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By using a two-state approximation, a time-dependent semiclassical theory is developed for the
sub-Coulomb transfer of a neutron between two deformed and arbitrarily oriented nuclei. This
theory yields the transfer probability as a function of the energy splitting of molecular single-
particle states which are degenerate for large internuclear separations. We apply this theory
schematically to central collisions of Mg on "Mg using a two-center shell model and considering
only the three low-lying states 1sl/2 1p3/p(Q= 2 ), and lp3/2(Q= 2 ) of the deformed Mg nucleus.

Transfer probabilities are calculated as a function of the orientation of the deformed Mg nuclei
with respect to the internuclear axis and compared with phenomenological probabilities depending
exponentially on the minimum center-to-center and surface-to-surface distances. The transfer prob-
abilities from the 1sl/2 and 1p3/2(Q= 2 ) states seem to support the exponential dependence on the
minimal surface-to-surface distance.

I. INTRODUCTION

In recent years, the problem of a single-neutron
transfer in colliding heavy and deformed nuclei has been
of great interest, both experimentally and theoretically.
In the first experiment of Wirth et al. ' for U on U at
energies both near and well below the Coulomb barrier,
the measured excitation function and angular distribution
for the one-neutron-transfer product U did not fit the
predictions of the semiclassical theory of neutron transfer
(SCTT). ' Since the SCTT has been quite successful for
nucleon-transfer reactions using light heavy-ion beams of
spherical nuclei, it was considered that the deformations
and orientations of the colliding nuclei could be responsi-
ble for the disagreement between the theory and experi-
ment. Gupta et al. calculated the classical Rutherford
trajectories for deformed and oriented nuclei and incor-
porated these effects in the SCTT. The preliminary
analysis of the neutron-transfer data of another reaction,
namely, of U on ' Au, involving a deformed nucleus is
found to be more consistent with the SCTT for spherical
nuclei. The SCTT is put to a still more severe test by the
reported data of sub-Coulomb neutron transfer for

Ni+Sm isotopes. The deformation effects of Sm iso-
topes are more than evident in these data. Theoretically,
two other schematic model calculations are available. '

In the first one, seeing the effect of a "shoulder" in the
interaction potential was attempted, which gives rise to
larger contact times. The second calculation, based on a
simple semiclassical analysis, uses an analytical formula
for a one-neutron-transfer cross section that contains ab-

sorption effects. As expected and already shown by
Wirth et aI., ' the absorption effects are important only
for higher incident energies near and above the barrier.

In the SCTT for spherical nuclei, the differential cross
section contains, in addition to the product of the Ruth-
erford cross section and spectroscopic factor, an ex-
ponential dependence on the center-to-center distance at
the point of closest approach. This theory was extended
to collisions between deformed and oriented nuclei by as-
suming two simple hypotheses: (a) the transfer cross sec-
tion still has an exponential factor depending on the
minimal center-to-center distance at the point of closest
approach, or (b) the minimum surface-to-surface distance
at the point of closest approach determines the exponent
of transfer cross section. The two hypotheses, which
yield the same result for spherical nuclei, affect the cross
section in a reverse manner. The spectroscopic factor
was assumed to be independent of the deformation and
orientation of the nuclei. The application of these two
hypotheses to the neutron-transfer data of the reaction

U+ U did not allow us to say which of the two hy-
potheses is better.

In this paper, we calculate the one-neutron-transfer
probability between two deformed and arbitrarily orient-
ed nuclei microscopically with the help of a two-center
shell model. Assuming central collisions, we use the
time-dependent semiclassical reaction theory which, in
first order, gives the transfer probability in terms of
single-particle separation energies. In the deformed two-
center shell model, such a level separation depends on
both relative distance and the orientations of the nuclei.
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Such a connection between the two-center shell model
and the nucleon-transfer probability could, in turn, help
us to distinguish between the above-mentioned two hy-
potheses of minimum center-to-center and surface-to-
surface distances. For calculating the single-particle en-
ergy separation as functions of relative distance and
orientations of the nuclei, we use the two-center shell
model of Nuhn et al. , worked out for arbitrarily orient-
ed major axes of the deformed nuclei. For an application
of our method, we have chosen the light system

Mg+ Mg, since the U+ U system involves too
much computer time.

Section II gives the time-dependent, semiclassical reac-
tion theory, which relates the single-neutron-transfer
probability to the splitting of single-particle energies of
the corresponding states. The two-center shell model
(TCSM) for the Mg+ Mg system is described in Sec.
III and is used to calculate the neutron-transfer probabili-
ty in Sec. IV. Our calculations of parametrizing the
TCSM energy splitting and of the neutron-transfer proba-
bility and their comparison with calculations using the
two hypotheses of minimum center-to-center and
surface-to-surface distances are given in Sec. V. Finally,
a summary and discussion of our results are presented in
Sec. VI.

II. SEMICLASSICAL THEORY
FOR SUB-COULOMB NEUTRON TRANSFER

IN TYPO-STATE APPROXIMATION

For collisions at energies below the barrier, the de-
formed nuclei are taken to move on classical Coulomb
trajectories. ' In order to treat the neutron transfer, we
restrict ourselves to a two-state approximation for
reasons of simplicity and consider that the neutron is
transferred between these two specific states. Then, this
neutron moves in a combined two-center potential of the
deformed nuclei and its motion is described by the time-
dependent Schrodinger equation

H(r, R(t ), Q, (t ), fl,(t ) )li(r, t ) = ih' dP(r, t)

Here, H is the Hamiltonian of the two-center shell model
with a two-center potential V= V'"+ V' ', where V"' is
concentrated around nucleus 1 and V' ' around nucleus
2. R is the relative distance vector between the nuclear
centers of masses and 0; 12 are Euler angles for the
orientations of the nuclear intrinsic axes. The coordinate
r refers to the single neutron and is measured from the
center of mass of the system.

Now, using the two-state approximation in the method
of linear combination of nuclear orbitals, i.e., the LCNO
method, which is similar to the linear combination of
atomic orbitals (LCAO) method in atomic physics, " the
neutron wave function g(r, t ) can be expanded in terms
of the two states of the separated nuclei

g= c, (t )exp( —iE, t /A')P, (r —pR)

+c2(t )exp( iE2t /fi)P~(r+qR)—
with p = A2/(A&+ A2) and q= A, /(A&+ A2). In this

V21
—S21 V11

(2) (2)
V22 S21 V12

(1) (1)
i Ac2 = c,exp( i co»—t )+

2 c2
1 —S 1 —S

with

A~12=E1 —E2 . (4)

The overlap integrals of the two basis functions are
defined as

S» = ( P, (r —pR) i/2(r+q R) &,

and the matrix elements

V~ =(P (r pR)l V~ ~lg&(r —pR) &,

Vz, '=(Pz(r+qR)l V' lP, (r —pR) &

with analogous expressions for V', 2' and V22'.
Then, with the help of the following transformations:

c, =d, exp —i a(t')dt'

c2 =d2exp i f p(t')dt'—
where

V„—S,2 V2
(2) (2)

V22 S21 V12
(1) (1)

Ra(t ) = Ap(t) =
1 —ls I'

and shorthand notations

co=(E, E~)/A', E, =E, +—gaia, E2=E2+A'P,
(1) (1) (2) (2)

»12 =(1} V12 S12 V22 (2) V21
—S21 V11

»21 =
1 —lsl' ' "

1 —sl'
we get the following coupled equations from Eq. (3):

/Ad ) =XI' exp l f co dt

ih'd2=X'z, 'exp i f comdt' d, . —

The coupled equations have stationary adiabatic solu-
tions with the eigenvalues

E =(E, +E~)/2+I(E—, E) /4+X"'X' ' —j'
These are the energies of the molecular two-center states
in the two-state approximation.

The probability for the neutron to go from state 1 at
time t = —~ to state 2 at time t = ~ is obtained by solv-

wave function we assume the relative distance and the
orientation of the nuclei as slowly varying in time and
neglect the time derivatives with respect to these vari-
ables. Inserting the above wave function into a variation-
al principle, as explained in Ref. 11, we obtain the follow-
ing coupled difI'erential equations for the time-dependent
coefficients c,. ( t ):

V12
—S,2 V22

(1) (1) V„—S,2 V2
(2) (2)

itic, = c2exp(ice, ~t)+
l2

c, ,
1 —S 1 —S
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ing Eqs. (9) under the initial conditions d &(t = —~ ) = 1

and d2=0. In the time-dependent perturbation calcula-
tion of first order we get, for

d 2 ( t ),

dq(t)= . I Xz&'(t')exp i j—comdt" dt'
21

0

tional form with ellipsoidal equipotential surfaces

V, = —Vo;(1+a, u; )exp( —u; )

with

u 2 (g2 x ~2+ g2+~ +g2 zI2)/g2

(19)

which yields the transfer probability P, 2 from state 1 to
state 2:

(12)

E1=E2, E1=E2, co=0,
E+ —E =2X .

Then, the probability F12 for the transfer of a neutron be-
tween two equal states bound in two equal nuclei with a
symmetric orientation of the system with respect to the
center of mass becomes

P, 2
= —J exp(iy)(E E)dt f—i (16)

For the following let us assume dg/dt =0. Equation (16)
gives the transfer probability as an integral over the split-
ting of energies of two molecolar states which are ener-
getically degenerate at large internuclear distances
(EI =E2). Therefore Eq. (16) has the advantage that we

can simply calculate the probability for neutron transfer
by reading the energy difference out of a two-center level
diagram of equal deformed nuclei with symmetric orien-
tations of the intrinsic axes. We notice that the energy
difference E+ —E depends on time or equivalently on
the internuclear distance in heavy-ion collisions. In actu-
al calculations the spectroscopic factors must be regarded
too.

For a general collision, the probability F12 cannot be re-
lated to the energies given in Eq. (10). However, for
equal nuclei with symmetric orientations of the intrinsic
axes with respect to the center of mass and for the same
neutron states, we can derive a simple relation. In this
case we have

V =V =V a =a2=a01 02 0& 1 2 & 1 2

=52„, C, =C2 = —2~/(MA'coo),
(21)

where Acoo=41A ' MeV and ~ is the spin-orbit param-
eter. The deformation parameters 6,„ofthe rotationally
symmetric shapes can be parametrized as in the Nilsson
model'

=5 =(1+—'5)/N

6';, =(1——', &)/N
(22)

with N=(1+ —'5) (1——'5)'
3 3

The parameters Vo, a, A. , a., and 6 depend on the rela-
tive distance. They are determined from the single-
particle spectra for neutrons of Mg and Cr for R ~ ~
(separated nuclei) and R ~0 (fused system), respectively,
and interpolated in between. The interpolation is
achieved by keeping the volume of a certain equipotential
surface near the Fermi level constant for all values of R
and 0;. Thos, a continuous and realistic two-center po-
tential can be obtained for each relative distance R and
orientations of the Mg nuclei.

Table I gives the parameters of the potential for
R —+ ~ and R —+0 found by fitting single-particle energies

Here, 5,& (p, =1,2, 3) are the deformation parameters and

x, y, z with i =1,2 are the coordinates of the two in-
trinsic coordinate systems centered at z =Z, and Z2, re-
spectively, and rotated by the Euler angles
0;=(P;,9;,g;) as shown in Fig. 1.

In the case of the Mg+ Mg system we have two
equal nuclei with rotationally symmetric shapes about the
intrinsic z,

' axes. Therefore, we can set the parameters of
the potential as equal:

III. TYVO-CENTER SHELL MODEL
FOR THE Mg+ ~Mg SYSTEM

In this section, we give an overview of the two-center
shell model of Nuhn et al. for arbitrarily oriented nuclei.
The Hamiltonian of the problem is

g2
V + V(r, p, s),

Z'2

where the two-center potential V is a linear superposition
of two potentials, including the spin-orbit potentials

V(r, p, s)= g [V, +C;(VV, Xp) s] . (18)

The potentials V, are centered on the internuclear axis at
z=Z1 and Z2 with the two-center distance given by
R = ~Z, —Z2 ~. They are assumed to be of Ciaussian func-

FIG. 1. Two prolate deformed equal nuclei with an orienta-
tion of the intrinsic symmetry axes to the internuclear axis
defined by the Euler angles Q&=(0, 0,0) and A2=(0, ~—0,0).
The center-to-center distance is denoted by R and the shortest
distance between the surfaces by d.
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Parameter Mg 48Cr

TABLE I. The potential parameters for gr M and 'Cr. 4TABLE II. Observed and calculated single-particle energies
f M The observed single-particle energies are taken from

i
'

m number.Park et al. (Ref. 15). A is the magnetic quantum numbe .
V, (MeV)

a
/I (fm)

K

5
%co (MeV)

48.0
0.996
2.79
0.075
0.35

11

24.83 ( =49.66/2)
0.980
3.5
0.1

0
9

State

2S i/2(Q = —)

E (obs. )

(MeV)

—6.82
—6.47
—4.88
—3.48

E (calc.)

(Mev)

—6.27
—4.87
—3.20
—3.78

6
0 2g i/3(1 gg)2/3

3

(23)

here R =1.25M' fm is the nuclear radius.
The Hamiltonian (17) gets diagonalized wiwith Nilsson

wave functions as asis se .b
' t. The oscillator frequencies are

h =1 2, 3. The value o co ischosen as A'co, =Aco6, „with p=P
For M anobtaine yb

'
d b a minimalization procedure.

d Cr nucleus, we took the neutron single-particleassume r nuc
ener ies obtained by an interpolation of observe

'

g

observed single-particle energies o g are a
Park et al. an are is ed 1' t d together with the calculated

'
s in Table II. The observed single-particle ener-energies in a e

ies were obtained from the spectrum of Mg
'

pinter retedgies were o a
by the strong coupling of the neutron mo

'
n motion to the de-

ed M core and described in the framework of the
Nilsson model and the aligned coup ing

"e M nucleus was set asdeformation parameter 6 of the g
5=0.35 in complete agreement with thehe intrinsic electric

f Mg which has been determinedquadrupole moment o
to Q0=61.6 e m e.f (R f. 17). The electric quadrupole mo-

b of ament is given in eterms of the semi-axes a and o a
spheriodal equipotential surface by

Q =—'Ze(a b)—

C we found Ace=11 and 9 MeV, respectively, also list-Cr we oun

with the a-Figure 2 shows the eigenvalues calculated wit t e pa-
M 1' t d in Table I as a function of therameters for Mg is e in

~ ~t' n parameter 5. The calculated energies givendeformation parame
5=0.35 in thisT ble II belong to a deformation o 5=in a e e

S tes with eigenvalues larger than zero pro are seu-figure. ta es wi
set consistsdostates or e cf th continuum, since our basis se c
refore doesonly of bound-state wave functions and, therefore, oes

not correctly describe continuum states.
to s ecial orienta-The following studies are restricted o sp

consider heretions of the intrinsic axes. We on y co
h re the two nuclei are rotated aroundconfigurations w ere e w

0 = 0, 9,0) andthe axis with Euler angles 0,= 0, , an
Q2=(0, vr 9,0), as s—hown in Fig. . 'g.
te y ax

the two-center potential V= V&+ V2 without the spin-
orbit potentia a ong e zp 1 1 th axis for R =10 frn and the nu-

t t' 0=0 30 60 and 90'. We notice that
the potential barrier lies lowest or = w en

1 est. The equipotential surfaces inPo g
the x-z plane are illustrated in Fig. 4 for 0=0' and

ctra are lotted inFinall, the single-particle energy spectra p
Fig. 5 as a function of R for 0=
have s own ereh h the lowest-lying molecular states which

totically approach the states 1s&/2, p3/2asymp o ica
en crateand 1p3/23/2(Q= —', ). The energies are fourfold degen

1f 7/z

2P3/

ld 3/z 5
2s 1/z
1cl 5/z 1p

—-15—
1p]/

1p)/z =2p—

-25—

3/2

1/2 3/2 5/2

3/2

0 =1/2

-20

—40

1s1/z
-30—

-350 I

0.1
I

0.2 0.3
6

0.4 0.5
—50

5

z (fm)

10

FIG. 2. The single-particle energies for gr M calculated as a
e ma netic quan-function o eof the deformation parameter . e g q

eformation ofm numbers of the states are indicated. A deform
5=0.35, shown by the vertical line, is used in e
lations.

FIG. 3. The two-center potential V(z) a gion the z axis for
the Mg+ Mg system at an internuclear dist ance of 8 = 10 fm
for different orientation angles 0=0' fullfull curve), 30' (dashed
curve) 60 (dotted curve), and 90' (dash-dotted curve .
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for 8 ~ ~ and split into twofold degenerate energies E+
and E for finite values of R. Exactly such states with a
symmetry with respect to the rniddle plane have been
considered for the neutron transfer in Sec. II. In the fol-
lowing sections we will discuss the neutron transfer in a
schematical model by using the two-center level diagram
of Fig. 5.

IV. TWO-CENTER SHELL MODEL
NEUTRON- TRANSFER PROBABILITY

—5
I

15 For simplicity, we limit our calculations to the central
collisions of Mg on Mg with symmetric orientations
of the deformed Mg nuclei as shown in Fig. 1. We as-
sume that the orientation angle 8 does not change during
the collision. Such a change is shown to be small for
heavy deformed nuclei. ' The relative motion of the nu-
clei is classically described by a Coulomb potential acting
between the deformed nuclei and depending on the orien-
tation angle 0:

z (5m)

10

Vc(R, 9)= +
3 QOP2(cos9) .(Ze ) Ze

C & g ~3 0 2

Using the energy-conservation relation

F., =
—,'pR + Vc(R, O),

(24)

FIG. 4. Equipotential curves of the two-center potential for
the Mg+ "Mg system at R =10 fm for the orientation angles
(a) 9=0' and (b) 0=60 . The equipotential curves are shown for
—45 MeV to —3 MeV in steps of 6 MeV.

we can express the neutron-transfer probability (16) (with
j'=0) as an integral over the relative distance R:

P =—2 E+ —E
min

where R;„is the relative distance at the classical turning

-20
- 1p3, {0=3/2)

. 1p3/2{0 /2)

-25

1p3/ (A =3/2)

1p3/2{0 ='/2)

-30

-35

—40

—45

-30

X -35

-40
30'

—50
0

—15

-20

-25

I I I, I

2 4 6 8 10 12 14 16
I r t I

'
I

1p3, {@=3/2)

1 p 3/2 {+ = 2)

-50
0

—15

-20

I, I I

2 4 6 8 10 12 14 16

-

1p3, {0= 2)

1p3/2{ A=1/2}

(g -30

-35

5=60

-30)
35

-40

6=90

1 s 1/2

0 2 4
I I I, I

6 8 10 12 14 16

R (I:m)

I, I I, I I, I, I

0 2 4 6 8 10 12 14 16

R (rm)

FIG. 5. Two-center level diagram for the Mg+ "Mg system as a function of the internuclear distance R for different orientation
angles 0=0', 30', 60, and 90'.
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point, which is approximately given as

R;„= + ' '
QoP2(cos8) .(Ze ) +c.m.

E, (Ze)
(27)

The energy difference b,E=E+ E—in Eq. (26) de-
creases exponentially for touching configurations and
larger relative distances as can be seen in Fig. 5. There-

fore, we introduce the following ansatz

hE =RA (8)exp[ —o.(8)R ]/R (28)

with orientation and state-dependent constants 3 and a,
which will be determined from the two-center level dia-
gram. Inserting Eq. (28) into Eq (26) and using Eqs. (24),
(25), and (27), we obtain, for the probability,

3 (8)p J ~ exp[ —a(8)R ]dR
2(Ze) ~min R[1/R;„—1/R+(QoP2/Ze)(1/R;„1/R )]

(29)

After some minor neglect in the denominator we Anally
get the expression

P 2= R;„A (8)
2(Ze )

X exp[ —2a(8)R;„][exp( G )Ko(6 ) ]

with

(30)

3Qo6 =
—,'a(8)R;„ I+ P2(cos8)

ZeR
(31)

Ko is the modified Bessel function of zero order. ' For
G & 2, we can already use the asymptotic expression'

exp( G )Eo( 6 ) = [m /(2G ) ]' (32)

For central collisions of spherical nuclei (Qo =0), one ob-
tains, from Eqs. (30)—(32) with R;„=(Ze ) /E, =D,

2

P,P2
=— exp( —2aD) .sh ~ P

2 (Ze)2 a (33)

This is an interesting result. Equation (33) is exactly the
formula for the transfer probability derived in the SCTT
theory ' if one associates A to the dimensionless factor
Czz, also containing the spectroscopic quantities, and a
to the wave number of the bound neutron:
a=(2Me/iri )'~, where s is the binding energy of the
single-particle state.

In Ref. 4 we studied the neutron transfer between de-
formed nuclei under two different hypotheses: (a) Assum-
ing that the neutron-transfer probability depends on the
minimum center-to-center distance R;„,we set the prob-
ability in central collisions as

P,~(8)=P~exp[ —2aR;„(9)] . (34)

(b) Since the sub-Coulomb neutron transfer is a tunneling
process through the potential barrier, the minimum dis-
tance d;„between the nuclear surfaces is a very impor-
tant quantity. Therefore, we investigated a second ex-
pression for the transfer probability in central collisions:

P &2 ( 9)=Pd exp [ —2o.d;„(8 )], (35)

d;„(8)=R;„(8)—2(a cos 8+b sin 8)'~ (36)

where the minimum distance between the nuclear sur-
faces is given for the orientation of the nuclei shown in
Fig. 1:

P12 (9)=Pi2(9o)exp [ 2~o[R

P i2(8) =Pi2(8o)

X exp [
—2o,o[d;„(8)—d;„(9o)] ]

(37)

(3&)

with ao=a(8o), D =R;„(8o)=(Ze) /E, , and P&2(8)
calculated by the use of Eqs. (30) and (31).

Finally, we discuss the transfer probability as a quanti-
ty di6'erential in the orientation angles of the intrinsic
symmetry axes of the deformed nuclei. These angles are
given by Q&=(9„$,) and 02=(8z, g2). The differential
probability can be written as

dW= P(Q„Qi)dA, dAq,
1

16m.
(39)

where P(Q&, Qz) is the transfer probability for a fixed
orientation of the intrinsic symmetry axes. Since we have
only derived the transfer probability for a special choice
of 0, and Q2, namely, for A&=(8, $) and Q2=(~ —9,$),
we can calculate the following triple-diA'erential probabil-
ity after integrating over P=(P&+$2)/2:

d8~d92dp~2 g, =g =g, y, =y, —y =o
sin'8p (8)

8n
(40)

The factor sin 0 indicates the weight of the orientations
of the intrinsic symmetry axes, which is largest for
0=90'.

V. COMPARISON
OF THE TRANSFER PROBABILITIES

In this section we want to compare the probabilities
Pi2, P&z and P",2 in order to learn which of the hy-
potheses of minimum center-to-center and surface-to-
surface distances is more useful for deformed nuclei.
Since the energy diQ'erence E —E enters the probabili-
ty, we need reliable two-center shell model calculations.
They can be best done for the lowest levels as given in
Fig. 5 for the "Mg+ Mg system. Therefore, we insert

Here, a and b denote the major and minor semi-axes of
the ellipsoidal surfaces of the nuclei, respectively.

In order to compare the probabilities P,2, P, 2 and P",z
as functions of 8, we set these probabilities equal at an
angle 9=8o=54.7', where Pi(cos8) vanishes. In this
case we have the following formulas for the probabilities
Pi2 and Piq.R d
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the energy differences E+—E of the lowest states,
which are asymptotically characterized by the quantum
numbers ls&/p lp3/2(Q 2) and lp3/2(O ~), into the
formula for P&z. This procedure should be understood as
a valuable schematical model for the study of the neutron
transfer and not interpreted as a realistic model for calcu-
lating probabilities in comparison with experimental
data. In reality, all the chosen states are completely oc-
cupied by neutrons and, therefore, no neutron transfer
could happen between these states. For similar reasons
we have omitted a factor of 2 in Eq. (26) regarding the
twofold degeneracy of the TCSM levels.

10"

M

1027
EI

102'

1025
0

I

20 40
I

60

/21pg (0 = ~/g I

I

80

FIG. 7. The parameter A of Eq. (28) or (41) as a function of
the orientation angle 0 for the states denoted by 1s&/2 (full
curve), lp3/, (A =

~ ) (dashed curve), and 1p3/2(B =
~ ) (dot-

dashed curve) ~

A. Parametrization of energy difFerence using TCSM

I

6 8 10 12
I

I
I

I
I

I
I

I
I

I
I

I

?

14

Equation (28) gives our proposed ansatz for the energy
difference AE. Taking a natural logarithm on both sides
of Eq. (28), we get

ln[R b E/(1 MeV fm )]=1n[AA /(1 MeV fm)] a—R.

(41)

This is an equation of a straight line for

ln[R b,E/(1 MeV fm)]

as a function of R with slope —o' and intercept

in[A'3 /(1 MeV fm)] .
LLI 0
&t

—1—

I I I I I ~ I

8 9 10 1 1 12 13

Figure 6 shows these plots for four different orientations,
each for the three chosen TCSM states ls, /2, ip3/2(Q
=

—,'), and ipz/z(A= —,'). We notice that, for the relevant
region of 7—13 fm, the curves are fairly straight lines for
almost all the 8 values. This proves our ansatz (28). For
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FICx. 6. The natural logarithm of the energy difference
AE =E —E multiplied by R as a function of R for the two-
center states of Mg+'"Mg which are asymptotically classified
by the quantum numbers (a) 1s&/2, (b) 1p3/p(Q 2), and (c)
1p3/2(Q= ~ ). The full curves are calculated for an orientation
angle 0=0, the dashed curves for 0=30', the dotted curves for
0=60, and the dot-dashed curves for 0=90.
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FIG. 8. The exponential parameter a defined in Eq. (28) or
(41) as a function of the orientation angle 0 for the states denot-
ed by 1s &/, (full curve), 1p3/2(Q =

2 ) (dashed curve), and

1p3/2(A =
~ ) (dot-dashed curve).
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larger relative distances we found deviations from the ex-
ponential law, because our limited basis set for the solu-
tion of the two-center shell model has only basis func-
tions of Gaussian type.

Figures 7 and 8 show the obtained parameters A and a
of the straight lines in Fig. 6 as functions of the orienta-
tion angle 0. We notice that the values of the parameter
A(8) fall on a straight line. The a values are very rough-
ly connected to the binding energies of the considered
states by a=(2ME/A )'/ and can be represented by a
polynomial of third degree.

I

1o 4-

B. Results for the one-neutron-transfer probabilities

Figure 9 shows the calculated transfer probabilities
P», P» and P» as functions of the orientation angle for
an energy of E, ~ =18 MeV. We notice that for the
states ls, /2 and- ip3/2('0 —,'), the TCSM transfer proba-
bility P» lies close to P», whereas, in the case of the
state 1p3/z(Q= —', ), P, z seems closer to P, z.

Finally, we have plotted in Fig. 10 the triple-
differential probability (40) for equal orientations of the
deformed Mg nuclei. The major contribution to the
transfer probability calculated with the two-center shell
model arises around 0=25 for the 1s &/2 and
lpga/z(O= —,') states. The same behavior can be found for
the triple-differential probability calculated with P» in
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FIG. 9. The transfer probability in a central collision of Mg
on Mg as a function of 0 between various states of the

Mg+ Mg system denoted by (a) 1s&/2, (b) 1p3/2(Q p ), and

(c) 1p3/2(Q= 2). The incident energy is chosen as E, =18
MeV. The full curves represent the transfer probabilities result-
ing from the energy differences in the two-center shell model.
They are calculated with the parameters A(g) and o.(L9) depict-
ed in Figs. 7 and 8, respectively. The dot-dashed and dashed
curves are the phenomenological transfer probabilities P» and
P» as defined in Eqs. (37) and (38), respectively.
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FIG. 10. The triple-difterential probability as defined in Eq.
(40) for the same collision as described in the caption of Fig. 9.
The curves are obtained from the corresponding ones of Fig. 9
by multiplying them with a factor sin 0/(8m). The notation of
the curves is taken the same as in Fig. 9. We notice the linear
scale of the transfer probability in contrast to the logarithmic
scale applied in Fig. 9.
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the case of all states, whereas the P &z probability peaks at
t9=90 .

Figure 10 clearly demonstrates the main result of this
paper. The three formulas for the probabilities P&2, P&z,
and P",z yield very different results for the three con-
sidered states. The results for P, 2 depend sensitively on
the single-particle states and, in general, cannot simply be
simulated by the probabilities P, 2 and P",2 based on the
hypotheses of the minimal center-to-center and surface-
to-surface distances.

VI. SUMMARY AND DISCUSSION OF OUR RESULTS

We have developed here a schematic model for one-
neutron-transfer probability between two deformed and
arbitrarily oriented "Mg nuclei. For this purpose we
have used the two-center shell model of Nuhn et OI.
Our approach is schematic because only the lowest-lying
states are considered and it is worked out only for the
light system Mg+ Mg. However, the experiments are
made for heavier systems, like U+ U and

U+ ' Au, and actually the neutron transfer occurs be-
tween states near the Fermi surface. Also, we have used
the adiabatic approximation of defining the neutron wave
function. The validity of this scheme still remains to be
tested in other nuclear phenomena, such as in multiple-
particle transfer' or in nuclear Landau-Zener effect.

The interesting result of this schematic model is that
the one-neutron-transfer probability is related to the
splitting of single-particle energy states, which depend on
both relative separation and orientations of colliding nu-
clei. For the Mg+ Mg system, the energy separations
calculated on the two-center shell-model basis satisfy an
ansatz which gives a dependence of neutron-transfer

probability on the minimum center-to-center distance in
the exponential. The resulting expression, simplified for
the case of spherical nuclei, also gives the result of semi-
classical theory of Breit and Ebel. This proves the hy-
pothesis of Gupta et al. that the exponential dependence
of the single-neutron-transfer cross section on the
minimum distance of closest approach is the same for
both the spherical and deformed colliding nuclei.

Finally, we have tested the two proposed hypotheses of
minimum center-to-center and surface-to-surface dis-
tances for central collisions. Calculations of transfer
probabilities are made for the three lowest-lying shell-
model states of the Mg+ Mg system. We find that
two of these three chosen states seem to support the use
of the minimum surface-to-surface distance hypothesis
for deformed nuclei.

Comparing triple-differential probabilities, we recog-
nize a great sensitivity of the transfer probability on the
special single-particle state. These probabilities cannot
be reproduced by the formulas for P, 2 and P",2. There-
fore, we conclude that realistic microscopical calculations
are needed in order to explore transfer probabilities be-
tween deformed nuclei ~ This could be done within the
approach used here or, alternatively, one can work in a
basis of separate inelastic channels of each of the de-
formed nuclei, combined with a sudden distorted-wave
Born approximation (DWBA) type of transition for the
neutron transfer. This method is used recently ' for
particle-transfer studies between a deformed nucleus and
a spherical nucleus. In turn, it would be interesting to
compare the results of two such alternative approaches.
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