
PHYSICAL REViEW C VOLUME 43, NUMBER 5 MAY 1991

Theory of large-amplitude collective motion applied to the structure of 2ssi

Niels R. Walet, {z) G. Do Dang, ~ ~ and Abraham Klein&~~
l ~Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 1910&

~ &iLaboratoire de Physique Theorique et Hautes Energies, Universite de Paris Su-d, 91/05 Orsay, France
(Received 9 November 1990)

In recent years we have developed a mathematical treatment of large amplitude collective
motion in the adiabatic limit and formulated a set of methods, collectively known as the gen-
eralized valley approximation, that were applied to the approximate solution of a series of
simplified models. In this paper we report the application of one of our algorithms to the
study of the nucleus Si, our first successful application to a realistic nuclear physics problem.
We determine self-consistently a one-dimensional manifold of triaxial Slater determinants that
connects the energy minimum of oblate deformation to the prolate minimum. Upon requanti-
zation of the implied collective Hamiltonian in the intrinsic frame, reasonable agreement with a
shell-model calculation of the low-lying levels is achieved. Application of a theoretical criterion
for assessing the quality of decoupling shows that a one-dimensional path is not suKciently
well decoupled in the model studied, thus suggesting one direction for future improvement. We
compare our research with the only comparable previous work, that of Pelet and Letourneux.

I. INTRODUCTION

In this paper we study the possibility of obtaining an
approximate solution to the nuclear many-body problem
by reducing the number of degrees of freedom to a limited
set of collective coordinates ("deformation parameters").
What immediately comes to mind is Bohr's macroscopic
approach to nuclear structure through parametrization
of the nuclear surface. The idea is to relate this ap-
proach to the microscopic description of a many particle
system in terms of a mean-field approximation, either
Hartree-Fock or, when pairing correlations are impor-
tant, Hartree-Fock-Bogoliubov. One method to bridge
this gap, the theory of large amplitude collective motion,
utilizes the time-dependent versions of these theories to
derive a classical collective Hamiltonian, involving only
a few degrees of freedom, that is subsequently requan-
tized. The procedure consists of moving from one point
of the collective surface to the next by solving a set of
constrained (or cranked) mean-field equations. In almost
all existing literature, where the final goal is a calcula-
tion of some properties of realistic nuclei, the choice of
the collective coordinates, or what is the same thing, the
choice of constraining operators, was based on physical
intuition only, with a strong tendency towards choosing
the expectation value of simple multipole operators, es-
pecially the components of the mass-quadrupole opera-
tor q = (r2Yt l). In the well-known work of I&umar
and Baranger, 2 where a schematic nuclear Hamilto-
nian involving the quadrupole-quadrupole interaction
was used, the mass quadrupole was the obvious choice
of collective coordinate. This choice is not self-evident
for more realistic Hamiltonians. In the more fundamen-
tal approaches developed during the past two decades,
the optimal choice of constraining operators or collective

coordinates must be determined by the nuclear Hamilto-
nian itself, and is not subject to the whims (intuition) of
the individual.

Stimulated by the realization that there was an open
problem, a large number of difFerent approaches to a self-
consistent determination of the collective operators has
been developed (see Ref. 3 for a complete set of refer-
ences). Although none can claim total success, some in-
teresting methods have been proposed. One of the most
viable of these4 has been used for heavy-ion reactions,
but suAers from the limitation that no more than one
collective coordinate can be treated. We have proposed
our own approach to the problem, which has proven to
be successful when applied to toy models, but the need
to test the method for a (semi)realistic nuclear physics
problem remained. For this reason we decided to ap-
ply our method, the generalized valley approximation
(GVA), to the deformed nucleus 2sSi. In doing so we en-
countered some di%culties, which may be due to the fact
that a description of collective motion requires a larger
model space than just the sd shell, but with some slight
changes to our approach, as previously applied, these
have been overcome. The formulation we are currently
using has, compared to all previous work in the litera-
ture, the largest overlap with that of Rowe, though the
latter has not applied his work to any realistic nuclear
physics problems.

It has been known for a long time that the time-
dependent mean field theories are equivalent to Hamil-
ton's classical equations of motion. We have emphasized,
in particular, the utility of basing an analysis on this
framework. We have discussed at length in our previous
work our approach to decoupling a few degrees of freedom
in a Hamiltonian system and described several versions
of our generalized valley approximation (GVA). The ver-
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sion that is most useful for nuclear physics problems can
be implemented as a combination of a constrained (or
cranked) Hartree-Fock equation, that determines a local
single-particle coordinate system at each point of the col-
lective manifold, and an RPA-like equation that gives the
matrix elements in this basis of the self-consistent crank-
ing operator(s). It is this latter element that was absent
from earlier microscopic approaches. From the solution
to this set of equations for a single collective coordinate
we obtain a collective potential energy, a collective mass,
as well as the moments of inertia. [Because of the ap-
pearance of an RPA-like equation, which can be obtained
through a quadratic expansion of the Hamiltonian, pre-
vious versions of this method are usually referred to as
the local harmonic approximation. ]

In this paper we contrast our theory with one of the
few other successful and general methods to calculate nu-

clear structure from the theory of large amplitude collec-
tive motion, the Holzwarth-Yukawa (HY) method. This
method seemingly takes a totally different approach: One
writes the wave function as a generator coordinate super-
position

of small complex pieces is discussed in some detail. The
HY theory has only been applied to Si,g and this is
one of the reasons that we have chosen this nucleus for
detailed study.

In Sec. II, we give a brief account of the theoretical
background needed for this paper. Sec. II A contains a
review of the those parts of the theory developed previ-
ously that are utilized in the current work, in particu-
lar, the local harmonic approximation. In Sec. II 8 we

discuss the symmetries we impose on the Slater determi-
nant. These lead to a reduction in the number of degrees
of freedom and thus make the system easier to treat. Fi-
nally we discuss the calculation of the moments of inertia
in Sec. IIC. We then turn to the actual algorithm used
in our calculations in Sec. III. We also discuss the cal-
culation of some other quantities of interest. The results
are given in Sec. IV, and finally we give some conclusions
and an outlook in Sec. V.

II. FQRMALISM

A. Recapitulation of old results

I&) = d~f(~)l~)

where n labels a member of the set of Slater determi-
nants. The expectation value of the Hamiltonian is now
optimized both with respect to the path P and with re-
spect to the coeKcients f(n). The calculation of the
path is found to be independent of the function f(n),
so that we can first determine the path and then solve
the Hill-Wheeler equation for fixed P. A major diA'er-

ence between our theory and that of HY now appears,
since Holzwarth and Yukawa only consider real genera-
tor coordinates, and thus time-even Slater determinants.
It is well-known that such an approach is inadequate to
describe mass parameters, since it fails to reproduce the
correct classical limits. To generate a spectrum in the
HY method one calculates the eigenstates within this
approximation by deriving an angular-momentum pro-
jected Hill-Wheeler equation for the functions fg(n) that
appear in (I) when we project the generating functions,
i.e. ,

(JM) = fg(n)PgM ~(1)

is assumed to be an approximate solution of the
Schrodinger equation.

Later on we shall show that our theory leads to a local
RPA equation, whereas the HY formalism, in its present
formulation, leads to a local set of TDA equations. It
shou1d be possible to include complex generator coordi-
nates in the HY method, especially if we take the complex
parts to be infinitesimal, corresponding to the adiabatic
limit. We expect to find an equivalent derivation of our
results in that case, but we shall not pursue such an ap-
proach here. The interested reader may benefit from the
discussion by Reinhard and Goeke, where the inclusion

are a disguised form of Hamilton's equations of motion.
Here we work in a "local basis, " i.e. , at each point on
the manifold of Slater determinants we introduce a set
of single particle labels, h for the orbits occupied in that
specific Slater determinant, and p for the unoccupied or-
bits. The number of degrees of freedom of the classi-
cal dynamical system is equal to the number of inde-
pendent p-6 pairs used to label the local coordinates.
This is especially clear if we introduce canonical coordi-
nates ( and momenta n through the "classical Holstein-
PrimakoA' mapping", i.e. , when we define

pph — ((ph + i7t'ph), ph —— ((ph —i Xph),
2 P 2

(4)

pph = (&(I —P'&)"'),h

p» = ((I ~'~)'"~')h„,
Phh' —~hh' (P P)hh')

ppp =(~~')pp'

Since we have taken considerable pains to describe our
ideas fully in a forthcoming paper on decoupling in clas-
sical mechanics, and in our previous papers on applica-
tions to nuclear physics, it would be inappropriate to
include here more than the barest details necessary to in-
troduce the appropriate ideas and equations. The reader
should note, however, that the formalism is slightly dif-
ferent from that presented in Refs. 3 and 5.

It has been amply documented that the TDHF equa-
tions,

P,h = ~~[P]I~Pph

~[P] —Pab&ba + 2 I abcdPcaPdb~
1
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According to (3), the Hartree-rock energy functional
R' plays the role of a Hamiltonian. In general this is
not a quadratic form in the momenta and this leads to
some ambiguity if we wish to truncate up to quadratic
order. The problem arises because, as we have empha-
sized before, the only way to guarantee that the trun-
cation to quadratic order is independent of the choice
of canonical coordinates is to include the leading order
momentum-dependent corrections in the adiabatic limit
of the canonical transformations. This shows that it is

not strictly correct to restrict attention to point canoni-
cal transformations, even though this approach is taken
in almost all the papers on the adiabatic limit. In a pre-
vious paper we have shown that for a specific model of
a monopole excitation this has important consequences.
However, the physics of that model, where the energy of
a giant resonance is pushed up from its single-particle
value, is not strictly in accord with the definition of adi-
abaticity. It may well be that for the cases where the
appropriate criteria are satisfied, as in the application
to the low-lying spectra of deformed nuclei, it will suf-
fice to consider only point transformations. In any event
that is the choice made in this paper. Our justification
is as follows: In the paper on the monopole, we found
that the efFects of curvature of the manifold in coordi-
nate space, which can be included within the framework
of point transformations, were of the same size as the ef-
fect, s of the leading momentum dependent terms that are
omitted in the present paper. Since the curvature terms
in the present calculation will be shown to have a small
efFect on the results, we feel that the same is probably
true for the momentum-dependent efFects. However, a
test of this assertion will have to await future generaliza-
tions of the algorithm developed in this paper.

The algorithm described in the previous application
hinged on the fact that we could specify a decoupled path
by expanding the self-consistent cranking operator in a
limited number of basis operators. This may be a good
approach to nuclear collective motion described in large
model spaces, since it extends the usual cranking ap-
proach, but we found from a detailed investigation that
it fails for the case of Si treated in the very limited sd
model space. For that reason we decided to return to the
fundamental equations of our theory and try to derive a
sensible approximation from them, without using a basis
of operators. In such an approach it is more di%cult to
deal with the ambiguity in the definition of the kinetic
energy, and it is at least temporarily fortunate that we
have good reason to believe such corrections to be small
for the current system.

The starting point is the adiabatic Hamiltonian

H = ~2~phBp"p" vrp~h~ + V((),
where

(6)

)
(JÃ+g Ã+~g~

and the potential energy V is the value of W for a time-

Here we use a comma to indicate a derivative, and the
indices o, , ... are reserved for the old coordinates, whereas
we use p, etc. , for the new ones. We also use the sum-
mation convention. In a nuclear physics context we shall
always replace o, by the pair of indices ph, since, as can
be see from Eq. (3), these are the natural labels of the
dynamical degrees of freedom.

After the transformations discribed above we end up
with the collective Hamiltonian

H = 2p„B""p„+V(q), (10)

where the collective potential is obtained by substituting
= g (q) in V, and the collective mass is calculated

from the equation

Bpu yp BnPyvP'

The local harmonic form of the generalized valley the-
ory consists of two equations. The first expresses the
requirement that the force should lie along the collective
path. For the case of a single collective coordinate we

find the following condition, using the chain-rule relation
for the gradient of the potential energy,

V- = («/«)(«/«) (12)

If we replace the derivative of the collective potential en-
ergy by A and use the fact that dq/d( = f h as well as
the fact that the derivative of 8 is just the Hartree-Fock
matrix, we find that this equation turns into the familiar,
constrained Hartree-Fock or cranking equation

[Note the difference between fph and f ph In the firs. t,

case we mean the matrix element of an efFective single-
particle operator, in the other case the derivative of the
collective coordinate with respect to (ph. If the derivative
of q with respect to m is zero, the difFerence between the
two is a factor ~2,

fph = = (rlV/~(ph)/~& = f,,h/v 2 j
~pp~

The second equation of the method expresses the re-
quirement that geometrical forces should also be along
the path for decoupling to occur. This turns out to be

even density matrix, i.e. , for zero momentum.
As discussed at length in our previous work we now

look for a point transformation to new coordinates q

and momenta p,

v" = f"((), pp = e,„&

such that our new coordinates show decoupling. The
coordinates are specified by two sets of functions, f" that
describe the new coordinates with respect to the old, and

g that give the inverse transformations, so that we have
the chain-rule relations
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equivalent to the requirement that the cranking matrix
elements be the solution of an RPA-like equation f), ),d(ph = 2 f„h.6p)'I— Tr(f6p) (21)

with

'h'

I) I II hll I hl
hph iP P

for real bp. One may verify the correctness of this
equation for a density-independent one-body operator f,
where we obtain the familiar relation

Tr(f6 p) ='Tr(f bp)

and = T (fp) —T (fp") (22)
lhl

Vphp»h» —l'php»h" Vp'h' ~ php» h» .

The a%ne connection is totally determined by the mass
B, which for this system is the Riemannian metric,

I'~p ——2B~ (Bp p+ BIp —B p p)

pb—B~p Bp —B~ Bpp)CX

+B,p B I Bppl B~~

and we have used the relation

B PBpp ——B PBpp ~

to obtain the second line. The calculation of the covariant
derivative requires the inverse of the mass, which may be
a very expensive computation in a large model space. In
the present case such a computation is almost trivial.

The cranking and local-harmonic equations have to be
solved self-consistently: The cranking equation (13) de-
terrnines, for given f, a set of single-particle wave func-
tions p for empty orbits and h for filled orbits. The local
harmonic equation determines f, but depends on the in-
dices p and h. If we neglect the aKne connection we
obtain a set of equations that is very close to the set de-
rived in the Holzwarth-Yukawa formalism by Pelet and
Letourneux, the only diA'erence being that we use RPA
where they use TDA. This is due to the use of real gen-
erator coordinates in the calculation of Pelet, whereas
our parametrization is based on the dynamics, and thus
is very similar to, and may be totally equivalent to, us-
ing complex generator coordinates. For static proper-
ties, such as the calculated collective path, the diA'erence
should not be very important. It has a dramatic im-
pact on the dynamical quantities such as the Hamiltonian
along the path. Inclusion of the curvature through use of
covariant derivatives also has eA'ects on the calculat, ion,
as we shall show.

The RPA equation (15) is a linear eigenvalue problem
and thus does not fix the scale of the eigenvectors. 4Ve

propose to make the very convenient choice of normal-
ization

fy, BaPfv b'av
, a ,p

For this special choice the inverse B p also takes a very
simple form,

B p= f"b„„fp
Since the quantity f~), is symmetric, f~), = fh„, and is

equal to the derivative bq/bp&)„, we find that

The relation (21) will allow us to evaluate the collective
coordinate along the path, and thus plays a very impor-
tant role in the following discussion.

Finally, we would like to be able to measure the quality
of decoupling along the path. This can be obtained by
comparing two different forms of the collective mass that
can be calculated in the theory; one is the definition the
reciprocal collective mass as a contravariant tensor in Eq.
(11),

Bij fi Bcrpfj
) )

and the other can be calculated from a formula for the
collective mass itself in terms of the tangents to the path,

B;q ——0( 0(&

aq ~ aqj (24)

If we have exact decoupling the second matrix will be
the inverse of the first. We use the deviation from this
relation as a measure for the quality of decoupling (Ix is
the number of collective coordinates):

D = ) B')Bj,/I~ —1. (25)

B. Symmetries

In this section we shall discuss two symmetries we im-
pose on the Slater determinants, as well as their conse-
quences.

Taking advantage of the fact that isospin is a good
symmetry for light nuclei, we require that proton and
neutron orbits be occupied with equal probability. This
corresponds to considering only the manifold of T = 0
states, which constitute the low-energy part of the spec-
trum of 2sSi. This symmetry reduces the number of
active particles we have to consider by a factor of two,
so that the eA'ective number of single-particle degrees of
freedom is reduced from 12 to 6. As discussed in Ap-
pendix A one can easily write a new energy functional in
terms of a density matrix with trace equal to six.

Furthermore, following Pelet we impose "ellipsoidal"
symmetry, i.e. , we require the intrinsic nuclear shape to
be invariant under a rotation of 180' about any of the
three symmetry axes. It is well known (see, e.g. , Ref. 12)
t, hat such a symmetry requires that I~, the projection
of the angular momentum on the intrinsic z axis is even
and also relates wave function components with positive
I& to those with negative K. In the latter regard, it du-
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plicates the function of time reversal invariance, which
for static solutions of the Hartree-Fock problem for even
nuclei already implies that any pair of time-reversed or-
bits is either occupied or unoccupied. The requirement of
ellipsoidal symmetry is indeed a strong limitation in the
implementation of our algorithm, since any reasonable in-
teraction (Kuo, Wildenthal, etc.) gives that for Si the
lowest-energy RPA mode at the Hartree-Fock minimum
is a AI~ = 3 state. We thus reject this solution as a pos-
sible choice of cranking operator, and choose the lowest
even-AI~ solution for this purpose.

The reduction to ellipsoidally symmetric Slater deter-
minants leads to an extra reduction by a factor of two in
the number of single-particle degrees of freedom, so that
we finally end up with three active "particles. " Tak-
ing into account a suitably averaged potential V, we can
rewrite W in terms of a density matrix within the re-
stricted space only (so that Trp = 3). The Hartree-Fock
H amiltonian becomes

&~p = 4~up~a + ) Vppnpppp.
pb

(26)

We can evaluate the mass and the second derivative
of the potential using methods given in Ref. 3, and find
(the roman letters p, h are used to denote all the quan-
tum numbers of the particle-hole orbits except the isospin
projection)

+pp' ~hh' IIhh' ~pp' + Vhp'ph' ~pp'hh' | (27)
Vphp'o' = Rpp'6hh' —Qhh'6pp' + Vhp'ph' + Vpp'hh'. (28)

The derivative of B needed for the calculation of the RPA
matrix is evaluated in Appendix B. At the Hartree-Fock
minimum the resulting local harmonic equation is indeed
the standard RPA equation, e.g. , Eq. (8.83) in Ref. 13,
as can be seen from Eq. (8.71) in the same reference.

Instead of rewriting the energy density in terms of the
I

r
Bphp'h'

Bphp'h'

Bphp'h'

I ~php'h'

Bphp'h'

Bphp'h'

Bphp'h'

Bphd'h'

Bphp'h'

Bphp'h'

Bphp'h'

Bphp'h'

gyphp'K'

Bphp'h'

Bphp'h'

~phd'h' )
(2q)

From the explicit expression for B, Eq. (28), we can
easily derive that all the entries in this matrix with an
odd number of barred indices are zero, as a consequence
of time reversal invariance of the underlying shell-model
Hamiltonian. A further consequence of this symmetry is
that all entries of B are invariant under the interchange
of unbarred with barred indices. If we now introduce the
orthogonal transformation

(I —I o 0)
1 I I 0 0

0 0 I I—
0 0 I I)

(30)

we obtain the following block-diagonal form for the trans-
form of B

reduced density matrix that takes into account all sym-
metries, let us also consider the general RPA (taking into
account the proton-neutron symmetry, though) at a point
of ellipsoidal symmetry. Consider, for example, the ki-
netic energy matrix B, that can be obtained as the sec-
ond derivative of the energy functional. We separate the
basis into two disjoint sets that are mutually conjugate
under time reversal, and restrict the indices p and h to
label only states in one of these sets, so that the time
reversed states p and 6 are members of the other set. (In
case of a summation we shall later write P to indicate
this limitation. ) We now can order the states in such a
way that B takes the form

( ~php'h' + ~php'h'

0 BO=
0

&0

0
Bphp'h' Bphp'h' 0

Bphp'h' + Bphp'h'

0
0
~PhP'h' IlPhP'h' )

The second derivative of the potential energy takes the
same form. We thus have split the total RPA problem
into four disjoint subproblems. From the structure of
the matrix 0 we can infer that the basis vectors that
span the upper left block have equal ph and ph matrix
elements (and zero matrix elements between a state and
a time reversed one). The eigenvectors of this part of the
RPA matrix can serve as cranking operators, since they
conserve the ellipsoidal symmetry. The next block to the
lower right still has entries in the same space, but the ph
entries are minus the ph entries. The basis vectors for the
next two blocks only have entries ph and ph, the first with
equal sign, and the last (on the lower right) with opposite
sign. As will be discussed in the next subsection the lower

three blocks will be very important when calculating the
moments of inertia.

C. The inertia tensor

J; = Tr(p" J,")= 2Tr(p J,). (32)

Here we have taken the proton-neutron degeneracy into

If we study a real nucleus, we know that there exist two
(for an axially deformed nucleus) or three (the general
triaxial case) cyclic coordinates, which can be identified
as the angles conjugate to the angular momenta. On the
classical level the momenta, are
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account in the last term. We shall not yet use ellipsoidal
symmetry. At an axial minimum we can easily find these
momenta, since they correspond to zero eigenvalues of
the RPA matrix. In the covariant RPA they no longer
correspond to zero modes at all points on the collective
path, but we shall still assume it is correct to expand the
energy to second order in the components of the angular
momenta to obtain the inertia tensor. First let us ana-
lyze what form the momenta take in the local (ph) basis.
From the matrix elements (C' gives the decomposition
of the state i in shell model states n)

(pl J Ih) = C"Cp ((nt jm), I
J l(nl jm)b)

=b....gj (j + l)C ' " C"Cp

and the symmetry properties of the Clebsch-Gordan co-
e%cients we find

there exists an alternative. Consider the moments of in-
ertia themselves, instead of their inverses. In analogy
with Eq. (24) we can calculate, for Zy,

OJy BJy
Zy —

~ Bpbp'b'
~Zph 7t pl h I

where we have once more used the canonicity conditions
to equate

0$ OJ„
BOy 07r~

This term can be obtained through expansion of the en-

ergy in terms of 0&. If we apply a similar analysis to
the other two moments of inertia we find that they can
be evaluated by a similar expression involving the second
derivative of the potential energy with respect to coordi-
nates,

(plJ-lh) = (hlJ--lp)( —1)
0Jj pbpI bl 0Ji
g(ph cl(p'b. ' ' (4o)

If we now use

J = (J-i —J+i)/~2

Jy = i(J+i+ J-i)/~2
(35)

J„=-2~2) trpb, i(pI J„lh), (36)

J, =2~2) gp. (plJ, lh).

It is not very hard to show that J, has zero matrix ele-
ments between a state and a time reversed one, whereas
(plJ, lh) = —(plJ, lh). Similarly J and J„correspond to
the last two symmetry classes discussed in the previous
subsection.

To calculate the inverse moments of inertia, which cor-
responds to the calculation of the inverse mass for the ki-
netic energy, we now have to evaluate 82W/0J;OJ&. This
quantity can be reexpressed by the chain rule in terms of
BP"P" and Vphplh ) e.g. )

we md (plJ~lh) = (hlJ-Ip) is «» and (J IJylh)
—(hl Jy Ip) is purely imaginary. To first order in the coor-
dinates and momenta we now have

J- = 2~2).&,.( IJ-Ih),

Even though these equations may look unfamiliar, at
the Hartree-Fock minimum they correspond to the usual
RPA equations for the moments of inertia, see, e.g. , Eq.
(8.113) in Ref. 13.

It may not appear obvious to the reader that the iner-
tia tensor is diagonal. As noted before, however, each of
the vectors of particle-hole matrix elements of the com-
ponents of J belongs to a diA'erent symmetry class dis-
cussed in Sec. IIB. Since both the mass and potential
energy matrix are block-diagonal, we thus can not have
oA'-diagonal matrix elements in the inertia tensor. This is
a consequence of ellipsoidal symmetry, and will no longer
hold if we would allow, say, octupole components in the
cranking operator.

Note that we have not used the covariant derivative
of V in (40) for the sake of a consistent treatment of
the diA'erent moments of inertia. In the general nonadi-
abatic theory we would expect complete symmetry be-
tween the two expressions, which can only be reached for
the present case by disregarding the covariant derivative.

Using the explicit expressions for the derivatives of
the diA'erent J's as can be obtained from Eq. (36) we

find that, using the symmetries to restrict the summa-
tions over half the single particle states (as indicated by
a prime),

r, = ) (2~2(PIJ, lh))~2(vp. p.. —v„„-„,„,)
php'h'

x ~2((p'I J, Ih') 2v 2)

gal~ p 87lp

0Jy BJy
(37) = ) . 16(J IJ. lh)(vpbp b —

vugh. „b )(p'IJ lh')
php'h'

Using the canonicity conditions ~ for J; and the con-
jugate angles 0;, we find that the quantities cIxp/OJ„
and 0(p/cIJ;, i = z, z, can be replaced by cIPy/0( and

00;/Ox, respectiv—ely. Since we do not have explicit
expressions for the matrix elements of the angles, it does
not appear feasible to use the resulting expressions, but

X„= ) 16(pliJ„lh) (B""""—BP""" )(p'Ii J„lh'),
php'h'

(42)
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~ = ) 16(plJ ll)(&„~„a +&php'h)(p'IJ II').
php'h'

III. ALGORITHM

(43)

&ppi oc &t h.
—fph ) .(H/, / fp h )/) .(fp h fp h ),

p/h/

(46)

so that AQ P„h Apzh fzg = 0. At a constrained mini-
mum the projected gradient is zero,

The algorithmic solution of Eqs. (13) and (15) are ob-
tained as follows: First we solve the Hartree equation
at the HF minimum, where A is zero. We then solve
the RPA equation to obtain fz/, . We use this f to solve
the cranking equation at a nearby point, which gives a
slightly different ph basis, so that we have to solve the
RPA again, etc. , until convergence. We can then move
on the next point.

When we take a step from one point to another, we
would like to know how the collective coordinate changes.
Using Eq. (21) we find that for small real Aping the change
in the collective coordinate is given by (we have not taken
into account the proton-neutron degeneracy or the ellip-
soidal symmetry in this expression)

px

T (f~/)
Po

= ) .&P~(/0)&/ ph+ ):&p~(Pi)&Pph
ph ph

where we have Ap = p —p, and the superscript 0 or 1
on 4p indicates that we use the particle-hole basis cor-
responding to the density matrix p or p, respectively.
Note that any higher order approximation to b, Q also in-
volves higher derivatives of the cranking operator. There
may be ways to calculate this quantity approximately,
but we are not going to do so here. As explained in our
previous work we now sum all the small values KQ along
the collective path to obtain the collective operator.

For the solution of the cranking problem it is useful
to recognize that (13) is the expression of a constrained
minimization problem. In fact it is equivalent to the vari-
ational condition

6
(W —A(Q —qp)) = 0.

~Pph
(45)

We use this, together with (44), to solve the cranking
problem. As a first step we take p —+ p+ Ap and take
Ap„z = cf„z, where e is a suitably chosen small number.
If we assume that fz/, does not change from this point
to the next we find that Q —+ Q + 2c P„& f„&, so that
we have to change qo to qo + 2m P & f h to satisfy the
constraint. This new value of p does not usually provide
a minimum of the constrained energy, so that we now
must search further for its lowest value with this new
constraint, i.e. , without further changes to Q. As usual,
the energy changes most strongly if we take a step in the
direction of steepest descent, but such a step also changes
Q. In order to remain on the constraint surface, we have
to introduce a projected steepest descent method, i.e. ,

we need to project out the part of Ap that changes Q,

&I n = fph ).(&p h fp i )/) .(fp I fp / ),
p'h' p/ h/

If we compare this equation with the cranking equation
(13) we can immediately identify the I agrange multiplier,

(48)

From our normalization conditions it follows that

& p = ).f,"f,"p

If we furthermore approximate the derivatives in (49) by
finite differences,

d( ~Ay
dq AQ'

we find

(51)

D=Bgg —1

= ) (Aq" /AQ)' —1. (52)

Here we have defined [note that we can also, with slightly
more accuracy, generalize Eq. (44)]

&q" = ~2) &/t ~f"„h,
ph

(53)

Thus if Aqi = KQ is the only nonzero number in the
sequence D = 0. If any of the other coordinates is com-
parable to Aq we do not have good decoupling.

The algorithm can now be stated in more detail:
(1) Find an extremal point of the Hartree-Fock equa-

tions, where A = 0.
(2) Solve the RPA at this point and calculate fzh, .

There is no self-consistency requirement for A = 0.
(3) Move to the next point, using the constraint min-

imization procedure described above. Use the value of
fzh, calculated in the previous step.

(4) Solve the RPA and find f&h. If this is very close to
the previous value of f&/„go to step 3, else continue.

(5) Solve the constraint problem again, now without
changing the constraint. Use the new ph basis as input,
to step 4.

It is furthermore important to calculate the decoupling
measure O. Due to the choice of normalization we find
that B = 1. So we only need to calculate

d( d(~
&~P

ddg dg
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IV. RESULTS

We have applied the algorithm discussed in the previ-
ous section to a description of 2sSi in the sd shell, using
Kuo's interaction, with single-particle energies as given
in Table I. This interaction is not the best shell-model
interaction available (it is known that Wildenthal's W
interaction gives a much better description of the
sd-shell nuclei), but this interaction is as close as possi-
ble to the unpublished interaction used by Pelet and Le-
tourneux. Note that we use ellipsoidal symmetry, which
is a limitation for the present case, where the lowest RPA
mode at the HF minimum is a ~AI~

~

= 3 mode, so that
it may not be totally correct to consider only even mul-
tipoles.

The model exhibits a deep deformed minimum on the
oblate side built from a Slater determinant in which or-
bits with rn = — — — —— —— ——are occupied. There5 3 1 5 3 1

2' 2' 2' 2' 2' 2
is no stable prolate solution with the same orbits occu-
pied. Further study reveals, however, that there is an-
other minimum with positive quadrupole moment when

3 1 1 3 1 1the orbits rn = — — ——— —— ——are occupied. Since2'2'2' 2' 2' 2
all axially deformed states within this manifold are or-
thogonal to all states considered previously, we find that
there is no path through the subspace of axially deformed
Slater determinants from one state to the other. The
lowest mode of the RPA is not an axial (I& = 0) mode,
however, but a K = 2 mode. It therefore seems plausi-
ble that there exist a path going through triaxial shapes
from one to the other. Actually this point has already
been studied by Pelet and Letourneux, and such a path
has been found.

We have applied our algorithm to the same calculation
and found the corresponding path. Since each point of
the collective path corresponds to a Slater determinant,
or equivalently a set of occupied orbits, it is hard to vi-
sualize this path. We need projections of the manifold of
Slater determinants on some two-dimensional surface in
order to represent the path graphically. Guided by Pelet
and Letourneux we give the values of the hexadecapole
moment (+4s/9r4Yo4) as a function of the quadrupole
moment (+4m/5 r2Yo2) along the path in Fig. 1. The pro-
late minimum does not have positive quadrupole moment
since the symmetry axis of the prolate solution is the x
and not the z axis. The oblate minimum is located at the
upper left corner and the prolate one at the lower right.
The solid line has been calculated using the covariant

20

15

10& O

0

-5

-10
-25 -20 -15 -10

FIG. 1. The value of the hexadecapole moment (r Yo )
as a function of the quadrupole moment (r Yo ). The oblate
minimum is located at the upper left corner and the prolate
one at the lower right. The solid curve is obtained using
covariant derivatives, whereas the dashed curve indicates the
path obtained in the case of no curvature corrections. The
markers are drawn at Q; = i/4, starting from the prolate
minimum.

derivatives, the dashed line using ordinary derivatives,
and the dotted line corresponds to a calculation using
TDA (the HY method). Clearly there is a smooth and
continuous change of the two parameters along the path.
The lower right of this plot, however, is not as smooth as
it seems. For that reason we give an enlargement in the
inset. The region of this large curvature will be shown
below to correspond to a region of bad decoupling, a be-
havior that has also been noted for simple models.

In Fig. 2 we have drawn a diA'erent representation of
the path, where we plot the quadrupole P and y param-
eters along the path, defined as

TABLE I. The single particle energies used in the calcu-
lation. 20 10

Shell

18-
2

2s-
2

18-2

Single particle
energies (MeV)

—3.9478

—3.1635

1.6466

FIG. 2. The value of the (mass) quadrupole deformation
parameters P and p along the collective path. The solid curve
is obtained using covariant derivatives, whereas the dashed
curve indicates the path obtained in the case of no curvature
corrections. The markers are drawn at Q; = i/4, starting
from the prolate minimum at y = x/3.
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(+4~/5i. Yo ) = P cosy,
(54)

10

(+47r/5 r'Y2 ) = P/csin y.

The meaning of the three lines is again the same. The be-
havior near the prolate minimum is again not as smooth
as at all other points. As can be seen from Figs. 1 and
2 the diA'erence between the covariant and noncovariant
approaches is surprisingly small. This is even more sur-

prising if one notes that the aFine connection does not
have small matrix elements. Furthermore, as we have
argued before, the diR'erence between TDA and RPA is
small as well.

Using the calculated value of the collective coordinate,
we can give the collective potential V (Fig. 3) and the
cranking parameter A (Fig. 4) (which should be, and is,
equal to the derivative of V) as a function of the collective
coordinate Q. In these two figures the curves obtained
using the covariant and the noncovariant approach coin-
cide.

Having obtained the path we can now calculate the
decoupling measure D. Using Eq. (52) we find in Fig.
5 that the quantity D is not small everywhere along the
path. The largest value of D is found near the prolate
minimum, but D also exhibits another "bump" not too
far from the oblate minimum. This explains the rapid
change in properties of the path in Figs. 1 and 2, since
the region of rapid change (large curvature) occurs ex-
actly where decoupling is bad. These features seem to
indicate that we need to include more than one collec-
tive coordinate. To see whether an approach with two
coordinates may be able to solve this problem we have
separated the contributions (Aq&/AQ)~ for the lowest
four values of p. Vfe clearly see in Fig. 6 that the second
coordinate (the solid line) gives the most important can-
tribution to this quantity almost everywhere. This seems
to hold promise for the calculation of a two-dimensional
potential energy surface.

5

rC

-5
0.5 1.5

FIG. 4. The quantity A as a function of the collective co-
ordinate Q. The curves with and without use of the covariant
derivatives coincide. A is numerically very close to dV/dQ.

to generate spectra and compare to the full shell-model
calculation in the sd model space. To that end we need
to requantize the Hamiltonian (55). Since we are working
in the intrinsic system we have to be very careful. The
necessary symmetry properties were, in eKect, set out a

To complete the discussion of parameters of the Hamil-
tonian we have also calculated the moments of inertia, us-

ing the approach in Sec. II C. These are displayed in Fig.
7. The moments of inertia behave relatively smoothly
(although they do not follow the irrotational pattern).
Where D has it largest value the moments of inertia seem
to change less smoothly.

Though we have found that decoupling is not good
everywhere, we shall nevertheless use the Hamiltonian
we have constructed,

2
'H= —') ' + 'P +V(Q)-,

14

12

-135 10

0
-140

IO

-145

-150
0

I

0.5
I

1.5

0
0 0.5 1.5

FIG. 3. The potential energy V as a function of the col-
lective coordinate Q. The curves with and without use of the
covariant derivatives coincide.

FIG. 5. The decoupling measure D as a function of the
collective variable. In this case the path is the one obtained
without curvature corrections. As can be seen, decoupling is
reasonable, except for the region near q = 2.
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1.5 0 ~
0 0.5 1.5 2

FIG. 6. The quantities (Eq"/Eq ) for the few lowest
eigenvalues of the local RPA. The solid line gives the value
for p = 2, the dashed line for p, = 3 and the dotted line for

p = 4. As can be seen through comparison with the value of
D in Fig. 5, the regions of bad decoupling correspond to large

2

FIG. 8. The square of the four lowest 0+ eigenfunctions
of the collective Hamiltonian. The ground state is the solid
line, the dashed line is the erst excited state, the dotted line
the second excited state, and the short-long dashed line is the
third excited state.

long time ago by Bohr, and are discussed in Appendix
C. The only thing that needs to concern us here is that
we decompose the eigenfunctions as

4(Q~)IM. = ).41sc.(Q)(~IIMI'),

where (Q~IMI~) are appropriately symmetrized angular
functions, and the I~ summation only runs over positive
and even values, and I~ = 0 is excluded for odd I. Using
these ideas it is not very hard to write down a finite
difference representation for the Hamiltonian matrix (see
Appendix C), which in turn can be diagonalized in order
to obtain eigenvalues and eigenfunctions. In Fig. 8 we

give the eigenfunctions for the states with zero angular
momentum. The ground state cannot be very sensitive
to the badness of decoupling, since it is very small for

Q ) I, but the first and other excited states have sizable

2
10—0

0
2
1
6
48—
4

3

\

I
g W)

p

I

values in the region of bad decoupling. This means that
we do not believe that the corresponding eigenvalues are
very good approximations to the shell model values. If
we look at the spectrum as given in Fig. 9, we indeed see
that the ground state rotational band is reproduced quite
well. The band built on the oblate minimum (the second
0+ state) comes at much too low an excitation energy.
Again the moment of inertia of that band is more or less
correct. The other 0+ states also come at a lower energy
than their shell-model counterparts. Further note the
3+ state that is found to lie at too high an excitation

Ol

2

~,

+r ~

rPe ~r~r~
~ or~

~ 0

~r r

0

4 4

I

0.5 1.5
0 0

s.m. GVA

FIG. 7. The moments of inertia, X;, as a function of Q.
The solid line represents X~, the dashed line represents X„,
and the dotted line represents X .

FIG. 9. The spectrum of the shell model calculation (s.m. )
compared to that of the generalized valley approximation
(GVA).
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energy. This is probably partially due to the neglect of
odd multipoles in our calculation, which certainly would
lower the energy of such a state, but this question requires
further study.

V. CONCLUSIONS AND OUTLOOK

We have shown that we can construct a one-
dimensional path that, at least for Kuo's interaction,
gives a reasonable (but not goad) description of the low-
est states in 2sSi. The major problems are caused by the
fact that the path does not really decouple from other de-
grees of freedom. This has an important impact on the
spectrum of 0+ states, especially in the separation be-
tween the ground state and first excited state. We have
seen that the second RPA mode is responsible for this
lack of decoupling, which leads us to the conclusion that
it will be worthwhile to consider the case of two collective
coordinates. Formally this problem is very similar to the
one we have solved in this paper, so that the only diK-
culties appear on the numerical side. We are currently
studying the feasibility of such a program.

One should notice, however, that the Kuo's interaction
that leads to a spectrum with two clearly identifiable
rotational bands, does not reproduce the experimental
sit, uation, which shows a much less regular and therefore
also much more complicated spectrum. For that reason
our future calculations should be done both with duo's
interaction as well with Wildenthal's interaction (the last
one gives a much improved description of the spectrum
of ssSi). We feel that if we are ever going to see shape
mixing, i.e., wave functions that have support in regions
of very diA'erent nuclear shapes, we will find it for the
case of Wildenthal's interaction.

One further problem we would like to mention here is
the inclusion of 1/N corrections. To understand this it
may help to look at the fact that the mean-field approx-
imation becomes exact only in the limit of large particle
number. For finite particle number there are corrections,
however. One of the easiest ones to evaluate is the ro-
tational zero-point energy. This means that in a gen-
eral Slater determinant the expectation value of J2 is

not zero, so that we have to subtract a term of the form

APPENDIX A: FORMALISM

In this appendix we use greek letters to denote all
quantum numbers of a single particle orbit except the
isospin projection,

n = (n„l„j„m,).
Let us use an isospin-saturated density operator,

T
Pa7- P7-b = ~7. 7-bPO, P

= 7. 7.bPaP. (A2)

It is easy to show that Trp = n/2. As usual we now drop
the tilde on p. The HF energy functional becomes

from the potential energy in order to correct for the finite
angular momentum carried by the Hartree-Fock wave
function. A further correction would be that due to fluc-
tuations in the noncollective coordinates. In some of our
previous papers we have taken that to be 2 h~, the zero-
point energy of each of the noncollective modes, which
number has to be added to the potential energy. The
use of Hartree-Fock, however, masks the fact that there
are quantum corrections of the same order of magnitude
but opposite sign. We expect to be able to generalize Eq.
(8.111) in Ring and Schuck, ~s which would show that the
potential energy will be lowered by the zero-point fluc-
tuations. These concepts will be addressed in our next
paper.

We started out mentioning the HY approach, which
in the case of Si has been studied by Pelet and
Letourneux. As can been seen from our spectra we have
so far not gained too much over that description if we
consider only numerical results. It is appropriate to re-
mind the reader once more, however, of the conceptual
advantages of our method. We work fully on a cia.ssical
level, which allows for a clear separation of the decou-
pling problem from the structure of the nuclear physics.
Furthermore, we can calculate and interpret a collective
coordinate, and last but not least we know how to gauge
the quality (or absence) of decoupling.

This work was partially supported by the DOE under
Grant No. 40132-5-25351.

a7-~ P V-by7-~ b7-g

—2 ) &a ) PncL + g ) ) Va7 pry' r, b7d PbpPpa
0 'm~ &pub (Ta —Tc i Tb Td )

—2 ) ~a ) Pnn + 2 ) Vappb pbpppn.
0 fA~ a pp6

(A3)

Here we have introduced V by
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Te —Tc,Tb —Td

JTM T =Tc,Tb —Td, T

1 1 1 2
2 2 2 VJ~ g i ib

abed
Tg Tb Tg m mb M m md M

) (2~+ 1)VJT g 2o 2& g 2): ?&

m mb M m md MJTM
(A4)

and used the common definition of an unnormalized ma-
trix element V

'H = 6W/bp. (B2)

V.'h. ~ = ([i.ih]her, IV I [i i ~]Vrr, ). (A5)
The two matrices entering in the RPA approximation

are

W[p] =4) e, ) p + 2 ) V p~? p??p)
a m aPp6

where

V ~» = V ~»+&-p-p~+ V-~~~+ V-pp~

+~-~~~+ ~r»+ v-~.-~+ ~=a.-~ (A8)

APPENDIX B: DERIVATIVES

In the case of Hartree-Fock the energy functional is

W[p] = Tr(ep) + -'Tr2(pVp),

from which we can find the Hartree-Fock Hamiltonian by
diA'erentiation,

These equations can be simplified further when we re-
quire that for each occupied state the time-reversed state
is also occupied. Denoting time reversal by a bar we have,
under a choice of phases compatible with ellipsoidal sym-
metry

(A6)

Thus we can limit all sunimations to half the space, using
time reversal to do the other half, and find

Vphp'h' = [~hh'(+pp' + +p'p) ~pp'(+hh' + +h'h)]/2
+(V„'.„+V.„„'+V»'. + ~» pp)/2,

(B3)

&P"P" = [4h (& p +&p p) —~pp (&hh +&h h)]/2

+(Vph hp + V?,p ph
—V„„hh —V?, h „„)/2

(B4)

Their derivatives —needed in the derivative of the RPA
equation —can also be given explicitly. The rules set out
in our previous paper, do not apply to third derivatives
of expressions like TrHp (though they do apply to the
part that has one derivative due to the explicit density
dependence of H) We can .easily show that

Pph = Pph —,'Pph Ph p. Pp —h + &(P'),
(B5)

Ph = 4„—2&h„A h /jh, + &(~')1t, , t

and the pp' and hh' matrix element of p only contain
terms up to order P . Together with

p„h = (php)' = ((ph + &~ph)/V2 (B6)

we 6nd that

8 Tr(ep) 1

gp, h, gp2h2ggp3h3 ~( [(~plh2 + ~h2pl) p2p3 hlh3 + ( p2hl + hlp2) plp3 h2h3]

+ [( plh3 + h3pl)~p2p3~hlh2 + ( p3hl + hl?&3)~plp2~h2h3]

+ [(~p2h3 + Eh3p2)~plp3~hlh2 + (Ep3h2 + Ch2p3)hplp2 bhlh3])) (B7)

0 Tr(ep) 1
~(—[(~p, h, + ~h, p, )~p,p. ~h, h. + (~p, h, + ~h„,)~p, p, ~h, h. ]

~~plhl ~~p2h2 ~ 4V'2

+ [(Eplh3 + Eh3pl )bp2p36hlh2 + (Ep3hl + ).'hlp3)6plp26h2h3]

+ [(E'p2h3 + Eh3p2)~p1p3 |?hl h2 + (Ep3h2 + Ch2p3) hp1 p26h1h3]) .

We now find

(B8)

» php'h' + p'h'p" h" + p" h "ph + php'h' + p'h'p" h" + p" h"ph i (B9)

(
lhl

j p' h" h 'h' + 'h' "h" + "h" h + h 'h' + 'h' "h" + "h" h (B10)
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Here we have introduced a shorthand for a combination of matrix elements of V and Ikronecker-b's that occurs severa
times,

II h I I

[$hhi (Vphiipi Ii + Q ilplhu ) —P i (Qghilhl gl + t hlhigh II )]/~2,php'h' (B11)

[~hh" ( +ph'p"p' + +pp'p" h') + ~pp" ( +hh'h "p' + +hp'h" h')I/~~)p p
(B12)

II hllg, I:—[+hi $ I II $hhi +iIih I |) Ii phshII ]/(2~2),php'h' (B13)

APPENDIX C: SY'MMETRIES
AND R.EQUANTIZATION

When requantizing a system with ellipsoidal symme-
try, one must be careful to implement the symmetry with
respect to the group D2, consisting of the identity opera-
tor and the rotation about 180' with respect to each in-
trinsic symmetry axis. The boundary conditions for such
a situation were first evaluated by Bohr. We here follow
the discussion of these results by Kumar and Baranger, "
but would like to point out the discussion in Ref. 12.

The idea starts from reconstructing a wavefunction
from the intrinsic frame. We thus decompose the ro-
tationally invariant wave function as (e.g. , Appendix A

in Ref. 13)

JIM(Q, Q) = ) QK(q)(QlIMI ),

(QlIMI~ pi) = [2(1+bKp)]

x(&mK(~)' + (—1) &~—K(~)'). (C2)

the usual conditions for reflection about y = 0 and p =
2'/3 can be related to a symmetry about Q = 0 and

Q = QI, where QI is the value for Q at the point of
prolate symmetry, which lead to the following boundary
conditions. First we find PK (e) = (—1) I PK (—e), which
leads to the conditions:

Ii fourfold: dPK(q)/dqlq —p —0
I1 not fourfold: PK(0) = 0.

The boundary conditions at the other end are more com-
plicated, reflecting the fact that we have similar relations
as given above, but the symmetry axis is no longer the z
axis. The relations are of the form

where the properly symmetrized angular functions are
given as a sum of Wigner D functions, with

PK(qp —~) = MKK &t)K (Qp+ e), (C4)

) - lI-s) [(I + I' ) (I —I' )'(I + I')'(I —I~ ')']'I'
[(1+bKp)(1+ 6K p)] I S!(I1+ 1~" + S)!(I—Ii. —S)!(I—Ii' S)!

We now seek to find a finite difference approximation to the Harniltonian. We shall not impose the boundary
conditions given above, but instead shall use the boundary condition to check the eigenfunctions after diagonalization.

If we evaluate (PlH —Eli/)) we find

J2 2

I = (el' —&ly) = dq-,' ). II' ' II" &K(q)&I& (q)+) 2 d +) [I'(Q) —&)&K(q)'.
KKIj 2 K K

Now let the potential and moments of inertia be known at the points Qi, . . . , Q)v, chosen such that Qi corresponds to
the prolate state and Q)v to the oblate state, and let the index i label a quantity at such a point. The functional I
can then approximately be evaluated as

%—1

KKIj i=1 2~ji+ 1

N —1

+) ) . 2
' ') (@+~ —i) )+ ).).IKEY'*

—~)i~'+ pl+~ —&)&5'+i)(Q'+i —Q')
K i=1

If we vary with respect to PK; and put o)I/BPK; = 0, we obtain the generalized eigenvalue equation

4'K'i WKi+1 WKi —1) .( l~j l
1 ) z. gi +

(q q )(Q Q )gi
—

q q
—

q q
+ (+i —@)4Kigi )

where
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(C9)

If we now redefine P(r, = g, P(r, , we obtain the ordinary eigenvalue equat, ion (where we have dropped the tildes)

(aia'+i) — (aiei-i) + ).(~1&
I 1; ll~&') + I'P(ri

i+1 i i —1 rw ( 2K

= EP(r;. (C10)

Since this is a very sparse matrix problem, we solve this by the iterative Lanczos method. is
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