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Semiclassical distorted wave model of nucleon inelastic scattering to continuum

Y. L. Luo and M. Kawai
Department of Physics, Kyushu Uniuersity 33, Fukuoka 812, Japan

(Received 17 September 1990)

A semiclassical distorted wave model is presented for one-step nucleon inelastic-scattering pro-
cess leading to the continuous states of residual nucleus. The model is based on semiclassical ap-
proximations for the distorted waves and the Thomas-Fermi model of the nuclear states. The
squared modulus of the matrix elements of nucleon-nucleon (N-N'} interaction is substituted by the
corresponding N-N scattering cross section in the free space. The model gives a closed-form expres-
sion with no adjustable free parameter for the double-dift'erential cross section. We apply the model
to the proton inelastic scattering from "Sn, '"Au, and ' Bi at 62 MeV, and "Ni at 100 and 164
MeV. Experimental data are reproduced very well at high emission energies except in small- and
large-angle regions. The cross sections of the neutron inelastic scattering from Zr, "Sn, and

Pb at 60 and 160 MeV, for which no experimental data are available, are predicted to be quite
similar to the cross sections of the proton inelastic scattering. Calculations are also compared with
the exciton model and the multistep direct reaction theory.

I. INTRODUCTION

Preequilibrium processes of nuclear reactions have
been extensively studied since the 1960's. Various semi-
classical' and quantal methods have been proposed
and used to analyze experimental data, and their theoreti-
cal foundations have been investigated. It has been es-
tablished by now that one can distinguish two mecha-
nisms which contribute incoherently to the cross sec-
tion: ' The multistep direct (MSD) process and the mul-
tistep compound (MSC) process. Previous analyses have
shown that MSD predominates in the high-energy part of
the energy spectrum of emitted particles, and one- and
two-step processes are the most important reaction mech-
anism there. "'

The noncompound nucleus process was actually found
in the late 1940's. Serber pointed out that at high ener-
gies the first step in the reaction process could be regard-
ed as collisions of the incident particle with individual
nucleons in the nucleus whose binding could be neglected
during the short time of the collision. Based on Serber's
picture, Goldberger proposed what is now called the in-
tranuclear cascade model for nucleon-induced reactions.

A basic assumption of the cascade model is that the
collisions at different points of the nucleus do not inter-
fere with each other. Actually, the entire reaction pro-
cess is a quantum-mechanical one. The assumption
amounts to nucleon-nucleon collisions being spatially lo-
calized in the sense that outgoing waves emitted at
different points of the nucleus do not interfere with each
other.

In a previous paper, hereafter referred to as I, we have
shown that this assumption can be verified, within the
framework of the distorted-wave Born approximation
(DWBA), for the inclusive double-differential cross sec-
tion of inelastic nucleon scattering, (p,p'x) and (n, n'x).
The interference of the outgoing waves generated at
different points of the nucleus is canceled out when the

cross section is summed over a large number of nearly de-
generate, mutually uncorrelated final states of the nu-
cleus. A formula is derived for the double-differential
cross section which manifestly expresses this and au-
tomatically incorporates the effect of distorting poten-
tials, refraction, and absorption of the incident and out-
going Auxes. As in the cascade model, it has no adjust-
able parameter if one uses a free nucleon-nucleon scatter-
ing cross section in evaluating the local average two-
nucleon cross section, in the spirit of impulse approxima-
tion, and nucleon optical potentials for the distorting po-
tentials.

There is, however, one defect of the theory: the use of
the geometrical optics approximation to the distorted
waves. This approximation gives overall features of den-
sity and Aux distributions, but not in detail. For example,
it gives zero amplitude in the classically inaccessible re-
gion of space since it traces classical orbits. Also, actual
calculations with this approximation are extremely
cumbersome and have never been done.

In the present paper we extend the model of I to get rid
of the geometrical optics approximation and make use of
quantal distorted waves, though still with a semiclassical
approximation, and allow for the finite, albeit short,
range of nucleon-nucleon interaction which was neglect-
ed in I. We derive a formula for the double-differential
cross section which has exactly the same appearance as
the one derived in I. We apply the model to inclusive nu-
cleon inelastic scattering on several target nuclei at ener-
gies up to about 200 MeV. A brief report of the calcula-
tions has been given in Ref. 10.

We present the results for (p,p') from ' Sn, ' Au, and
Bi at 62 MeV, and that from Ni at 100 and 164 MeV.

Nucleon optical potentials are used for the distorting po-
tentials. The free nucleon-nucleon collision cross section
averaged over the Fermi distribution of the target nu-
cleons, with the Pauli principle taken into account, " is
used for the calculation of the local average cross section.
Thus there is no free adjustable parameter in the calcula-
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H. FORMULATION

Our model starts from the DWBA expression of the
double-differential inclusive cross section of nucleon in-
elastic scattering to continuum:

X o(Eg E, ), — (2.1)

where p is the reduced mass, k are the wave numbers, E
are the total energies, 4 are the nuclear wave functions,
and g are the distorted waves of the nucleon. The sub-
scripts i and f stand for the initial and final states, respec-
tively. We denote the energy and direction of emission

tion. The experimental data are reproduced by the model
very well at high emission energies except at very small
and large angles. We also carry out calculations for
(n, n'), even though there is no experimental data avail-
able at present. The cross sections show similar behavior
as those for the proton.

In Sec. II, the formulation of the model is described.
Numerical results of the calculations and comparison
with experimenta1 data are presented in Sec. III ~ In the
last section a summary of the work is given, and discus-
sions are given on the validity and limitations of the mod-
el, comparison with the exciton model, and previous
quantal distorted-wave models.

by c& and Q&, respectively, and the incident energy by c,
The cross section is an average over the projectile spin
directions s; and a sum over the ejectile spin directions sf
and all the final nuclear states f. The delta function en-
sures the energy conservation. The potential V is a sum
of two-body interaction potentials, V=+.U(ro, r.), be-
tween the incident nucleon and the nucleon in the target
nucleus, with coordinate ro for the incident nucleon and
r for the jth target nucleon.

Further approximations are necessary for calculating
the right-hand side (rhs) of Eq. (2.1) because of the large
number and great complexity of the final nuclear states.
Among the approximations proposed so far is the semi-
classical model of I, based on the Thomas-Fermi model of
the nuclear states, zero-range approximation for v, and
geometrical optics approximation for the g. We extend
the model to allow for the finite range of v and to make
use of quantal distorted waves, though still under a semi-
classical approximation.

We assume, as in I, the single-particle model of the nu-
cleus. We neglect antisymmetrization, which is presum-
ably a reasonable approximation unless the incident ener-

gy is too low. The potential U(ro, r ) can excite a nucleon
from an initial single-particle state &t) at energy E to a
final one (t» at E&. The subscripts a and P stand for spa-
tial, spin, and isospin quantum numbers.

For simplicity, we assume that Vand the distorting po-
tentials U, and Uf are spin and isospin independent. Ex-
tension to the case of more general v is straightforward
and is actually used in the calculations discussed in the
later sections. Under these assumptions, the average over
s, and the sum over s& give unity, and Eq. (2. 1) reduces to

20- p2
4g g drodryIP&U(ro r)P~—; 6(E&+s& E —s—, ),(2irfi ) k; (3

where the (t and y are the spatial parts of the P and the y, respectively, and n and )(3 now stand for the spatial quantum
numbers only. The summation over a (P) is over all the occupied (unoccupied) orbits in the nucleus ground state. The
factor 4 stems from the number of spin and isospin directions of the target nucleon in the initial state.

On expanding the squared modulus of the matrix element and exchanging the order of the summation and the in-
tegration, one has

1drodry&(ro)u(ro —r)g, (ro)Idrodr'y&(ro)v(ro —r')y,*(ro)K(r,r'),
()sgBQg (2iriri ~)i k;

where

(2.3)

(2.4)

Now our basic assumption is that the nucleon density )()(r) of the target nucleus is a slowly varying function of r. We
assume that the local density degenerate Fermi-gas model —Thomas-Fermi model for short —for the nuclear states is
valid for calculating K. Thus g ({)*(r')P (r) and gP&(r)P&(r') are approximated by

dg e ik. (r—r')

(2~)3 k &kF(r)

gP~(r)+rt)~(r ) dQ eik' (r' —r)1

k'& kF(r)

(2.5)

(2 6)

for r and r within a small cell in which p(r) may be regarded as constant. In (2.5) and (2.6), )rikF(r) is the local Fermi
momentum which is related to)(){r) by



43 SEMICLASSICAL DISTORTED WAVE MODEL OF NUCLEON. . . 2369

4~ kF'(r)
p(r)=4

(2~)
(2.7)

where the factor 4 takes care of the spin and isospin degrees of freedom. One sees that k~(r) is even more slowly vary-
ing function of r than p(r). The rhs's of (2.5) and (2.6) are appreciable only for ~r —r'~ ((1/kF(r). Inserting (2.5) and
(2.6) into (2.4), one obtains E, which is a function of x —=r —r,

Ik(r, r')=1k(x)= dke'"'", dk'e'" *5(E +E' —E —s;),
1

(2~)& k (k&(r) k') kr(r)
(2.8)

where s and E& are replaced by E=))i k /2)L(, and E'=A' k /2p in the manner described in I. The function E(x) also is
appreciable only for small x, as shown in Sec. IV.

The slow variation of p(r) results in variation of the distorting potentials for y,' —'(r):

U, (r) = V, (r)+i W, (r),
where c =i and f, and (+) corresponds to (+) and ( —) on the j. Then the change in the amplitude of P+—' within the

iS (r)
cell may be neglected. If we put y, (r) = A, (r)e ', therefore,

iS (r)+iVS (r)(r' —r) ik (r) x
(2.9)

where

(2.10)

In the semiclassical approximation, S, (r) is the action function, and A'k, (r) is the local momentum. The local energy
e, (r) =(ii k, (r) /2)M then satisfies

s, (r)+ U, ,(t(r) =E, ,

where, as shown in I,

A k,
U, ,(t( r, k, ) = —' + V, ( r )—

2 2p

A' k, —V, (r) + W, (r)
2p

1/2

(2.11)

(2.12)

We make use of approximations (2.9), (2.10), and (2.11), although we use quantal y, (r). The slow variation of U, (r) im-
plies that k, (r) is a slowly varying function of r, and its derivative can be neglected.

The two-body potential v (r —ro) has a short range and the kernel Ik (r, r') is appreciable only for small r' —r. The in-
tegrand of (2.3) is appreciable therefore only when p—:r —ro, p'—:r' —ro, and r —r' =p —p' —s are small, and consequent-
ly s=ro —ro is small. Putting (2.8) and (2.9), with approximation kF(r) =k~(ro), into (2.3), changing the variables of in-
tegration to rp, s, p, and p, and exchanging the order of the k integrations and the integrations over the coordinates,
one obtains

0
BcfBQf

4 2

drp gf rp g; rp
(2m)ri ) k; (2m)

2
X f dk f „dk' Jdp v(p)e' i' 5(kf(ro)+k' —k;(ro) —k)

X5(Ef(ro)+8' —E;(ro) —s), (2.13)

where q=k —k', sf(ro) =Pi kf(ro)/2)L(, , and E;(ro)=A k, (ro)/2i((, , and the assumption U, = Uf is used.
It is convenient to introduce the center of mass and the relative momenta of the two-nucleon system in the initial and

the final states by A' times K, =k, (ro)+k and K= [k;(ro) —k]/2, and Kf(ro)+k' and K'= [kf (ro) —k']/2, respectively.
Then the k delta function dictates Kf =K;, for which

k'=k;(ro)+k —kf(ro), q=k —k'=kf(ro) —k, (ro)=K K, (2.14)

5(sf(ro)+E' —s, (ro) —E)= 5(K —K ) . (2.15)

Then
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is the Born approximation to the differential cross section of nucleon-nucleon scattering from initial relative momentum« to fina»ne «'. Using (2.14), (2.15), and (2.16) in (2.13), and performing the k integration, one obtains

C) 0
Bc~BQ~

2
k//k/(r )f dr~a, (r)~'~y&(r)~' „„p(r), (2.17)

where

4mk/(r ) Bodk
BE (r)Bn (r) %2k, (r)(4~/3)kF(r)3 k kF( ) Bn.

NN

5(~ —a ) (2.18)

is the local average cross section of two-nucleon scattering defined in Ref. 1 1 for the outgoing nucleon emitted at an en-
ergy within the interval E&(r) —E&(r)+dE&(r) into a solid angle dQ&(r) around O&(r), which corresponds to energy
cf sf+de& and solid angle d0& around 0&. In (2.18), a' should be understood to be a+k/(r) —k;(r). Equation
(2.17) is the final expression of the double-dilferential cross section in our model.

It is easy to interpret (2.18) if one transforms it as
r

1

u, (r)(4m. /3)k (r)
dA (2.19)

making use of

d E&(r)d Q&(r) = [mk&(r)/A' ] 'dk&(r),

dkI(r) =de' for a fixed K&,

5(x. a)d~' = l—(~' a) /2ad~' —= (~/2)d 0, ,

(do. /dQ)~~ =o T(c,;(r))/4(r, (2.20)

where o T(c,;(r)) is the total cross section of nucleon-
nucleon scattering in the free space at two-nucleon sys-
tem laboratory energy E;(r). The result is"

0
Bc~BO~

3cr T(e, (r) ) m ~ k&(r)

4~kF3(r) A ' k, (r)
(2.21)

and s/k;(r) =
—,'u„, /u;(r), where u„, is the velocity of the

incident particle relative to the colliding nucleon, and
u;(r) is that in the laboratory system, both at r. The rhs
of (2.19) is the probability of the two-nucleon scattering
into solid angle d Q„ in the two-nucleon center of mass
system, averaged over the Fermi distribution of the target
nucleons, taking care of the Pauli principle, divided by
the initial velocity, i.e., the desired differential average
cross section.

We use for (der/dQ)z& the cross section of %-X
scattering in the free space. The integrations over k in
(2.18) can be carried out analytically if we neglect the en-

ergy and angular dependence of (do'/df~)zz, with the
approximation

—k; ( r) is the local momentum transfer, and
9=/(kI(r), k, (r)) is the local scattering angle. The quan-
tity Zo is defined by

Zo=[k; (r) —k/(r) —
q (r)]/2q(r) . (2.23)

One can calculate 0 as follows. According to (2.10), the
flux of the particle at r is given by

J,(r) = —'~[X,*(r)(tv, (r) —~, (r)V~,*(r)]

=—IX, (r) I'I, (.). (2.24)

Hence

k;(r) k&(r) J;(r) J&(r)
cosO =

k;(r) k (r) J, (r) J (r)
(2.25)

One can calculate J,(r) with quantal y, (r). The method
of calculation of [B o/BE&(r)BQ&(r)], described above is
superior to the classical calculations described in I since
it takes account of contributions from the regions which
are inaccessible to classical trajectories. Besides, it has a
very convenient form for numerical work with a comput-
er.

8'= [k, (r) —k/(r)]/q(r), (2.22a)

for kF & Z,' and kF ~ [q(r)+Z, ]', and

W= [k, (r)kj(r)sin (9 —q (r)[k/(r) —k~(r)]] /q'(r),
(2.22b)

for kF Zo and kg [q(r)+Zo], where q(r)=kI(r)

III. RESULTS

In this section we present some results of our calcula-
tions with the formulas described in the previous section.
First, we give a brief account of the input data of the cal-
culations. Then we present results for (p, (u'x) and com-
pare it with the experimental data. Finally, we give pre-
dictions for the cross sections of ( n, n 'x) for which no ex-
perimental data are available at present.
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A. Input data of numerical calculations

1. Distorting potentials

i I
1

4 i

120/~(p p')

We use three sets of global optical potentials for
different regions of energies of the incident and outgoing
nucleons. The global potential of Menet et al. ' with
standard Woods-Saxon form is used for energies up to 62
MeV. The optical potential of Walter and Guss' is used
for energies between 62 and 80 MeV. The optical poten-
tial of Nadasen et al. ' is used for energies between 80
and 180 MeV. Spin-orbit potentials are omitted in all
cases.

10

10 =

E

Ei =62 MeV

~ ~ 0 Qp

— Preserve

—Jwamah

2. Nucleon density

We use the Fermi distribution form p(r)=po/[ 1+exp( r —8 ) /a ] for the nucleon density, with
the parameters R =r A ' with r =1.15 fm and a
0.5 fm. ' The constant po is determined through the nor-
malization A = fp( r )d r.

0 60 120 6)(d, )
180

3. Free N-N scattering cross section

We assume that the free X-X cross sections are isotro-
pic" and are 1/4~ times

o(E, ) =34. 10.I/3 —82. 20IP+ 82.20,
o.„~( E, ) = 10.63 /P —29.92/P+ 42. 90,

with P=v/c =[2E, /(mc )]'r for pp and np cross sec-
tions, respectively. The neutron-neutron cross section
o.„„(E,) is assumed to be equal to o (E;). It is con-
venient to define o T as 3 times the average free 2V-X
cross section for the nucleus, which is given by

crT(E, ) =( 3 —Z)o.„(E,)+Zo ~ (E, ),
for incident proton, and

FIG. 1. Calculated and experimental angular distributions of
Sn(p, p') at E; =62 MeV for two diferent outgoing energies of

40 and 50 MeV. The solid lines represent the present calcula-
tion and the dashed lines that by Iwamoto and Harada (Ref. 18).
The experimental data from Ref. 16 are indicated by the closed
circles.

shown in the figures. This process may be regarded as
corresponding to the one-step process of the present
model as discussed in Sec. IV. The two models are in
qualitative agreement with each other. More discussions
on the comparison of the two models will be given in Sec.
IV.

In Figs. 3 and 4, our results are also compared with the
observed' angular distribution of protons in (p,p'x) from

o T(E, ) =Zcr„(E, )+( 3 —Z)o „„(E,),
for incident neutron.

'i0
I I

1
I I

l97p (p )

B. Comparison with experimental data
on (p,p') from ' Sn, ' An, and Bi

at 62 MeV, and from Ni at 100 and 164 MeV

10 Ei=62 f ieV

The calculated angular distributions of the emitted
protons are compared with experimental data' at the in-
cident energy E, =62 MeV. The energy spectra are cal-
culated at E; =100 and 164 MeV and are compared with
experimental data' at several scattering angles.

Figures 1 and 2 show the angular distribution of pro-
ton inelastic scattering from ' Sn and ' Au, respective-
ly, at E, =62 MeV and the exit energies Ef =50 and 40
MeV. One sees that our model, with no adjustable pa-
rameter, agrees with the experimental data very well in
the middle angular region, although the calculation un-
derestimates the cross section at very small and large an-
gles. The results of the exciton model' are also plotted
in the figures. Most probably the emission from three-
exciton states is predominant at the high exit energies

)
~ 10

E

'10

~ so Qp

—Prezertt

-lwamofa

10

1

120 6)(d, )
'l80

FIG. 2. Same as Fig. 1, but for ' Au(p, p').
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FIG. 5. Experimental and calculated proton energy spectra
of Ni(p, p') at E; =100 MeV. The data are taken from Ref. 17.
The solid line represents the present calculation.

60 120 6J 80

FIG. 3. Angular distribution of the cross sections summed
over the 10-MeV energy bins of the emitted particles of

Bi(p,p') at E; =62 MeV. The experimental data (closed cir-
cles) are from Ref. 16. The solid and dashed lines represent the
present calculation and that by Tamura, Udagawa, and Lenske
(Ref. 4), respectively.

Bi at E, =62 MeV. The double-differential cross sec-
tions are integrated over the 10-MeV bins of the exit en-
ergy, between 42 and 52 MeV and 32 and 42 MeV in Fig.
3, and between 22 and 32 MeV in Fig. 4. Agreement
with experimental data is good in the middle angular re-
gion at the high emission energies shown in Fig. 3.
Disagreement with the experimental data at large angles

10
2

10 P

NiIP, p')

~ ~ ~

PP ~ PPPP

E.=164 HeV
l

P( event

and at the low emission energies shown in Fig. 4 is prob-
ably due to the contribution of multistep processes.

Comparison is also made with the one-step process
part of the cross section calculated by Tamura, Udagawa,
and Lenske. " The two models agree well with each other,
although this depends on detailed assumptions used in
Ref. 4 and on the assumptions made in our calculations
as discussed in Sec. IV. The two models disagree at small
and large angles, and at low energies. In the case of Fig.
4, Tamura, Udagawa, and Lenske estimate the contribu-
tion of two-step processes to be as much as 80% of the

2'jQ;

m 10

E

I I
J

I I
J

I I
j

I I

209E) i(p p')

E;=62 Nev

10
O.

1
~vj

10

10

OPOOO+ ~

I

PP

P
P

~ O ~ POP

P

1 W ~ P ~ OOP~ O ~
OOO

O

IO

0 60 120 B(0, )
80

FIG. 4. Same as Fig. 3, but for Ef =22 —32 MeV.

l
~

]

80 160
Eg (NeV)

FIG. 6. Experimental and calculated proton energy spectra
of Ni(p, p') at E; =164 MeV and emission angles 25, 30', 40',
and 60. The data are taken from Ref. 17. Our results are
denoted by the solid lines.
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cross section.
The energy spectra are also calculated and compared

with experimental data' at several exit angles. The re-
sults are shown in Figs. 5 and 6. Figure 5 shows the re-
sults for Ni at E; =100 MeV and 30' of the exit angle.
The result agrees with the experimental data very well at
the emission energy EI between about 60 and 85 MeV.
At the lower E&, the calculation underpredicts the exper-
imental data. This is due partly to the neglect of higher-
order processes. The results for the same target nucleus
at E; =164 MeV and at the exit angles 25', 30', 40, and
60' are shown in Fig. 6. At 40 excellent agreement be-
tween the calculation and experimental data is seen at E&
between about 100 and 155 MeV. The region of E& in
which the agreement is good narrows as the scattering
angle deviates from 40. This is in agreement with the
trend in the angular distribution already mentioned; viz. ,
the calculation well reproduces the experimental data in
the rniddle angle region, but not at very small or large an-
gles.

C. Predictions of neutron scattering cross sections
of Zr, ' Sn, and Pb at 60 and 160 MeV

10 =

E;='160 NE.V

B=40

A

20Bp~

9(L

A{p, p'I

10-

0
10

-1

10

40 120 160

Ef (NeV)

&IG. 8. Calculated energy spectra in (n, n') and (p,p') at
E; =160 MeV and the emission angle 40. The upper and lower
parts correspond to (p,p ') and ( n, n '), respectively. The solid
lines are for ' Pb and the dashed lines for ' Zr.

Experimental data on (n, n') are unavailable in the en-
ergy region under consideration. We have calculated
cross sections of (n, n') from Zr, ' Sn, and Pb. Fig-
ures 7 and 8 show predictions of the angular distributions
for Zr and Pb at E;=60 MeV and E&=50 MeV, and
the energy spectra at E; =160 MeV and the exit angle

40'. The upper parts of the figures show, for comparison,
the corresponding (p,p') cross section. One immediately
sees that the (n, n') cross sections are very similar to the
(p,p') ones, including their weak mass number depen-
dence.

IV. SUMMARY AND DISCUSSIONS

i I
f

l I
f

I I
i

I 1
i )

E.= 60 MeV

Ef-50 MeV

10

E
90

1 a i t

'120
EI tdegj

180

FIG. 7. Target mass number dependence of calculated nu-
cleon angular distribution at E; =60 MeV and E& =50 MeV.
The upper and lower parts correspond to (p,p') and (n, n'), re-
spectively. The solid and dotted lines are for ' 'Pb and Zr, re-

spectivelyy.

A semiclassical distorted-wave theory based on the
Thomas-Fermi model of the nucleus is presented for
one-step nucleon inelastic scattering leading to continu-
ous states of the residual nucleus. A simple closed-form
expression [Eq. (2.17)1 is derived for the double-
di6'erential inclusive cross section of inelastic scattering,
(p,p', x) and (n, n'x) and (n, n'x), in terms of the average
local nucleon-nucleon scattering cross section and nu-
cleon density in individual cells of the nuclear medium,
and the local cruxes of the incident and outgoing nucleons
there. The formula justifies the concept of spatially local-
ized nucleon-nucleon scattering in the nucleus, a basic as-
sumption underlying all intranuclear cascade calcula-
tions.

The theory is applied to (p,p') on Ni, Zr, ' Sn,
Au, 2o8Pb, and zo9Bi at 60, 62, 100, 160, and 164 MeV.

The calculated angular distribution from ' Sn, ' Au,
and Bi at 62 MeV is compared with experimental data.
The calculation agrees with the data at high emission en-
ergies in the middle angular region. At small and large
angles, the model underpredicts the cross section. As
discussed later, this is a consequence of using the degen-
erate Fermi-gas model which strongly restricts the
kinematical condition of scattering. Nonzero values of
the calculated cross section in those angular regions are
entirely due to the eft'ect of distorting potentials. Energy
spectra at fixed emission angles are also compared with
experimental data for (p,p') on sNi at 100 and 164 MeV.
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At 40' the model reproduces the data at high emission en-
ergies, but underpredicts the cross section at low emis-
sion energies. This is consistent with the expectation that
higher-order processes give large contributions there.

Predictions are made on the cross sections of (n, n') on
Zr, ' Sn, and Pb at 60 and 160 MeV at the emission

angle 40'. The cross sections are similar to those of
(p,p').

The model is compared with the exciton model (Ex)
calculations of Ref. 18. Strictly speaking, emission from
three-exciton states in Ex for an even-even target nucleus
is different from the one-step process considered here: It
includes processes via states of more excitons, and emis-
sion itself is treated as a statistical process satisfying the
detailed balance. However, if, as in Ref. 18, the probabil-
ity of going through higher exciton states is neglected
("never come back" assumption), the cross section is pro-
portional to the one in the present model with constant
nuclear density and without distorting potentials. The
question then is how important is the effect of distorting
potentials. Figure 9 shows the cross section of (p,p'x)
from Bi at 62 MeV calculated with and without dis-
torting potentials. The cross section with no distorting
potentials vanishes at small and large angles. It is larger
than the cross section with distortion by an order of mag-
nitude. As a consequence, the exciton model cross sec-
tions have to be normalized by that much of a factor to
be comparable with the ones of the present model, which
agree in magnitude with experimental data without any
renormalization.

The model is also compared with the multistep direct
reaction (MSDR) model of Tamura, Udagawa, and
Lenske in which purely quantal DWBA cross sections
for individual one-particle one-hole final states are calcu-
lated with collective form factors of appropriate strength,
and summed over the energy range which corresponds to
an energy interval in the spectrum of the emitted particle.

i [ i &
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Au(p, p')

The present model agrees well with the MSDR calcula-
tion of the cross sections at high energies and in middle
angular regions where the present model is expected to be
good. Agreement in the absolute magnitude of the cross
sections should perhaps not be taken too seriously be-
cause of ambiguities in the models. At low emission ener-
gies, the agreement is not good, because of a two-step
process which is not included in the present model. The
reason for the discrepancy at large angles even at high
emission energies is not clear for the moment.

Now we discuss some specific features of our calcula-
tions. The first point is how much the calculated cross
sections depend on the choice of distorting potentials.
Figure 10 shows the cross sections obtained with two
different sets of global optical potentials, one given by
Menet et al. ' and the other given by Walter and Guss. '

At E; =62 MeV, the two sets give results which are al-
most identical at Ef =50 MeV, and only slightly different
at small and large angles at Ef =30 MeV. Thus we con-
clude that, in the cases studied here, the dependence on
the distorting potentials is negligible in the angular re-
gion in which our model is successful.

The second point is the range of kernel K(x), defined
by (2.8), on which the validity of approximation (2.9), for
the distorted waves depends. Figure 11 shows K(x) for
E, =62 MeV and Ef =30 MeV, and for Fermi energy
Ef =—A kF/2m =1.6, 10.6, and 30.3 MeV, which corre-
spond to the local Fermi energy of ' Au at r=9.0, 7.5,
and 6.0 fm. One sees that the range of the kernel remains

10

)
10

E

l
» j i & l

209ii.
(

&)

Ei=62 NeV

E)=50 &eV

istortion

with

10)
U7

10

-2
10

l & i I r i I » I 60
f » i

120

E3 {deg}

FIG. 9. Effect of distortion on the angular distribution of
Bi(p,p') at E; =62 MeV and E& =50 MeV. The solid and

dashed lines represent the results of the calculations with and
without the distorting potentials, respectively.

EI {deg}

FICx. 10. Distorting potential dependence of calculated cross
section for the cases of ' 'Au(p, p') at E; =62 MeV and Ef =50
and 30 MeV. The solid and dashed lines represent the results
with the distorting potentials by Menet et al. (Ref. 12) and Wa-
lter and Csuss (Ref. 13), respectively.
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FIG. 11. Kernel at E; =62 MeV and Ef =30 MeV for three
values of the Fermi energies EF, which correspond to the densi-
ties at three distances r from the center of the nucleus ' 'Au.

FIG. 12. Region of nonzero local average N-N cross section
at EF = 30 MeV and E; =62 MeV shown by the hatched area in
the local-emission-energy —emission-angle diagram.

indeed small, close to about 1 fm, even though its max-
imum decreases as EF(r) decreases. This assures that ap-
proximation (2.9) is fairly good.

The third point is the reason why the model underesti-
mates the cross section at small and large angles, as al-
ready mentioned. This may be understood qualitatively
by the behavior of the local average scattering cross sec-
tion [8 o /Ref(r)BQf(r)], . The hatched region in Fig. 12
represents the region of Ef(r) and Of(r) in which
[8 o /BEf(r)BQf(r)], is nonzero, in the case of 8;(r) =62
MeV and EF(r)=30 MeV as an example. At almost all
Ef(r), the cross section is completely zero at small and
large angles. This is because such scattering is kinemati-
cally forbidden by the Pauli principle in the degenerate
Fermi-gas model. If there were no distorting potentials
and no variation of the nuclear density, the angular dis-
tributions of the (p,p') cross section would be the same as
[0 o /Bsf (r QQf (r) ],. Distorting potentials deflect the
motion of the incident and outgoing particles, and give
rise to nonzero cross sections in the "forbidden" regions,
but the cross section is still smaller there than in the "al-
lowed" angular region. The allowed region gets narrower
as the local emission energy increases.

It is very encouraging that the experimental data are
reproduced well by the calculation in the energy and an-
gular regions where the model is expected to work.
Agreement in the absolute magnitude of the cross sec-

tions is significant since the model includes no adjustable
parameter. It clearly shows the basic soundness of the
model, although nearly perfect agreement at certain an-
gles and energies should not be taken too seriously until
justification is given of the use of the free nucleon-
nucleon scattering cross section for a collision in the nu-
clear medium at the energies and angular regions investi-
gated here. It seems worthwhile in any case to pursue
refinements and extensions of the model and widen its
range of applicability. For example, the free X-N cross
section should be corrected for medium effects. The
theory must be extended to include two-step processes
which are important at low emission energies, sometimes
even more so than the one-step process. Development in
this direction is in progress and will be reported in later
communications.

ACKNOWLEDGMENTS

The authors wish to thank Professor H. A.
Weidenmuller and all members of the theoretical nuclear
physics group at Kyushu University for their interest in
this work and encouragement. They are indebted to In-
stitute for Nuclear Study, University of Tokyo, for the
financial aid of the computation which was done at the
Computer Center of Kyushu University with the
FACOM M780/VP200 computer.

J. J. Gri%n, Phys. Rev. Lett. 17, 478 (1966); M. Blann, Annu.
Rev. Nucl. Sci. 25, 123 (1975); G. Mantzouranis, H. A.
Weidenmuller, and D. Agassi, Z. Phys. A 276, 145 (1976).

H. Feshbach, A. Kerman, and S. Koonin, Ann. Phys. (N.Y.)

125, 429 (1980).
G. F. Bertsch and F. S. Tasi, Phys. Rep. C 18, 125 (1975).

4T. Tamura, T. Udagawa, and H. Lenske, Phys. Rev. C 26, 379
(1982).



2376 Y. L. LUO AND M. KAWAI 43

N. Nishioka, H. A. Weidenmiiller, and S. Yoshida, Ann. Phys.
(N.Y.) 183, 166 (1988); 193, 195 (1989).

6H. C. Chiang and J. Hiifner, Nucl. Phys. A349, 466 (1980).
7R. Serber, Phys. Rev. 72, 1114(1947).
8M. L. Goldberger, Phys. Rev. 74, 1269 (1948).
M. Kawai, Prog. Theor. Phys. 27, 155 (1962).

' Y. L. Luo and M. Kawai, Phys. Lett. B 235, 211 (1990).
"K.Kikuchi and M. Kawai, nuclear Matter and nuclear Reac-

tions (North-Holland, Amsterdam, 1968), p. 33.
J. J. H. Menet, E. E. Gross, J. J. Malanify, and A. Zucher,
Phys. Rev. C 4, 1114(1971).

'3R. L. Walter and P. P. Guss, in Nuclear Data for Basic and
Applied Science, Proceedings of the International Conference,
Santa Fe, New Mexico, 1985, edited by P. G. Young, R. E.

Brown, G. F. Auchampaugh, P. W. Lisowski, and L. Stewart
(Gordon and Breach, New York, 1986), Vol. 1, p. 1079.

~4A. Nadasen, P. P. Singh, %'. W. Jacobs, A. D. Bacher, P. T.
Deber, M. D. Kailchuch, and J. T. Meek, Phys. Rev. C 23,
1023 (1981).

15J. M. Pearson, nuclear Physics: Energy and Matter (Hilger,
London, 1986), p. 16.
F. E. Bertrand and R. W. Peele, Phys. Rev. C S, 1045 (1973);
Oak Ridge National Laboratory Report No. ORNL-4460,
1960; No. ORNL-4471 1970; No. ORNL-4638, 1971.

' R. E. Segel, T. Chen, L. L. Rutledge, J. V. Maher, J. Wiggins,
P. P. Singh, and P. T. Debevec, Phys. Rev. C 26, 2424 {1982).

~8A. Iwamoto and K. Harada, Nucl. Phys. A419, 472 (1984).


