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Dift'erential cross sections for elastic and inelastic a scattering on ' F, ' Ne, and 'Na have been
measured at 50 MeV. The data have been analyzed in the coupled-channel approach considering
the model of a symmetric rotor together with the double-folding model for the optical potential. As
an alternative also a Woods-Saxon parametrization for the radial shape of the real part of the opti-
cal potential has been considered. Both parametrizations yield similar results for the quadrupole
and hexadecapole moments. These isoscalar multipole moments are consistent with those obtained
from electromagnetic probes and with the predictions of microscopic shell-model calculations.
Large deformations are needed to describe the enhancement of the elastic-scattering cross section at
backward angles for Ne.

I. INTRODUCTION

In a systematic study of elastic and inelastic a scatter-
ing on light nuclei at energies near 50 MeV we first inves-
tigated the elastic scattering on "8, ' ' C, ' ' N,
' ' '80, Ne, and Mg in the framework of the optical
model. ' Double-folded a nucleus potentials calculated by
means of a density-dependent form of the M3Y effective
nucleon-nucleon interaction have been used to analyze
the data. It could be shown that the experimental data
are rather well described in a wide range of energies for
target nuclei in the mass region 13 A ~ 18.

The case of the elastic u- Ne scattering turned out to
be different. It was impossible to reproduce the rise of
the cross section observed in the experiment at backward
angles using a potential consistent with the e-' 0 fit. Ex-
change effects between the incident a particle and the
weakly bound a cluster in Ne may cause the observed
anomaly. These effects can be simulated by a parity-
dependent potential as recently shown by Michel and
Reidemeister in the analysis of our e- Ne data at 54. 1

MeV. Allowing for a very small parity splitting in the
real part of the potential, it is possible to obtain a precise
description of the observed enhancement at back angles.
An optical model analysis of a- Ne elastic cross sections
at four energies, including also experimental data at 27.3,
33.0, and 80.7 MeV (Refs. 4 and 5) utilizing a parity-
dependent double-folding potential, has shown that this
parity splitting decreases with increasing energy.

On the other hand, it is well known that sd-shell nuclei
in the region around A =20 are strongly deformed. The
low-lying natural-parity states can be explained reason-
ably well in terms of the collective, rotational model.
These states are strongly populated by Coulomb excita-

tion as well as by electron and hadron scattering. Experi-
mental data on elastic and inelastic scattering of pro-
tons, " deuterons (Refs. 12 and 13), He (Refs. 14 and
15), and a particles' on ' F, ' Ne, and Na have
successfully been interpreted by coupled-channel (CC)
calculations in which the optical potential is assumed to
be nonspherical, according to the shape of the matter dis-
tributions. Evidence is found for ground-state quadru-
pole and hexadecapole deformation using the so-called
Satchler theorem ' which connects multipole mo-
ments of the matter distribution to those of the optical
potential. ' '

In a study of elastic and inelastic n scattering on Mg
it was found recently that an optical-model (OM)
analysis cannot be expected to describe the angular distri-
bution for elastic scattering over the entire angular range.
For larger angles, discrepancies are observed between the
OM fits and the experimental data. On the other hand,
CC calculations based on double-folded 0.- Mg poten-
tials give a good overall agreement with the experimental
data. Therefore, strong coupling effects between the elas-
tic channel and the inelastic ones may also be responsible
for the observed backward rise in the elastic a- Ne cross
section.

In the present investigation we measured the elastic
and inelastic a scattering on ' F, Ne, and Ne at an in-
cident energy of 54 MeV and on Na at 48 MeV. First,
the elastic data are analyzed in the framework of the con-
ventional optical model. Double-folded a potentials are
used in these calculations. Second, the results of the
present experiment are analyzed within the CC method
using the quadrupole and hexadecapole transition ampli-
tudes evaluated from the symmetric-rotational model.
Both, deformed Woods-Saxon and double-folded a poten-
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tials are used in the CC analysis.
Using the Satchler theorem isoscalar charge moments

are extracted from the deformation parameters of the CC
analyses. The corresponding isoscalar transition rates
and quadrupole moments are compared with shell-model
predictions and published B(EA, ) values deduced from
electromagnetic probes.

II. EXPERIMENT
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The cross-section data were taken at the isochronous
cyclotron facility of the University of Bonn. The a-
particle beam was focused at the center of a 50-cm-
diameter scattering chamber. Beam intensities between
10 nA and 1 pA were used with an energy resolution of
5X10 4. For the target nuclei ' F, Ne, and Ne the
beam energy was 54.1 MeV, whereas for Na it was 48.7
MeV.

LiF and NaC1 targets of about 50 and 100 pg/cm
thickness, respectively, were used for this experiment.
The targets were produced by evaporation onto thin car-
bon foils. For the other target nuclei, isotopically en-
riched Ne and Ne gases were used contained in a cy-
lindrical gas cell of 60 mm diameter. The gas pressure
was about 500 mbar and was monitored continuously.

The detector system consisted of four E detectors
mounted on two turntables rotating around the target.
The detectors were of the surface-barrier type with a
thickness of about 2000 pm. The dead time was moni-
tored continuously with a random pulser. The spectra
were accumulated in a computer and stored on magnetic
tapes for further off-line processing. The overall energy
resolution was about 250 keV FWHM for the Ne and

Ne runs and about 200 keV FWHM for the ' F and
Na experiments. A peak-fitting technique was applied

to separate the ground state and the excited state at 0.2
MeV in ' F (see Fig. 1). The evaluation of the measure-
ments with the gas target followed closely the procedure
outlined by Silverstein.

Data were accumulated at laboratory angles from
about 9 to 35' in 0.5' steps, from about 35 to 70 in 1'
steps, and from about 70' to 160 in 2 steps. The zero-
degree direction could be fixed with an accuracy of 0. 12'
by methods described in Ref. 1.

Beam monitoring was accomplished in the usual way
by means of a Faraday cup and by a monitor additionally
built in the scattering chamber. For the exact normaliza-
tion of the absolute cross sections, the elastic-scattering
data in forward direction were adjusted to optical-model
predictions. This procedure is justified since elastic
scattering in forward direction is dominated by the
Coulomb interaction. Therefore, the optical-model pa-
rameters can be varied in a wide reasonable range
without changing the resulting normalization.

III. OPTICAL-MODEL ANALYSIS
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FIG. 1. Typical LiF-a spectrum at 33.5 .

01 3
I

I
I I ~ I

eI.as tic
~ I I I

I
1 I

scat ter ing—

1010-

~1 07

E

'l 0"

10
0

I 1 I I I, , s, I c

50 'l00 150
8, (deg)

the results' on ' ' N and ' ' 0) a decrease of the cross
section at backward angles is observed, the Ne(a, a) an-
gular distribution is characterized by a strong backward
rise beyond 0, =110'. Now we And that similar to this
well-known behavior of the e- Ne process, an enhance-
ment at larger angles can also be observed in the elastic
scattering on Ne and less pronounced for ' F and Na,
as well.

For the OM analysis of the elastic-scattering data, the
complex potential used has the standard form

U(r)= —V(r) —iW(r)+ V, (r) .

The real. part of the nuclear potential is described by a

The absolute differential cross sections of the elastic-
scattering processes obtained in the present study are
shown in Fig. 2 together with elastic-scattering data on
' O and Ne which have already been measured in our
earlier experiment. ' Whereas for ' 0 (in accordance with

FIG. 2. Elastic o. scattering on ' 0 (Ref. 1), ' F, ' Ne, and
Ne at 54. 1 MeV and on Na at 48.7 MeV: Experimental data

and optical-model fits, calculated by using the double-folding
potential.
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double-folding ansatz

V(r):= Up-(r)

gf jdri f dr2pT(ri )p(r2)

X t (E,pT, p, s=r+r2 ri)

where r is the separation of the centers of mass of the col-
liding target nucleus and the a particle, PT(r, ) and p (r2)
are the respective nucleon densities, and A,f is an overall
normalization factor. For the effective interaction t, the
density-dependent form of the M3Y nucleon-nucleon in-
teraction has been chosen. In this work we assume the
neutron distribution to be X/Z times the proton one.
Therefore we used for the density distribution of the tar-
get nuclei pT the experimental charge distribution ob-
tained from electron scattering after having it unfolded
from the finite charge distribution of the proton. For the
density of the a particle a Gaussian form was used. De-
tails of the computation of the potential UF(r) are de-
scribed in Ref. 1.

The imaginary part of the potential was chosen in a
"model-independent" form as a Fourier-Bessel series of
six terms'

6
W'(r)= g akjo(k~r/R, )

k=1

with a cutoff radius R, = 10 fm.
All fits were performed using the computer-code GoM-

FIL, ' where the only adjustable parameters are the six
Fourier-Bessel coefficients ak of the imaginary part and
the normalization constant A,f of the real part of the po-
tential.

The results of the calculations are shown as smooth
curves in Fig. 2. The differential cross sections for the
elastic a scattering on ' 0 are in excellent agreement
with experiment. This result is well known and it is valid
in a broad energy range from 30 up to 150 MeV. ' On the
other hand, the OM analysis obviously fails to reproduce
the experimental data for larger angles for the target nu-
clei ' F, ' Ne, and Na, thus indicating that more
complicated reaction mechanisms are involved.

The normalization factor A,f, the volume integrals, and
the rms radii of the optical potentials obtained by the
fitting procedure are listed in Table I together with the
' 0 data adopted from Table 3 of Ref. 1. The values for
Af and consequently the volume integrals for the real

part of the potential Ji, /4A are found to be somewhat
lower for the nuclei ' F, 0' Ne and Na than those ob-
tained for the nitrogen and oxygen isotopes, ' but they
correspond to the Mg results. On the other hand, the
large values of the volume integrals Jl/4A of the imagi-
nary part of the potential, obtained for ' F, ' Ne, and

Na refIect a strong absorptivity of these nuclei due to
their high collectivity.

IV. COUPLED-CHANNEL ANALYSIS

A. CC calculations within
the symmetric-rotor model

The nuclei ' F, ' Ne, and Na are the lightest nuclei
in the sd shell which are considered to be permanently
deformed. Thus, the excitation of low-lying positive-
parity states can be treated within the collective rotation-
al model. For the elastic and inelastic scattering on de-
formed nuclei, coupled-channel calculations are adequate
to analyze the experimental data. In the CC calculations
the alpha-nucleus interaction is described by a deformed
optical potential V( r, R (0 ) ). Assuming an axial-
symmetric quadrupole and hexadecapole deformation,
the radius parameter R(Q') in the body-fixed system is
angle-dependent according to

R (0') =RO[i+p~ Y20(Q')+134 Y40(A')] .

The coupling potentials V, , defined by

V(r, R(Q))=Vd;, (r)+V, (r, Q, )

are derived from the Legendre expansion of the deformed
interaction potential V(r, R (0')) transformed from the
body-fixed (fl') to the space-fixed (0) system

V, (r, 0)= g vio(r)D„0(s; ) Yi„(Q),
k, p

where D„"0(E,. ) are the Wigner rotation matrices and e,
the Euler angles. Following Tamura the coupling ma-
trix elements can be evaluated as

= g vio(r)(If((D 0(~I, ) 3 (tfIf, t, I, AI), .

A, WO

where A (tfIf, t;I;,A.I) is an angular momentum factor

TABLE I. Normalization factor A.f of the double-folding a-nucleus potential for the real interaction
as well as volume integrals and rms radii for the optical-model analysis of the elastic scattering on ' 0,
' F ' Ne, 'Ne, and "Na.

Target
nucleus

16O

19F

20Ne
22Ne

Na

Elab

(MeV)

54. 1

54. 1

54. 1

54. 1

48.7

1.35
1.19
1.20
1.15
1.15

J~ /4A
(MeV fm )

383.5
334.8
350.2
325.9
330.4

( 2 )1/2

(fm)

3.61
3.75
3.87
3.88
3.91

JI /4A
(MeV fm )

76.6
118.2
130.1
119.8
106.0

( t2) 1/2

(fm)

4.28
4.55
4.43
4.37
4.50
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explicitly given by Tamura and Uzo(r) is the radial form
factor

Uzo(r)= IV(r, R (0'))I'zo(Q')dQ'

describing the radial shape of the transition potential (6)
for the excitation of collective states. The reduced matrix
elements (If llD. O llI; ) can be calculated in consideration
of the Wigner-Eckhard theorem. Using the wave func-
tions of a symmetric rotor we get
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where E is the projection of the total angular momentum
on the symmetry axis of the core. The numerical values
are E = I/2 for ' F, K =0 for Ne and Ne, and
K =3/2 for Na.

In the coupled-channel calculations both Woods-Saxon
and double-folded alpha-nucleus potentials have been
used. The size and shape of the deformed Woods-Saxon
potential is parameterized in the usual way by introduc-
ing expansion (4) for the radius parameter Ro =ro A '~

for both the real and imaginary parts of the potential. In
order to gain a properly deformed folding potential, in
the first step the potential calculated by the double-
folding procedure is expanded in a Fourier-Bessel series
of 10 terms. Now both the real and imaginary parts of
the potential are described by Fourier-Bessel functions as
given by Eq. (3). Subsequently, in the second step the
cutoff radius R, is expressed by expansion (4). In all cal-
culations the Coulomb potential is deformed in the usual
way. In the CC calculations which were performed using
a Inodified version of the computer code EcIS, all states
displayed in Figs. 3—6 have been included. Due to the

10
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FIG. 4. Same as Fig. 3, but for a scattering on Ne at 54. 1
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Coriolis term in the collective Hamiltonian, an inver-
sion of the level sequence is observed for the higher
members of the E = I/2+ rotational band of the nucleus
' F. In order to complete the coupling equations for the
L =4 and L =2 transitions in ' F and Na, respectively,
in the CC analysis for both nuclei the coupling to the
7/2+ state has been taken into account additionally.

In the fit procedure the deformation parameters Pz and

P4 as well as the optical potential parameters were adjust-
ed in order to obtain an optimum reproduction of the ex-
perimental cross-section data. In the CC analysis of the

Na data only a quadrupole deformation was taken into
account. In all fits the deformation of the real and imagi-
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FIG. 3. Elastic and inelastic a scattering on ' F at 54.1 MeV:
Experimental data and CC analysis fits calculated with the
double-folded potential (solid lines) and a Woods-Saxon poten-
tial (dash-dotted lines). All states have been included in the cal-
culations.
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FIG. 5. Same as Fig. 3, but for a scattering on Ne at 54. 1

MeV.
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3, but for u scattering on 'Na at 48.7

nary potential as well as the Coulomb potential was as-
sumed to be the same.

The final results are shown in Figs. 3 —6 together with
the experimental data. The best-fit values of the optical
potential parameters are listed in Table II, those of the
deformation parameters /3~ and P4 are given in Table III,
together with the resulting volume integrals and rms ra-
dii of the potentials. Since the shape of the deformed
Woods-Saxon potential is different from that of the de-
formed folding potential, different values for the deforma-
tion parameters result in the analysis for the same nu-
cleus. We shall find, however, in the following section
that the multipole moments of both, the deformed
Woods-Saxon and the folding potential are similar.

B. Isoscalar transition rates
and quadrupole moments

For an axial-symmetric mass distribution p(r) the nor-
malized multipole moments can be written in the body-
fixed system as

According to the so-called Satchler theorem, ' the
normalized mass distribution can be replaced by a nor-
malized potential, if the real part Vz of the effective
scattering potential can be described by a folding ansatz
with a density-independent eff'ective XX interaction (im-
plicit folding procedure). In this case we get

f ~o( )
'+'d= I

with the volume integral Jz and with Uzo(r) given in Eq.
(&).

In reality the effective XX interaction is density depen-
dent and Eq. (11) has to be corrected accordingly.
Within the method of implicit folding these corrections
have been calculated ' to be in the order of a few per-
cent for quadrupole excitations. Recent explicit folding
calculations ' for inelastic a scattering, accounting also
for dynamic density dependence, give even smaller
corrections. Therefore, we used Eq. (11) without any
corrections for the density dependence.

Assuming that neutron and proton deformations are
the same, we get the charge moments m&o for a sym-
metric rotor by multiplying the normalized potential mo-
ments q&0 with the charge Ze

Ze
mio.'Zeqgo = vgo(p)p dr (12)

8
The deduced q&o and m~o themselves are isoscalar mo-
ments qlz&o and mrzzo, respectively, since the alpha parti-
cle is an isoscalar probe. Now the reduced ISA, matrix
elements for a transition I, ~If can be evaluated after
transforming the ISA, moments into the space-fixed sys-
tem

MrsdI If)=™rsio&Iflla;ollI &

using the reduced matrix elements (If ()D.o))I; ) defined
in Eq. (9).

The ISA. transition probability is then given by the
8 (ISA, ) value as

8(ISA,,I;~If)=(2I, +1) 'Mr2sq(I, ~If) .

TABLE II. Best-fit parameters of the a-nucleus optical potentials for the coupled-channel analysis of
the elastic and inelastic scattering on ' F, zoNe 22Ne, and ~ Na. Top: Parameters of the Woods-Saxon
potentials. Bottom: Normalization factor kf of the double-folding potential for the real interaction
and Fourier-Bessel coeScients for the imaginary part of the potential.

19F

Ne
e

"Na

19F

Ne
Ne

"Na

V
(MeV)

124.9
93.6

136.1
121.6

If
1.298
1.309
1.257
1.251

(fm)

1.24
1.51
1.10
1.26
a&

7.77
6.59
7.58
8.34

(fm)

0.77
0.70
0.79
0.77
a2

10.69
6.51
7.62

10.46

8'
(MeV)

9.2
10.9
21.4
14.8

3.68
—0.86
—2.34
—1.06

2.02
1.92
1.29
1.61

a4

3.35
—5.34

0.19
—3.92

a&

9.86
—4.48

9.86
3.06

aI
(fm)

0.43
0.44
0.76
0.65

a6

6.84
—1.66

5.54
1.11
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TABLE III. Deformation parameters, volume integrals and rms radii for both the double-folding and Woods-Saxon optical poten-
tials used in the CC analysis of the elastic and inelastic o. scattering on ' F, Ne, Ne at 54.1 MeV and on Na at 48.7 MeV.

Target
nucleus

19F

Ne

'Ne

Potential

Double folding
Woods-Saxon
Double folding
Woods-Saxon
Double folding
Woods-Saxon
Double folding
Woods-Saxon

0.234(2)
0.312(6)
0.265(3)
0.320(3)
0.254(3)
0.430(7)
0.230(4)
0.357(10)

0.041(4)
0.078(8)
0.059(5)
0.066(4)
0.022(3)
0.046(3)

JR /4A
(MeV fm')

365.8
384.3
381.6
435.8
357.9
312.5
359.0
371.2

(p2 )1/2

(fm)

3.75
3.84
3.86
4.10
3.88
3.77
3.91
3.97

Jl/4A
(MeV fm )

92.1

84.4
86.4
83.2
81.6
68.8
82.3
76.6

(p2)1/2

(fm)

4.58
4.47
5.16
4.52
4.86
3.96
4.62
4.28

16m I (2I —1)
5 (I+1)(2I+1)(2I+3) Mis2(I ~I) .

(15)

Finally, the diagonal elements of the ISA, matrix are re-
lated to the spectroscopic quadrupole moments of the ex-
cited nuclei

I /2

[We note, that in our preceding paper (Ref. 2'7) this ex
pression has been written incorrectly. ] The factor Ze in
Eq. (12) enables a direct comparison of our B(ISA)
values with B(EA, ) values and electric quadrupole mo-
ments deduced from electromagnetic interactions. In
Tables IV and V we compare the deduced B (ISA. ) values
and the static quadrupole moments Qi with experimental

TABLE IV. B (IS2) and B (E2) values in units of e fm as well as static quadrupole moments Qz in
units ofefm for ' F, Ne, Ne, and Na.

B(IS2)
Rotational model

folding Woods-Saxon
potential potential

Shell model'

0.4e

B(E2)
e.m.
Expt.

19F

Ne

Ne

5/2
3/2
3/2
9/2
7/2
7/2
7/2

2
4
2
4

5/2
7/2
7/2

1/2
1/2
5/2
5/2
3/2
5/2
9/2

0
2
0
2

3/2
3/2
5/2

35.9+1.6
35.9+2.0
15.4+15
51.3+22

46.2
5.1

3.9
67.9+2.6
97.1+4.8
57.8+2.2
82.5+3.9
9S.5+S.3

39.8
59.7

29.0+2.5
29.0+3.0
12.4+5.3
41.4+3.4

37.3
4.1

3.1

69.0+2.3
98.6+4.1

52.1+2.6
74.5+4.1

111+34
46.3
69.5

20.8
20.7

8.9
20.3
21.5
2.1

2.4
55.0
65.4
52.8
71.5

114
41.4
63.8

26.8
26.7
11.6
26.5
27.3
2.7
3.3

68.0
80.7
66.3
88.9

141
51.5
79.2

20.9+0.2
20.8+1.5'

24.7+2.7

65.5+3.2
71.0+6.5
47.6+3.7
65.9+3 7
77.7+10'

48+8'
51+12'

68+6

46+2

Quadrupole moments Qz

19F

Ne

Na

5/2
3/2

2
4
2

3/2
5/2

—12.1+2.1
—8.5+2.0

—16.7+1.9
—21.2+5.0
—15.4+ 1.9
—19.6+5.3

10.6+0.8
—3.8+3.8

—10.9+1.6
—7.6+1.6

—16.8+1.0
—21.4+2.3
—14.6+0.7
—18.6+1.5

11.4+8.0
—4.1+3.7

—10.0
—6.4

—15.1
—19.1
—14.5
—18.3

11.1
—2.7

—11.3
—7.3

—16.8
—21.2
—16.2
—20.5

12.4
—3.1

—12+2

—23+3'

—19+4

10.1+0.2g

'This work, effective isoscalar charge of 0.4e and 0.5e, respectively.
Reference 39.

'Reference 40.
Reference 41.

'Reference 42.
Reference 43.
gReference 44.
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TABLE V. B(IS4) and B(E4) values in units of e fm8 for ' F, Ne, Ne, agd Na.

19F

Ne
e

"Na

9/2
7/2

4
4

5/2
7/2

If
1/2
1/2

0
0

3/2
3/2

2770+180
2770+180
9060+ 1000
2960+300
235+85

1056+380

2180+171
2180+171
6080+900
806+200
377+128

1697+611

B(IS4)
Rotational model

folding Woods-Saxon
potential potential 0.4e 0.5e

836
954

3310
1501
297
281

1088
1209
4090
1716
341
314

B(E4)
Shell model' e.m.

Expt.
b

937+210

4260+930
1890+455 '

'This work, effective isoscalar charge of 0.4e and 0.5e, respectively.
Reference 41.

'Reference 48.

B(EA, ) values and electric quadrupole moments Q2
(Refs. 39, 43, and 44) as well as with the results of our
shell-model calculations. The uncertainties on the
B (ISA, ) values from this work result from the errors on
the P& parameters entering Eq. (10) as given by the code
EcIs 3 and the effect of a g -fit procedure using a fixed de-
formation of the potential, where the individual transi-
tion matrix elements of all transitions leading to a specific
state have been varied simultaneously.

For the shell-model calculations we assume an inert
core of ' 0 and consider all possible configurations of
three (' F), four ( Ne), six ( Ne), and seven ( Na)
valence nucleons in the states of the 1sOd shell, respec-
tively. The single-particle energies for the valence states
with respect to the ' 0 core were deduced from the
empirical energies of nuclei with a mass number
A =17(E;= —4. 15, —3.28, and 0.93 MeV for i =Od&&z,

Isl&z, and Od3/2 respectively). For the residual interac-
tion between valence nucleons we have chosen the
dependent effective interaction proposed by Wildenthal.
The transition rates and quadrupole moments have been
evaluated assuming single-partic1e oscillator functions
with an oscillator length of b = 1.82 fm and an additional
effective isoscalar charge of 0.4e and 0.5e, respectively.

~00—
E

~ 300—

0 0 0 0

o o

real potential

mined entirely by the folding procedure except the nor-
malization factor A,f. From our optical-model analysis of
experimental data on the nuclei ' C, ' ' N, and ' ' ' 0
it is known, that the resulting volume integrals of these
potentials are almost mass independent and have a value
of approximately 375 MeV fm for this energy. ' A very
similar value was found in the CC analysis of the elastic
and inelastic a scattering on Mg at the same beam ener-

gy.
In Fig. 7 the volume integrals of the real (double fold-

ing) and the imaginary (Fourier-Bessel) parts of the a nu-
cleus potential for the nuclei studied in this investigation
are presented along with the results on the nuclei men-
tioned above. The results of the OM analysis (Fig. 2,
Table I) are shown as open circles and the CC calcula-

V. DISCUSSIGN 200— I, I

14 16 18 20 22 24
mass number A

The comparison of the experimental data with the re-
sults of the coupled-channel calculations shows better
agreement for calculations using Woods-Saxon potentials
(dash-dotted lines in Figs. 3 —6) than for those using
double-folding potentials (solid lines in Figs. 3 —6). This
is especially true for the elastic-scattering data.

The calculations using a Woods-Saxon potential repro-
duce the experimental data for all transitions over the full

angular range fairly well. This means obviously, that in
contrast to the double-folding potentials the parametriza-
tion of Woods-Saxon potentials is flexible enough to al-
low for an individual adjustment to the experimental data
for each nucleus. On the other hand, no systematic be-
havior can be deduced from the parameters (Table II) and
the resulting volume integrals and rms radii (Table III)
obtained from these individual best-fit calculations.

The real part of the double-folding potential is deter-
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FIG. 7. Volume integrals for the real and imaginary part of
the double-folding o.-nucleus potential for OM calculations
(open circles) and CC analysis (solid circles).
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tions (Figs. 3 —6, Table III) as solid circles. The volume
integrals obtained from the imaginary potentials in the
CC calculations are systematically smaller than the corre-
sponding values calculated for the OM analysis. This is
consistent with the expectation that those contributions
to the imaginary part of the OM which are due to the
coupling to the channels taken into account explicitly in
the CC analysis, should be absent in the imaginary part
obtained in the CC calculation. The explicit treatment of
certain channels in the CC calculations yields an
enhancement of the real part at the energies under con-
sideration. These observations are consistent with those
of Ref. 27. It can be inferred from Fig. 7 that the values
for J~ and JI deduced from our CC calculation fit very
well into the systematics obtained for the neighboring nu-
clei.

These systematic fits of angular distributions for elastic
and inelastic n scattering in the CC analysis using the
double-folded potentials do not reproduce the rise of the
elastic cross sections at backward angles. The cross sec-
tions obtained in the calculation, where experimental
data of all channels are considered in the fit, tend to fall
off too steeply in the elastic channel for backward angles.
In order to demonstrate that this discrepancy can be re-
moved, we consider again the case of Ne, for which the
backward rise of the elastic channel is the largest. The
solid line in Fig. 8(a) represents the results of a CC calcu-
lation using the double-folding potential for which the fit
has been restricted to reproduce the elastic channel. This
fit reproduces the experiment very nicely including the
data at backward angles. The fit, however, requires a
normalization constant A.f =1.386 (Jz/4A =404 MeV

fm, Jl /4A =80. 3 MeV fm ) which is considerably

larger than those obtained for the neighboring nuclei.
Furthermore, the deformation obtained in this fit

(p2=0. 346, p4=0. 048) is so large that the cross section
for the excited states is strongly overestimated [see Fig.
8(a)j.

Our CC calculations show so far, that it is not possible
to get a correct description for the cross sections of the
excited states and the backward rise of the elastic scatter-
ing simultaneously, by enlarging the deformation and
varying the imaginary part of the potential. The result,
which represents an optimal compromise is also shown in
Fig. 8(a) (dashed line). In this calculation Af was chosen
to be 1.365 (Jz/4A =398 MeV fm ) and Pz=0. 293,
P4=0.049 (Jl/4A =80.25 MeV fm ). With this de-
formed potential the excited states are described still fair-
ly well and the angular distribution of the elastic scatter-
ing shows a pronounced backward rise, underestimating
however the experimental data by a factor of about 4.
For comparison Fig. 8(a) also shows the result obtained
from a fit to all data (Fig. 4) as a dashed dotted line. In
Fig. 8(b) the radial behavior of the corresponding imagi-
nary part of the potentials is shown.

All this demonstrates that it is possible to reproduce
the backward rise of the elastic scattering cross section in
a calculation which contains enough free parameters.
This could be an OM calculation using a potential de-
pending on parity, a CC calculation employing a Woods-
Saxon potential or a CC calculation in the double-folding
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FIG. 8. (a) Comparison of different CC calculations using the
same coupling scheme. Solid line: only data for the g.s. transi-
tion are used in fit, dash-dotted line: best fit using all experi-
mental data (see Fig. 4), dashed line: optimal compromise. (b)
Radial dependence of the imaginary part of the corresponding
potentials used for the fits shown in (a).

model (with fewer parameters) enforcing the fit to the
elastic channel. For a deeper understanding of the physi-
cal mechanism which is responsible for this backward
rise, it seems necessary to perform calculations which in-
clude the analysis of inelastic scattering to excited states
and contain only a few parameters which either vary
smoothly with nucleon number (A,f ) or can be related to
other observables (p2, p4). Since such calculations do not
yet lead to a satisfactory description of the backward rise,
one may conclude that more complicated reaction mech-
anisms (e.g. , a-cluster exchange) have to be considered to
achieve a correct description of the empirical phenome-
na.

These arguments lead us to conclude that the following
statements on nuclear collective deformation deduced
from the parameters of our folding potentials have a sys-
tematic uncertainty of about 10—20%, as long as the
physical reason for the observed backward rise of the an-
gular distributions in elastic scattering is not understood.
In Fig. 9(a) we present the isoscalar moments q20 calcu-
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FIG. 9. Normalized quadrupole (a) and hexadecapole (b) mo-
ments, q20 and q4O ~ this work and Ref. 27, folding potential; U
this work and Ref. 27, Woods-Saxon potential; Q'(a, a') 104
MeV Refs. 25 and 17; (p, p') 800 MeV Refs. 10 and 26;
O{p,p') =30 MeV Refs. 8, 9, and 47.

from electromagnetic probes. This is to be expected since
' F has two valence neutrons outside an ' 0 core, con-
tributing directly to 8 (IS2), but only one valence proton,
contributing to 8(IS2) and 8 (E2).

As for the quadrupole moments the hexadecapole mo-
ments obtained from different hadronic probes result in
very similar values. This is evidenced in Fig. 9(b). In
Table V we present also the results for the isoscalar hexa-
decapole transition probabilities in comparison with the
experimental results from (e, e') and the shell model.
Again the shell model is in very good agreement with the
values from the electromagnetic probe. The 8 (IS4)
values deduced from our inelastic a-scattering data are
systematically too large compared to both, the shell mod-
el and the (e, e') results. On the other hand, the isoscalar
transition probabilities follow the relative change in
hL =4 strength for the investigated nuclei rather closely.
In this context it should be mentioned that one obtains
also for Na a nonvanishing hexadecapole moment, even
though the deformation parameter P4 was kept zero, be-
cause the I =2 deformation gives rise to a A, =4 moment
in second (and higher) order when expansion (4) is insert-
ed in (8). A reanalysis of the data measured at 42 MeV
for Na (from Ref. 20) including the 7/2+ and 9/2+
states and a free deformation parameter p4 gave very
similar values for q2O and q~o.

VI. CONCLUSIONS

lated according to Eq. (12) using the deformed potential
from Tables II and III, together with q2o obtained from
published (p,p') and (a, a') data. Even though the defor-
mation parameter p2 varies from 0.23 between the folded
potential of Na and 0.43 for the Woods-Saxon (WS) po-
tential for Ne, the quadrupole moments are almost con-
stant for the nuclei investigated, with the exception of the
moment of ' F, independent of the potentials and the
projectile. This confirms the statement given already in
Ref. 27, that the basic spectroscopic information is con-
tained in the multipole moments and not in the deforma-
tion parameters p2 and p4, which depend strongly on the
ansatz for the potential.

In Table IV the isoscalar transition probabilities
IB(ISA,)] and the static quadrupole moments as derived
from Eqs. (14) and (15) are compared with the experimen-
tal values from electromagnetic probes and the results of
our shell-model calculation. The shell-model calculation
using an effective isoscalar charge of 0.4e agrees very well
with the experimental data for the 8(E2) values for all
investigated nuclei and underestimates only slightly the
static quadrupole moments. (We note that the second
7/2+ state obtained in shell-model calculations for ' F
has been used to compare with the rotational model. )

The CC calculations in the symmetric-rotor model also
agree very well with the experimental 8(E,22&+~0&+)
values for the nuclei Ne to Na, but overestimate the
8(E2,4, ~2,+) in Ne and Ne by about 30%. For ' F
both parametrizations (folding and WS) yield 8 (IS2)
values, which are too high in comparison with the results

Differential cross sections for the elastic and inelastic
scattering of a particles at an incident energy of about 50
MeV have been measured for the 1sOd-shell nuclei ' F,

Ne, and Na. These data have been analyzed in the
framework of the optical model and of the coupled-
channel formalism in the symmetric-rotor model.
Woods-Saxon as well as double-folded optical potentials
have been used in this study. The greater Aexibility in the
Woods-Saxon parametrization results in better fits to the
shape of the angular distributions, but the best-fit param-
eters vary in a nonsystematic way. The real part of the
double-folded potentials has only one free parameter, the
normalization factor A,f, and one obtains a smooth varia-
tion for the integral quantities as the volume integrals
and rms radii and for the deformation parameters. Both
potential parametrizations result in comparable quadru-
pole and hexadecapole moments despite big differences in
the deformation parameters p&. These results show that
the deformation parameters pI strongly depend on the
geometry chosen in the optical potentials. Since the radi-
al dependence of the double-folded potential is obtained
from experimentally determined charge distributions, the
deformation of these potentials are more likely to corre-
spond to the actual deformation of the matter distribu-
tion of these light nuclei.

The extracted isoscalar quadrupole transition strengths
and spectroscopic moments are in good agreement with
the results from electromagnetic probes except for ' F.
This can be understood from the fact that ' F contains
two valence neutrons but only one valence proton outside
the ' O core. Furthermore, the symmetric-rotor model
represents certainly an oversimplification for the case of
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' F since it has only three particles in the sd shell and the
model contains no particle core interaction.

Even though the hexadecapole moments are not very
precisely determined in inelastic a scattering at this ener-

gy, very similar values are obtained from other hadronic
probes, which seem to be systematically higher than
those obtained from (e, e'). The results from this study
are not accurate enough to decide whether this deviation
is due to differences between the charge and the mass dis-
tributions or to other reasons.

Very large deformation parameters are needed in CC
calculations in order to reproduce the enhancement of
the angular distributions for ' Ne at backward angles.
From this results a systematic uncertainty of about 10 to

20% in the deduced isoscalar multipole moments for
these nuclei. Further experimental studies at higher in-
cident energies and the investigation of possible explana-
tions as, e.g. , exchange effects, are needed to understand
this behavior.
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