(k +p/2)I (k)S(k —p/2)] s .

(3.4)

See Fig. 7. The use of the Bethe-Salpeter equation considerably simplifies the matrix element, giving
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( Jt'„, (q) ) = ie, f d k (k+q/4)"
(2~)~ (k +q/4). q

[ [I (k +q/2) —1 (k)]S(k +(P —q)/4)I (k)S(k —(P —q)/4)]

i—e, f [S(k —(P+q)/4)I (k)S(k +(P+q)/4)[1 (k —q/2) —I (k)]] .
d k (k —q/4)"
(2~)' (k —q/4). q

(3.5)

The interaction current can be reduced further by shifting the integral variable, k —+k +(P —q)/4 in the first and
k ~k +(P +q)/4 in the second terms. We get

( ~ ) . d k (k+PI4)"
(2~)4 (k +P/4) q

X( [[I (k +(P +q)/4) —I (k +(P —q)/4)]S(k +(P —q)/2)I (k +(P —q)/4)S(k)]
—fl (k+(P+q)I4)S(k +(P+q)/2)[1 (k+(P —q)/4) —I (k +(P+q)/4)]S(k)] ) . (3.6)

In the Breit frame, the kinematical variables are given by

p"= ,'(P q—)"=—(E, —aq),
p'"= ,'(P +—q)"=(E,[1—a]q),
q"=(O, q),
P"=(2E, [1—2a]q),

where a satisfies

(p2 +a2q2)1 /2[~/2+( 1 a)2q2]1 /2

(3.7)

and it is convenient to introduce the orthogonal four-vectors q" and ri"=P" (P q/q )q&.—Using the fact that the d k
integration will turn k" into a multiple of q" and P", we can project the four-vector (k +P/4)" in Eq. (3.6) onto these
vectors:

(k+PI4)"=(k+PI4) ri +(k+PI4) q
q

(3.8)

This separates the matrix element of the interaction current into two terms, one proportional to q" and the other pro-
portional to g",

Using the eigenvalue condition Eq. (3.2), the second and fourth terms in the q" part cancel in Eq. (3.6), and the q"
part can be written

( Jt'„, (q) ) =ie, f [I (k +(P +q)/4)[S(k +(P q)/2) S(k —+(P+q—)/2)]I (k +(P —q)/4)S(k)]dk q"
(27r ) q

=ie, f [I (k+p'/2)S(k+p')( ig)S( k—p+)1 (k+p/2)S(k)],dk q"
(2'�) q

where the identity

S( 3 )
—S(B)=S(B)[S '(B)—S '( A)]S(/I )

(3.9)

is used to obtain the last equality. Note that this matrix element, when combined with the impulse process, gives a new
relativistic impulse approximation (RIA) with the photon-fermion vertex y" replaced by y"—gq" /q,

d k(JL,~(q))G= —e, f z [I (k+p'/2)S(k+p')(y" —gq"/q )S(k+p)1"(k+p/2)S(k)} . (3.10)

Note that this new form of the RIA now explicitly conserves current, even if pWp . To summarize: the sum of the
original relativistic impulse approximation and q" part of interaction current

[(Jg, (q))+(J";„,(q)), =(Ja, (q)) ]

is equivalent to the result which would be obtained using an efFective photon-fermion vertex y"—
gq "/q (Fig. 8) in the

impulse diagram. Furthermore, q„(y"—
gq "/q2) =0 identically, so that this new RIA is gauge invariant.

Return to the g" part of the interaction current. We will write this as

(Jf'„,(q))„=if [[JP(q)S(k+p)I (k+p/2)S(k)] —[S(k)1 (k+p'/2)S(k+p')JP(q)] ] .
d'k

(2m. )
(3.1 1)
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FIG. 8. The matrix element of the effective photon-fermion
vertex, y"—

gq "/q, indicated by a solid circle.

and

I (k +p'/2) —I (k +p/2)Xq~
(k +P/4). q

(( (k+g/4) r)

(3.12a)

I (k+p/2) —I (k+p'/2)
(k+P/4) q

From the form of this expression, the g" part of the in-
teraction current can be considered to be a new contact
interaction which arises because of the structure of the
bound state. Because q„g"=0, this new interaction
current is gauge invariant by itself. Furthermore, if
p=p', q"=P", and it can be seen that (Jt'„,(q))„=0
when q =0. Hence, the interaction current does not con-
tribute to the charge form factor F(q ) at q =0. This al-
lows us to determine the normalization of the wave func-
tion, JV, from the normalization of the RIA process
alone. [To see that (Jt'„,(0))„=0, note that p=p' im-
plies that Eqs. (3.12a) and (3.12b) have equal magnitude
but opposite sign, and hence the two terms in Eq. (3.11)
are identical when q =0 or p =p'. Changing the integra-
tion over the time component ko to ko Po/4 shows th—at
the integrand is odd in ko, and hence the current is zero. ]

B. Example: The pion charge form factor

Here, we apply the formalism developed in the previ-
ous sections to a simple, spin-zero, physical system. (The

where the effective "vertex currents" [Jp(q) and Jp(q)],
which can be used in the single-loop diagrams (Fig. 9),
are given by

Jy( )
(k +g/4) g

formalism can be extended to higher spin systems, if
desired. ) We introduce a simple model of the pion as a
relativistic quark-antiquark system interacting via a se-
parable interaction. We have found that such a separable
model can give a phenomenological soft pion wave func-
tion which successfully describes the pion form factor
and weak decay. " In this paper, we use another separ-
able model which is, in some respect, simpler. ' In this
section, we calculate the matrix elements of the interac-
tion current contribution to the pion charge form factor,
and compare the results with the RIA.

Our model is motivated by our search to identify an in-
teraction that renders the Bethe-Salpeter equation analyt-
ically solvable. We chose the following interaction:

V .s (k', k) =g
D(k' ) D(k )

(3.13)

where D(k )=k —A with A-few hundred MeV, a
typical hadronic mass scale. This separable potential is
taken to be an effective interaction between constituent
quarks forming a meson, and the Bethe-Salpeter equation
is solved for a quark mass in the range m =200—400
MeV. Our model can be regarded as a covariant general-
ization of the Nambu —Jona-Lasinio model; the form fac-
tor 1/D(k ) cuts off all loop integrals in a covariant
fashion. In addition, the pion vertex functions which
emerge from this model are covariant generalizations of
Hulthen-like functions, familiar from nuclear physics ap-
plications. The parameter A is clearly related to the size
of system. The details of the calculation are given in Ref.
12, including the effect of vector meson dominance.
Here, we focus on the evaluation of the interaction
current.

The bound-state solution for the mqq vertex is simply

I (k)=
D (k2)

(3.14)

where JV is the normalization determined from the nor-
malization of charge. This simple vertex actually gives a
pion wave function which contains all of the four invari-
ant functions' necessary to describe the wave function of
a pseudoscalar meson. In addition, the invariant func-
tions now depend on both k and k.p.

The normalization JV can be obtained by calculating
the RIA amplitude only, FR,~(0)=1, because the in-
teraction current does not renormalize the charge. Intro-
ducing the color and fIavor wave function, the weak pion
decay constant is given by

f = — Qn, JVf

D(k )([k —p/2] —m )([k+p/2] —m )

(b)

FIG. 9. Matrix element of the g part of interaction current.
The solid circle is meant to be the effective "vertex current"
defined by Eqs. (3.12a) and (3.12b).

(3.15)

where n, =3 is the number of colors. The RIA to the
charge form factor of the m is given by
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Tr[y (p" +tt'+m)y"(P+k'+m)y (k'+m)]
(2n) D([k+p'/2] )D([k+p/2]~)([k+p'] —m )([k+p]2—m )(k2 m—)

(3.16)

From the symmetric structure under the interchange of variables p~p', the right-hand side of Eq. (3.16) is only propor-
tional to [p +p']", refiecting the fact that the pions in the initial and final states are real with equal mass p. Therefore,
the q"-dependent part of the interaction current, which can be obtained by replacing y" by gq" /q in the impulse dia-
gram, does not contribute. The other, g part, interaction current contribution is not zero, and we calculate it.

Since the initial and final states are physical pion states, p =p' =p =p', it follows that g"=P" and q P =0. The
effective "vertex currents" defined by Eqs. (3.12a) and (3.12b) become

([k+P/4] P) „5 1

P ([k+p/2] —A )

1

([k+p'/2] —A )

and

k.P+ 1 PPy5

P 4 ([k+p/2] —A )([k+p'/2] —A )

IcP 1 P"r'J (q)= —e,A z
+-

P 4 ([k +p/2] A)([k—+p'/2] —A )

(3.17a)

(3.17b)

Inserting into Eq. (3.11),we get the correction to the charge form factor

iA dk 4k P+P
P (2~) ([k +p/2] —A )([k +p'/2] A)(k —m)—

m +p /4 (k+p/2—) m +p /4 —(k+p'/2)
([k+p/2] —A )([k+p] —m ) ([k+p'/2] —A )([k+p') —m )

(3.18)

The numerical results for the interaction current
correction [F;„,(Q )] and the impulse form factor
[ER«(Q )] are presented in Figs. 10 and 11. Model pa-
rameters used in the three sets of results are listed in
Table I, along with the results of the pion charge radius
(r'" =0.66 fm) and weak decay constant (f'" =93
MeV). The effect of the interaction current on the charge
radius is about a percent, as is seen from the slope of the
results in Fig. 10. In Figs. 12(a) and 12(b), we observe

I

that the interaction current contributes a significant
amount to the charge form factor in the large-
momentum-transfer region. This reduces the total mag-
nitude of the soft form factor [FR«(Q )+F;„,(Q )].

IV. A GKNKRAI. IZATION

In Sec. II, the interaction current was derived for a
very simple form of separable interaction, where the ma-

0.000 I I I I I I I I I I I I I I I I

—0.005

—0.010
02

—0.015

I:t —0.080
f=r,

—0.085

—0.030 t I I I I t I I I I I I I I I I I I I I

2 4 6 8 1

.U:omentum .ransI:er Q (GeV

FIG. 10. The contribution of the interaction current in the charge form factor of pion. Here, Q'= —q' & 0. The meaning of three
lines is m (quark mass) =300 MeV and A =500 MeV (solid line), m =300 MeV and A =750 MeV (dashed line), and m =200 MeV and

A =500 MeV (dot-dashed line).
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I
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FIG. 11. The impulse form factor Fa,A(Q ). The meaning of

lines is the same as Fig. 10.

Mornenturn transfer Q [(GeV/c) ]

trix in the vertex was assumed to be independent of mo-
menta associated with the charged particles. Here, we
apply the same method to a more general form of separ-
able interaction which has a simple momentum depen-
dence. It will be shown that our result for the interaction
current satisfies the general restriction from current con-
servation, Eq. (2.8).

We use a rank-one separable interaction,
V p.s~(k', k;p)=b, f3(k', , k~)As (k„k2), (4.1)

which is a product of two vertices conserving the total
momentum of the initial and final states,

p'=k', +k2=p =k)+k~ .
We introduce the momentum dependence in the follow-
ing form:

b(k;p)=g fj([k, —k~] )Q, (k„k~)
J

= fo([k, —k2] )8+2f, ([k, —k2] )0g

I I I

I

I I I I (j I I I I

I

I I I I

I

I I I I

I

I I I I

— (b)

I0.4

L
(3

0.2
(')

CY

0.0
+f~([k, —k~] )Gp

+f3([k, —kz] )6(kp —pk'), (4.2)

where k =(k, —k2)/2 and p =k, +k2, and 8 is a con-
0 5

, I. . . , 1 —,
,
—,—,

I
—,—, ;, -t —,

,
—, —,

10 15 20 25 3

TABLE I. Quark mass (m) and cutoff mass (A) used in the
model of pion, and the numerical results of static observables,
r (pion charge radius) and f (weak decay constant).

MornentuIn transfer Q [(GeV/c) ]

m (MeV)

300.0
300.0
200.0

W (MeV)

500.0
750.0
500.0

r (fm)

0.64
0.55
0.84

f (Me V)

108.0
123.0
81.9

2FIG. 12. Each contribution of the impulse [F«~(Q )] and
interaction [F;„,(Q ) ] form factors multiplied by Q . The
meaning of lines is the same as Fig. 10. The experimental data
are taken from Ref. 14.
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stant matrix to be chosen depending upon the specific
modeling of the interaction. The results obtained with
this model can be immediately applied to any interaction
of this general form. For example,

V(k' k p)=f ([k' —kz] )fz([k, —kz] )8P'8P

or

V(k', k:P)=g f ([k', —kz] )fj([ki —kz] )

J

XQ.(k', , kz)Q (k„kz) .

%ith the notation introduced in Sec. II, S":—k i k2',
S~'=—k", —k,')+q, and r"=2k(,' —2k,'~+q,
the modification of the vertex, Eq. (4.2), caused by the in-
troduction of photon field is given by

gb, &(x„xz)=g f f [«f (S )Q (k, , kz)» —f, (S )Q (k, , kz)]e ' 'e
(2'�)'

d k, d k=y f f ', ' [[«f (S )» —f (S )]Q (k„k )
(2~)'

+f (S )[«Q, (k. „k )» —Q, (k„k )]Ie ' 'e (4.3)

Here, again, the linear dependence on the photon field, which is a characteristic aspect of one-photon processes, is used
in the last equality. In this respect, the evaluation of two-photon interaction currents appearing in two-photon process-
es, such as Compton scattering, would not be trivial at all. Note that the momentum of charged particle 1(2), k, iz), is

replaced by (1/i)BIBxi~z~ in fj([k, —kz] ) and Q(k„kz). Using Eqs. (Bl)—(B4) in Appendix B, we can derive the fol-

lowing expression for the second term in Eq. (4.3):

y f f ', 'f, (S')[((Qj(k„k,)» —Q (k„k )]e ' 'e'"'"'
(2m. )'

=g f f ' e' '"'e' '"'[a„(q)Aj(k„kz, q)+a„(q) Aj"(k„kz, —q)], (4.4)
(2~)'

where

Ao(k„kz, q) =0,
Aii'(k„kz, q)

Az(k„k„q)

r

—iqx
1

l tgX 2'(S )ei8y"e '+ '+ ~ '(S+ )ez8y"e
J2 J2

A3(k„kz, q)=f3(S )ei8(y"kz kzy")e —' f3(S+ )ez8(y"P, —k,y")e—
The first term in Eq. (4.3), which we obtained in Sec. Il, can be written

d'k, d4I,f f ', ' y [«f, (S') » —f, (S')]Q,(ki, kz)e
j

where

= ff, e ' 'e ' 'faz(q)C"(k„kz, q)+a„(q)C"(ki, kz, —q)],(2')'
(4.5)

C (k&, kz, q)= —ei g [f (S ) f (S )]Q (ki, kz)e ' ——ez . g [f (S+ ) —f (S )] Q( k, ik)ez

The vertex modifications are obtained by taking the matrix elements of Eqs. (4.4) and (4.5) for the one-photon absorp-
tion process. The interaction current is then the sum of products of vertex and vertex modification terms which satisfy
momentum conservation ( k i + k z +q =k 'i +k z )

J"(ki,kz', ki, kz.q)=5bi'(k i, kz.q)iT(ki, kz)+b(kI, kz)5b(ki, kz..q), (4.6)
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where the vertex modifications are

5bi'(k', , k~:q)=+e, g [f (S' )
—f (S' )]A, (k', , k~) f,—(S' )8y" f2—(S' )6y" f—3(S' )6(y"I/2 k—2y")1& 2 1

Ip+e2, g [f,(S'+. )
—f (S' )]Q)(k', , k2)X' q

+f, (S", )6y~ f, (—S' )6y~+f, (S", )6(y~g, g—,y~)

5~"(ki k2:q)= —e) g (f, (S+ ) —fj(S )]Q.(k, , kz)+f, (S+ )y"8+f2(S2+ )yi'6+ f3(S~+ )(k2yi' —yi'k )6L+ -q

—e2 g [f)(S )
—fj(S )]Q.(k„k2).q J J J 1& 2

f)(S' —)y"8+f~(S' )y"8 f3(S' —)(g, y"—y"g, )6

Note that

g f Q, (k„k~) f,6$ f~8—q —f38—(gk'~ —k2$)=g f fl, (k, —
q, k2)

g f 0 (ki, k~)+f, 8$ f28/+f36(—(k', —g, g)=g f O, (k„k2 —q) .

With the use of these identities we can express the divergence of the current in a very simple form:

q„56"(k', , k~:q)=+e, g [f,(S' )0 (k', q, k2) ——f (S' )A (k', , k2)]

+e2 g [f,(S+ )Q~(k', , k2 —q) —f (S' )0 (k', , k2)]

=+e, [b(k', q, k,') —b(k—'„k', )]+e,[b(k'„k', q) A(k'„—k,')—] (4.7a)

q„56 (k„k~:q)=—e, [b(k, +q, k2) —A(k„k~)]—e~[A(k, , k~+q) —b(k„k2)] .

Finally, we observe the divergence of the interaction current to have the desired form

q„J"(kI,kz, ki, k2.q) =+e&A(k i
—q, k2 )b(ki, kz)+ezra(k'&, kz —q)Z(ki, k& )

—e, b(kI, k2)b(k, +q, k2) —e~h(kI, k )h2(k„k +2q)

(4.7b)

=+e, [ V(k' —q/2, k:p) —V(k', k +q/2:p +q)]+ez[ V(k'+q/2, k:p) —V(k', k —q/2:p +q)] .

(4.8)

V. SUMMARY
The present study uses the minimal substitution

method to obtain the interaction currents associated with
a relativistic separable interaction. We start with the
Bethe-Salpeter equation for a fermion-antifermion system
(for definiteness only) with a general form of the interac-
tion kernel. Using the wave equation of a bound state
and the Ward-Takahashi identity for the divergence of
the one-body current„we demonstrate that bound-state
matrix elements of the total current are conserved, pro-
vided there exists a two-body interaction current. This

I

interaction current must satisfy the general constraint
Eq. (2.8), which can be expressed in terms of the interac-
tion kernel.

The specific form of the interaction current is then
constructed for a simple separable interaction. Bound-
state matrix elements of this interaction current are eval-
uated, and it is shown that the two-body current operator
can be reduced into an effective one-body operator, which
contains two terms. One term is a photon-fermion vertex
correction, Eq. (3.9) or (3.10), and the other is a new in-
teraction term involving the bound-state vertex, Eq.
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(3.12). It is shown that the interaction current does not
contribute to the charge form factor at q =0 for this sim-
ple form of the interaction, so that the normalization
constant of the wave function is obtained from the charge
normalization of the impulse process alone.

As an example, the interaction current contribution to
the pion charge form factor is calculated in a model in
which the pion is a bound state of a quark and antiquark
interacting through a separable interaction,

Salpeter equation. The calculation of the charge form
factors, including the efFect of the interaction current, is
quite possible and interesting. Baryon resonance produc-
tion, such as yN~h~mX, can be studied with a separ-
able interaction model, which incorporates nonlocal as-
pects' associated with the propagation of a resonance
particle and its extended structure. Lastly, employing the
separable interaction technique presented in this paper to
study NX physics is quite possible.

V(k', k) -F(k')F (k)y'y

The result shows that the interaction current contribu-
tion is significant, especially in the large-momentum-
transfer region. However, the interaction current does
not contribute significantly to the charge radius.

Many applications of the formalism in this paper come
to mind: For example, Tjon and Rupp obtain relativistic
wave functions of two- and three-nucleon systems by us-
ing a separable two-nucleon interaction in the Bethe-
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APPENDIX A

By applying the plane-wave expansion of the photon field,

(x)= a (q)e ' +a (q)e' ",d4q
1t (2 )4 P 12

in the expression

BA "(x, ) BA "(x )
Z =e1 +e2 +2[e& A~(x1) —e2A&(x2)]ax~ ax~

we get the following useful formula:
4

iZe ' 'e ' '= f [a„(q)F"(k1,k2, x1,x2)+a„(q)G"(k&,k2, x&,x2)],
(22r )

where
~ t ~ t

F"(k„k2,x„x,)=e&(q+2k2 —2k, )"e ' 'e ' 'e '+e2(q+2k, —2k2)~e ' 'e ' 'e

and

(A1)

G"(k&, kz, x1,x2)=e1( —q+2k2 —2k1) e ' 'e ' 'e '+e2( —q+2k1 —2k2)~e ' 'e ' 'e

Applying a d'Alembertian operator to F"and 0",we get

( &2) F"(k1,kz, x&,x2)= e, (q+2k2 —2k1)1"(—[k1 —k2 —q] ) e ' 'e ' 'e

+e2(q+2k, —2k2)"( —[k, —k2+q] ) e ' 'e ' 'e (A2a)

(CI, 2) G"(k»k2tx»x2)= e, ( —q+2k2 —2k, )~( —[k —k +q] ) e ' 'e ' 'e

+e ( —q +2k, —2k2)p'( —[k1 —k2 —q] ) e ' 'e ' 'e

Therefore, Eq. (1.21a) can be expressed as

d k, d k
ggn( ) ( )nf f 1 & y (~ )n

—1 —M(Z)(~ )M 1 1 2 2

M=0

n —1 d'k, d'k, d 4q=( —)" y f f f ', ', [ —(k, —k, )']
M=0 (22r)"

(A2b)

X [a„(q)( 12)" ' F"(k&,k2, x1,x2)+a„(q)(012)" ' G"(k1,k2, x&,x2)] . (A3)
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With an algebraic identity,

n —1 n g. n

a
M=0

n —1 —M M a b
a —b

we arrive at the following compact expressions:

d kid k2d q5I"(x„x2)= f ff, [a„(q)u "(n)+a„(q)iJ"(n)],
(2m. )'

d kid k2d q5It"(x„x2)=f ff, [at(q)u "(n)+a„(q)io "(n)],

(A4a)

(A4b)

where

and

[k, k2 —q—) —[k, k2]—
rk —k + &2 —rk —k

( k —2k —)~' ' ' " ' ' ''e
[k, —k2+q] —[k, —k2]

[k, —k2+q] —[k, —k2]

[k, —k~ —q] —[k, —k2]

APPENDIX B

This appendix presents the useful formulas used in Sec. IV. The external photon field induces corrections in the ma-
trix part of the vertices,

nn =f f [«n. (k k )» —n (k k )]e' '"e' '"'
(8&)

where the matrices AJ(k„k2) are defined by

2k' (j =1),
Q, (k, , k, )= P (j=2),

(kp —pk) (j =3) .

(82a)

and

The double angular bracket means the minimal substitution of photon field in the momentum of each charged particle,
and k =(ki —k2 )/2 and p =k, +k2. Then we have

5Q,

50 =
12

e" "'e"'"'
ap q rP ele '"'+e2e '"' +ap q yP ele'"'+e2e

2 2~ "

503=f f f ', e'"'"'e'"'"'[a„(q)(e,[y"g2 g2y")e
' "'

e2—[y"k, —giy"]e—' ')

+at�(q)(ei

[y"k'2 —k'2y"je ' e2[y"ki k, y" ]e— ')] . —

Introduction of a form factor results in the following expressions:

d k, d k2d qf f f ' „ f([k, —k, ]')(«[k', —k, ]» —[k', k, ])e' '—"'e'"'"'

a q y~ el g e —e2 g+ e +a q y) q~ —
q (83)

and
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d k]d k2d qIf 1' ', ', f([k, —I, ]')(« [k, Z, —u, V, ]))—[g, Z, —k, g, ])e'""'e'""'

d k, d k2d q

(2~)"
X (a„(q)[e,f (S )[y~k2 —k'2y" ]e ' e2f—(S+ )[y~P, —P, y~]e '] +a„"(q)(q~ q) )—,

where 5+ =k
&

—kz+q.
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