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Convergence of the nucleus-nucleus Glauber multiple scattering series
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The Glauber 5-matrix operator for nucleus-nucleus scattering is expressed as a finite series of ma-
trix elements involving Bell's polynomials. Analyzing n He elastic-scattering data at the incident
momentum of 4.32 GeV/c, we infer that our expansion is appreciably converging. Further, by ap-
plying closure over target and projectile states and neglecting a certain class of terms involving in-
termediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering
series terms, which invites further study as it seems to provide a simple method for calculating the
nucleus-nucleus elastic-scattering cross section.

I. INTRODUCTION

It is generally known that the entire Glauber multiple
scattering series for nucleus-nucleus scattering is difficult
to evaluate, even for the simplest nuclear models, and its
expansion in terms of the XX profile function converges
very slowly. However, for a realistic calculation one is
compelled to incorporate higher-order terms of the series
whose evaluation is beset with serious computational
difficulties because of the occurrence of multidimensional
integrals and the many-body densities of the two colliding
nuclei. This naturally has been one of the reasons for the
appearance of several expansions of the series in the
literature, ' each as an attempt to have a more rapidly
convergent series so that the entire series could be ap-
proximated by the first few dominant terms.

Franco and Varma' were the first to undertake a de-
tailed study of the problem of the evaluation of nucleus-
nucleus elastic-scattering amplitude in the Glauber model
using a generalization of the phase expansion method for
X-nucleus scattering and the independent particle model
for the two colliding nuclei, although for a practical point
of view their expansion may be truncated to a finite order
on the cast of the remaining higher-order terms which
are not worth considering: the shortcoming, in principle,
lies in its infinite nature, which makes it difficult to pro-
vide a direct interpretation to the expansion in terms of
multiple scattering processes.

Alkhazov's approach, a generalization of his correla-
tion expansion for X-nucleus scattering, was structured
along the aforementioned lines, and consequently it also
suffers from the weaknesses mentioned above. This led
Ahmad to propose an effective profile approach in which
the various terms in the expansion are amenable to a
direct interpretation of single, double, etc. , scatterings of
the nucleons of the colliding nuclei which involve virtual
excitations of the target or projectile, or both, through an
effective XX interaction. One of the merits of this ap-
proach is that it involves only a finite number of terms as
against the consideration of an infinite number of terms
present in the expansions proposed earlier. Ahmad has
applied this expansion to study a- Ca and a-' C elastic
scatterings at 1.37 GeV with encouraging results. How-

II. FORMULATION

According to the Glauber multiple scattering model,
the elastic-scattering amplitude for the scattering of a
projectile nucleus of mass number 8 on a target nucleus
of mass number A (disregarding Coulomb scattering for
simplicity of discussion) may be expressed as

Fii~(q)= Je'q [1—Ss„(b)]d b, (2.1a)

where K is the incident momentum in center-of-mass sys-
tem, b is the impact parameter, and q is the momentum
transfer. The quantity Ss„(b) is the elastic S-matrix ele-
ment and is given by

SBA (b) ( tl A 4B lS(b) I 0~ tlB ~ (2.1b)

B
S(b)= g + [1—I ~~(b —s, +s,')],

i =1 j=l
(2.1c)

where P~ and gii are the ground-state wave functions of
the target and projectile nuclei, and s, (s' ) are the projec-
tions of the target (projectile) nucleon position vectors r,
(r~) on the plane perpendicular to incident momentum,
respectively. S(b) is the S-matrix operator.

The quantity I »(b ) is the %% profile function, and it

ever, because of the computational difficulties, he could
not go beyond the first two terms of the expansion.
Therefore, not much can be said about the convergence
properties of the effective profile expansion from his
study.

In this work, we present a finite series expansion of the
Glauber model S-matrix operator for nucleus-nucleus
scattering. The expansion gives the various terms in a
nicely arranged form, which also results in a recurrence
relation for the entire nucleus-nucleus multiple scattering
series under certain approximations. This seems to be
reasonably potent enough for easy applicability of the
method to heavy nuclear systems. However, this work is
directed toward the convergence test of the proposed ex-
pansion rather than its application to calculate nucleus-
nucleus elastic scattering.
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is related to the basic NX amplitude as

r~~(b) =
~ J d'q e ' f~~(q),

2mkN
(2.2)

where X = AB.
Obviously, the entire S-matrix operator is

(2.10}

where kN is the incident nucleon momentum correspond-
ing to the projectile energy per nucleon.

Assuming the usual Gaussian parametrization for the
XN amplitude,

with

G(1)= g ( —1)"G„.
r=o

(2.1 1)

we get

kxo ww(1 'px—x ) p„~—q')2

4m
NN (2.3)

Using Eqs. (2.10) and (2.11), we arrive at

S(b)= g S'"'(b),
r=o

(2.12)

(b)
NN PNN —b IZP+Q

o. (1 i — )

NN e
4~~N1Y

(2.4)

where

r „(b—s, +s,') —r (b)
1 —I Oo(b)

(2.5)

where o.
NN is the NN total cross section, pNN is the ratio

of the real to the imaginary parts of the forward-
scattering amplitude, and Pzz is the slope parameter.

Next we introduce an effective profile function y; as
dn

dtn f=o

n —1 n —1

r=o

dn —r —1
dtn —r —1

B
x r!g g ( y," )"+ '

i=1 j=l

where

S'"i(b)=[1—I (b)] ( —1)"G„.

From Eq. (2.8) it is straightforward to see that

t=o

(2.13)

(2.14)

S(b)=[1—1 (b)] II II(1—y; ) .
i =1 j=l

(2.7)

and using it in Eq. (2.1c) to write the S-matrix operator as

A B

Noting that

G„=(—1)"„1 d"
dt" t=0

(2.15)

i =1 j=l
and expand it in ascending powers of t as

(2.8)

C(t) =1—G, t+ G, t' G, t'+ . . +(——1)~G~t"

= g ( —1)"G„t",
r=0

(2.9)

Now, in order to develop a simple method for expand-
ing S(b). We consider the expression

we get the following recurrence relation for 6„:
1 n —1

G„=—g ( —1)"G„„ IS„+, for n )0,
n „=o

Go= &

where

S„=g g (y;~. )" .
i =1 j=l

Using Eq. (2.16), the series 6(1) may be written as

(2.16a)

(2.16b)

(2.17)

C(1)= 1 —GOSI + (G,SI —GO$2 ) /2 —(G2S, —G, S2+ GO$3 )/3

+ . . +( —1) [G~,S, —G~ 2$~+ . +( —1) 'GOS~]/N .

The successive terms of Eq. (2.18) may be written as

G S, = —Y, ( —S, ),
(G,S, —G0$2)/2= Y2( —S„—S~)/2!,

(G2S, —G, S~+GO$3)/3= —Y'3( —S„—S2, —2!S3)/3!,

(2.18)

(2.19)

(2.20)

(2.21)

[G~,S, — . . +( —1) 'GOS~]=( —1) Yg( —S„—S2, —2!S3, . . . , —(S—1)!$~)/N!,

where YN is the Bell's polynomial of order X.
Using the expressions as given by Eqs. (2.19)—(2.22}, Eq. (2.10) for the S-matrix operator may be written as

(2.22)
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X 1v r„(—S, , —S„—2S„.. . , —(n —1)!S„)
S(b)= g S ("1(b)= [1 I oo(b)]

n=0 n=0
(2.23)

Substituting Eq. (2.23) into Eq. (2.1b), one may write the entire S-matrix series as

N

sa„(b)=(tl'„gz ps'"'(b) g„g~) .
n=0

(2.24)

By applying the closure over the target and projectile states, Eq. (2.16) may be written as

l n —1

&g~ga G. lp~pa &
——g ( —1) (&q~galG. „,I&~pa &&p~galS, +11&~@a&n,

+ g & @~@aIG. „,Ip', '@a '&& pa 'p', 'IS„11&~pa &) ««&0,
m&0

(2.25)

where 1(t(„' and 1ta(
' denote the excited states of the target and projectile.

Our study based on microscopic calculations demonstrates that the single-step excitation processes along with the
center-of-mass pair correlation contribute little to the elastic scattering at low momentum transfers, and whatever
significance it assumes is at large momentum transfers. Thus it is worth trying to neglect the excited-state terms on the
right-hand side of the above expression in order to get a simple result for the entire series. Subject to the limitation of
this approximation, we may use Eqs. (2.13) and (2.25) to express the various terms of the elastic scattering matrix as

1)n n —I

S,„(b)=[1—I-oo(b)]" y ( 1) (&q,—qaiG„„,lq, ya &&q„pals„, lg, g, &) .
r=0

Again, using Eq. (2.13), we may write

n —r —1

&&~&alG. . (IN~@a—&—-„,&4~4alS'" (b)It~Ca&
[1—r„(b)]"a

which, when substituted into Eq. (2.26), gives, after some rearrangement,

2n —1 n —1

Sa~(b)= +Saw
" "(b)&gagalS„+(lgwga & for n )0,

72 r=O

and

Sa'~ (b) = [1—1»(b)]" .

The expression (2.29a) corresponds to the optical limit result.
Obviously, the first few terms of the expression (2.24) are

Sa'2'(b) = [1 ~»(»] "&0A oa I
1'1( —Sl ) I 0A 0a &

(2.26)

(2.27)

(2.28)

(2.29a)

(2.29b)

s1stb)=[1 —EDO(b)]" /alla
&

p„g~), (2.29c)

Y'3( —S„—S2, —2S3 )
Sa(3A)(b)=[1 —roo(b)]Ha eAoa

'
1

'
eAoa (2.29d)

The various terms of the expression (2.24) are amenable
to a direct interpretation of multiple scattering processes
involving the effective interaction.

Equation (2.28) provides one of the possible
simplifications in the evaluation of the total nucleus-
nucleus multiple scattering series using the recurrence re-
lation derived here. However, the usefulness of this ap-
proach has not been investigated in this work.

III. SAMPLING TECHNIQUE AND CALCULATION

Using the powerful sampling technique of Metropolis
et al. , the scattering matrix Sa„(b) for the scattering of

a projectile nucleus B on a target nucleus 3 is given by

pz r pz r' S b dr] dr~dr, dr~
Sa~(b) =

fp~(r)pa(r')dr( «~«1 . «a
(3.1)

~=I@*@ lit*@ I=P ( )P (3.2)

where the position coordinates of the nuclei are generated
randomly subject to the center-of-mass constraint with
the weight
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This implies evaluation of 24-dimensional integrals in the
case of He- He elastic scattering. Needless to say, for
heavier nuclear systems the dimensionality is much
larger. We consider Eq. (2.23) for S(b), which has been
truncated at di6'erent terms in order to test the conver-
gence and to assess the number of terms required to re-
tain the full multiple scattering nature over a given
momentum-transfer region.

We generate trial configurations for the two colliding
nuclei X~ =(r", , . . . , r'„') and X~"=(rI", . . . , r~") from
initial configurations X„=(r&, . . . , r z ) and
Xz =(r&, . . . , rz ) by adding to each component m of r;
(i.e., x, y, and z coordinates) a random shift:

r;" =r, +h(u; —0.5), (3.3)

and, similarly of r,',

r" =r +h(u —0.5), (3 4)

r, +r2+r3+r4
p,'H '(r„r2, r3 14) No+e '5' '

i =1

(3.5)

with a =0.535 fm . The scattering data are taken from
Ref. 13.

where h is a chosen step length, and u; and u,
' are ran-

dom numbers between 0 and 1. Before accepting the new
configurations as successful trials, we impose the follow-
ing checks: (1) If 8") W, the move is accepted, and Xz'
and Xz" are used as the initial configurations for the next
move. (2) If W'/W) u;, the move is accepted; otherwise,
it is rejected, and X~ and Xz are kept as the initial
configurations for the next move.

We start the calculation with r; =r,' =0 and h =1.5
and allow to move the system 100 times before S-matrix
calculations begin. In order to reduce the correlation, we
moved the system 10 times between two consecutive S-
matrix calculations.

For each successful trial the real and imaginary parts
of the S-matrix element along with the error bars are cal-
culated as a function of impact parameter. In this study,
the large momentum transfers show the limitations of the
Monte Carlo method, particularly beyond the second
minimum where the calculations are 50—80% precise.
However, the method has an advantage of taking the c.m.
constraint exactly, even when the series is truncated at
some point where center of mass usually leads to diverg-
ing results (see, for example, Ref. 3). Further details
about precision of the Monte Carlo calculation are avail-
able in Ref. 10. The emphasis is on the convergence test
of the proposed expansion, and therefore, the results so
obtained do not alter the spirit of the paper, which is in-
dependent of the method employed. The basic in-
gredients of the calculation are the %1V parameters
cr&& =32. 3 mb, p&&

= —0.02, and f3&& = l. 86 (CxeV/c)
taken from the paper of Franco and Yin" and the single
Gaussian density model for the He nucleus

IV. RESULTS AND DISCUSSION
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FIG. 1. Differential cross section for a He elastic scattering
at 4.32 GeV/e incident momentum. The crossed and solid
curves represent the first term and full series calculations, re-
spectively. The dot-dashed, dashed, and dotted curves are ob-
tained with the evaluation of the series up to the second, fourth,
and sixth terms, respectively. The data are taken from Ref. 13.

Assuming the independent particle model for the two
colliding nuclei and taking the center-of-mass constraints
into account, we calculate a He elastic-scattering
differential cross sections at the incident momentum of
4.32 GeV/c in the framework of the expansion developed
in Sec. II by truncating it at the first, second, fourth, and
sixth terms. Since our main objective is to examine the
convergence of the expansion, we use the single Gaussian
model for He density and adopt the Monte Carlo tech-
nique for convenience. Undoubtedly, the computational
technique adapted here consumes relatively more com-
puter time, but it treats the c.m. constraint exactly. The
results so obtained are shown in Fig. 1 for the aforemen-
tioned calculational processes.

The crossed and solid curves represent the two ex-
tremum calculations corresponding to the first term and
full series, respectively. It may be seen that the first term
is quite inadequate in getting any quantitative agreement
with the solid curve even at too small q values. Further,
the positions of the minima and maxima are shifted to-
ward the forward-scattering region. It may also be noted
that for t)0.4 —(GeV/c), S~„' does not contribute
significantly.
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The subsequent inclusion of the second term, S~„',
gives significant improvement in the theoretical situation
by enhancing the difFerential cross section throughout the
momentum-transfer region covered by experiment (dot-
dashed curve). As a result, not only the experimental po-
sition of minima and maxima are well located, but also
the solid curve is reproduced at low q values (almost up
to the first minimum). The results of the calculations
when the series is truncated on the fourth and sixth terms
are shown by the dashed and dotted curves, respectively.
It is seen that the dotted curve almost coincides with the
full curve for —t (0.4 (GeV/c) . This implies that in
the q region covered in this work, the series converges at
the sixth term and that the contributions of the higher
terms are too small to cause any noticeable error up to
the second minimum.

V. CONCLUSIONS
It may be concluded that although our expansion pro-

vides remarkably satisfactory results, the convergence is
still not as rapid as to make it of much practical utility
especially when the data covers a wider momentum-
transfer region. Still the present study amply demon-
strates that the first six terms of the expansion are ade-
quate for a semiqualitative study of the data for —t & 0.4
(GeV/c) . An interesting though no unexpected feature
of the proposed expansion is that consideration of succes-
sive terms gradually reproduces the full series character
for greater and greater momentum transfers.
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