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In this paper, stretching of nuclei is microscopically interpreted via the ferrnion dynamical sym-

metry model. A four-parameter energy formula with stretching for the yrast band of deformed nu-

clei is derived. This formula can account for the states in the yrast band below backbending and
with the ratio R4=E(4+ )/E(2+) )0.32 in the rare earths and the actinides. It is also shown that
stretching can improve the 8 (E2) fits in the rare earths as well. However, analyses of the fitted pa-
rameters reveal that the smooth increase of the moment of inertia and the enhancement of the
8 (E2)'s at low spins appear to be a more complicated phenomenon, thus suggesting the necessity to
further microscopically understand these low-spin behaviors.

I. INTRODUCTION

Rotational bands and their electromagnetic transitions
are fundamental manifestations of nuclear collectivity.
The traditional approach to study them is via the geome-
trical model of Bohr and Mottelson (BM). ' It is well
known that nuclei are not rigid. This can be seen from
the fact that as a nucleus spins faster (i.e., higher J), the
moment of inertia, a quantity easily deduced from data,
will generally increase as well. This effect is known as
stretching.

In the past few decades, attempts were made to under-
stand this effect. A notable one is by ScharfF-Goldhaber
and co-workers ' in which this feature was treated by the
variable moment-of-inertia model (VMI). An extension
was subsequently made (called GVMI) in order to widen
the VMI range of validity to include vibrational, transi-
tional, and rotational regions. Although the VMI and
GVMI were successful in reproducing the energies of the
yrast states below backbending, they are phenomenologi-
cal and thus contain no microscopic information. Anoth-
er approach which in spirit is similar to the VMI is car-
ried out by Wu and Zheng. These authors assumed a
suitable potential energy with certain singularities, ex-
panded the BM Hamiltonian up to cubic powers of sin3y,
and obtained a simple energy formula which is suitable
for the yrast band of even-even rotational nuclei.

In the past decade and a half, the interacting boson
model (IBM) has been one of the main tools for studying
deformed nuclei. Motivated by the spherical shell model,

Consequently, the expectation value of the square of
the deformation P can be expressed in terms of the expec-
tation value of the d-boson number operator &&,

(P'& = (a a &
= (n„+—,

'
& . (2a)

it was constructed as a bosonic algebraic model and
therefore deformation is not a priori assumed. Rotations
in the IBM context ' and associated with the dynamical
group chain U6& SU3D SO3, and the various bands are la-
beled by the SU3 irreducible representations (irrep) (Ap).
Although the IBM SU3 limit is successful in describing
many aspects of deformed nuclei, it has limitations in
handling two important physical aspects: the Pauli and
stretching effects.

In the early 1980s, combining the advantages of the ex-
tended BM and IBM models, Moshinsky proposed a hy-
brid model (HYB). Utilizing this framework, Partensky
and Quesne studied the shape alterations of nuclei with
increase of angular momentum. By assuming that a d bo-
son corresponds to a quadrupole phonon, the hybrid
model establishes the link between the d-boson operators
in the IBM with the collective coordinates of the geome-
trical model. Therefore, the d boson's creation and an-
nihilation operators are related to the deformation pa-
rameters o.„and their corresponding momenta ~„as

d„=&( I /2)(a„—im„),
(I)

( —I )"d „=&(I/2)(a„+i'„) .
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(P )~= [L(L+1)+B),
6 2N+1 (2b)

where the IBM formula [Eq. (6.5) of Ref. 6] has been
used. Here % is the total valence pair number,
E=N +N, and

B =8%~+22% —15 . (3)

For a state with angular momentum L in the ground
band [belonging to the SU3 irrep(2N, O)] one has

low-lying spectra are the S and 0 pairs in the normal-
parity levels, and the S pairs in the abnormal-parity level
(the script 4 is used to differentiate it from the S pair in
the normal-parity levels). For the symmetry Sp6, the
creation operators of the S,D pairs are expressed in terms
of the creation operators bk; in the k-i basis as fol-

k i

lows

S'= X&&»;~2(b»;b»;)0

According to the BM model, the moment of inertia Jz is
related to (/3 )z by

D' = X &&»; ~2(b»;b»; )"o
(7a)

&r, =3Bp(P )r = [L(L+1)+B],
2 2N+1

where Bz is the inertia parameter of the BM Hamiltoni-
an. In this way a one-free-parameter energy formula for
the ground band is obtained:

Ei = L (L +1)= L (L +1) . (5)
L

Using such a formula, Bonatsos was able to account for
the gradual increase of the moment of inertia with angu-
lar momentum prior to backbending in the actinides and
rare earths.

It should be pointed out that although the hybrid mod-
el can incorporate stretching, there is an inherent incon-
sistency in the theory. It can be seen as follows. Equa-
tion (2b) shows that in the hybrid model the deformation
parameter P, and thus the intrinsic quadrupole moment,
increases with the increasing angular momentum. How-
ever, the intrinsic quadrupole moment for the ground
band belonging to the irrep(2N, O) in the HYB or IBM
can also be obtained through the calculation of the expec-
tation values of the quadrupole operator with the result

Q0(HYB) =Q0(IBM ) = —a&&(2nl5 )(4N +3) . (6)

Since 1V is half the valence nucleon number, which is, of
course, independent of L (that is why there is no stretch-
ing effect in the IBM), the quadrupole moment Q0 in (6)
is independent of L. This contradicts the prediction of
Eq. (2b).

The present work is to study the deformed rare earths
and actinides by using the Sp6XSVlz branch of the fer-
mion dynamical symmetry model (FDSM). ' ' The
FDSM is a symmetry-dictated truncation spherical shell
model, for which deformation is not an input. Further-
more, it resides entirely in the fermion space, and there-
fore the Pauli principle is fully taken into account. We
would like to show in this paper that the stretching effect
is naturally incorporated. In this approach one can
derive a four-parameter formula for the states of the yrast
band of even-even nuclei. We will also show that stretch-
ing will enhance the electromagnetic transition rates.

HFDs~=H (0)+H (0)+H (0) (8a)

H (0)=60/~0+6/n] +H„+&,+H„, (o =17,v), (8b)

H1TV(0) —QlTv 7T v+ b 17v 1l' v+ b vK V

2

+ g 2B„P"(vr) P"(v),
r=0

(gc)

where H (0) and H (0) represent the proton and neutron
Hamiltonians, respectively, and H (0), the n pinterac--
tion; eo and ~o are the single-particle energy and
particle-number operator for the abnormal-parity level,
respectively; e, and n, =2P (o ) are the average single-
particle energy and particle-number operator for the
normal-parity levels; the total number n =rzo+n, .

In Eq. (8b), H„ is the Hamiltonian for the normal-
parity levels,

H„=GQS(o) S(o.)+G~D(o) D(o)
2

+ g B„P"(o) P"(o ),
r=0

PP~)= X+&» ~2(b» &» )„"o

(9a)

(9b)

while &, is the Hamiltonian for the abnormal-parity lev-
els,

where 0»; =—,'(2k +1)(2i + 1), and the pseudo orbital an-

gular momentum k = 1, while the S' pair for the
abnormal-parity level is

S =QAQ/2(a~ a, )0, (7b)

with 00= —,
' (2j() + 1).

The (S,D, S) subspace is chosen as the model space
and is called the heritage u=0 subspace, where u is
defined as the number of fermions which do not contrib-
ute to S,D or S pairs.

For an n psys-tem, we shall use the notations S(cr),
D(o ), and S(o ) with o =~,v to distinguish proton and
neutron pairs. The most general two-body Hamiltonian
in the u =0 subspace can be written as follows:

II. FDSM HAMILTONIAN
XO=0 S(o ) S(o )+ (9c)

The essence of the FDSM (Refs. 11 and 12) is to select
a truncated Hilbert space for the spherical shell model.
It is assumed that the most important fermion pairs for

The last term H„, in (8b) is the interaction between the
particles in the normal- and abnormal-parity levels
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I cT

H„=go [S(o ) S(o.)+S(cr ) S(o )]+ roon,
2

(9d)
n —11

D —3
( g GATV + 1TV

)1 2 (14a)

( Sp6 X Sp6 D SU3 X SU3 D SU3+ D SO3+') X g'gz .

In this case the pairing interactions S(cr ) S(o ),
[S(o ) S(o )+S(o ) S(o )], and the proton (neutron) an-

2
gular momentum 1. (I.' ) are symmetry breaking terms.
By neglecting the off-diagonal part of these terms (details
can be found in the Appendix), the FDSM Hamiltonian
can be simplified as follows:

H~F'0'sM =Ho+ &sU, +o, (10)

In Eq. (10), Ho is a quadratic function of n& and n

(~o =n —n, ),

Note that we have used the nonscript (script) capital
letters to denote the interaction strengths for the normal-
(abnormal-) parity levels, and lower case letters for the
coupling strengths between the pairs in the normal- and
abnormal-parity levels.

For the SU3+ dynamical symmetry limit, the group
chain is

5, =(5, +5, )/2,

5, =
—,'(G~ —Go )(0, +1) (0,=2fI, /3) .

(14b)

For reasonable residual force, monopole and quadrupole
pairings as well as quadrupole-quadrupole force are at-
tractive, and ~GO~ ) G2, ~8z~ ) ~B, ~, which will render
the parameters D and 61 to be positive, as expected.

Note that in Eq. (14a), 5& is originated from the diago-
nal term of the pairing interaction (see Appendix). One
sees that although for well-deformed nuclei the mixing of
different SU3 representations due to the off-diagonal term
of pairing may be negligible, the diagonal term plays a
very important role. Without pairing, n=D is a con-
stant, which implies that a nucleus will behave like a rig-
id rotor. With pairing, the moment of inertia, first, will
be reduced, because the pairing adds the term 5, /(n, —1)
to ~, and 5, is a positive number; second, it becomes n,
dependent. In the following we will see that it is this n,
dependence which causes nuclear stretching microscopi-
cally.

Ho= g (a N, —2b N, +c )+dN N',
CT = 'TT) V

2

b =b, +bz N, c =c1N +c2N

(1 la)

(1 lb)

where a, b, , b 2, c, , c2, and d are parameters, which are
linear combinations of the interaction strengths in H (0)
and H '(0) in Eqs. (8b) and (8c), respectively.

The second term HsU is the excitation energy of SU3
3

representations,

G g g nv )gCo +g nv gCm+v
SU, m 2 2 2 SU3 2 SU3

where

and CsU (CsU ) is the Casimir operator of SU3 (SU3+')

group. C3(n&, 0) and C3(n, , 0) are eigenvalues for the
SU3 symmetric representation (kp) =(n &,0) and (n &, 0),
respectively. Generically,

III. ENERGY FGRMULA

(HsU ) =E(np, n ) =Piro(np+ny+K/2),

with

n~=(n, —
A,

—2iM)/3, n&=(p ir)/2, K =a-. .

Thus one obtains the energy formula

(15a)

(15b)

(16a)EL =E (no, , n)+E(np, nr )+aL (I. +1),
E(on, , n', )=(H )o= g [a X, 2b X, +c ]—

+dN X (16b)

In the SU3+ dynamical symmetry limit, we employ
the irrep~JVoX, (A, p )(A, p )(kp)ELM) as the basis,
where Ao=~o/2 and Ni =ni/2 are pair numbers in the
abnormal- and normal-parity levels, respectively, ~ is the
Vergados quantum number, ' and I.,M are angular
momentum quantum numbers. The Hamiltonian HFDsM
[Eq. (10)] is diagonal in this basis. Furthermore, HsU

3

[Eq. (12a)] can be shown to be equivalent to the excita-
tion energy of P-y vibrational states [see Eq. (3.19) of Ref.
15],

C3(kp)= —,'(A, +p, +AIM+3A+3iM) . (13)
For the ground band, i.e., (k,p)=(2X&,0), E(n&, n )=0,

For a given number of particles, say, n1, it reaches its
maximum value when (kp) =(n &, 0). Thus the symmetric
representation is usually the ground state of fermion SU3
symmetric representations, if the quadrupole-quadrupole
interaction is attractive, unless n1 & 2A, /3.

The last term in Eq. (10) is the collective rotational en-

ergy, where L is the total angular momentum, and o. is
related to the moment of inertia of a rotor (a = 1/2 J ):

EL =ED(ni, n", )+aL(L+1) . (16c)

Until now, X, and Ao are assumed to be fixed for a given
nucleus. However, the interaction between the nucleons
in the normal- and abnormal-parity levels, H„„will ad-
mix states with different X1. A proper treatment of this
admixture is beyond the scope of the present treatment.
As an approximation, X, is treated here as a variational
parameter and its values are determined from the equilib-
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rium conditions

BZ M'
=0, =0 .

BNi
(17)

IV. 8(E2) FORMULA

The quadrupole operator is defined by

Q ()= —
aqua (16m/5)P(), P() =PD(m)+P0(v) (21)

From (16) and (17), one gets

(1/a + 1/a )L (L + 1)
(2NI —1 )

=N', )+FL(L+1), valid for low L, (18a)

where Ni ' is the value of Ni for the ground state 6=0,
and F is a quantity depending on N i but not on L,

N(0) N {077.) +N(Ov)
$77 bv

1 1 va a

5iF=, 1/a =(1/a "+1/a') .
a (2N',"—1)' '

(18b)

(18c)

According to (16b), the coefficients a and b must be
positive in order for a minimum to exist for the curve EJ
vs N, . Besides, as we have discussed before, the
coefficient 6i is positive for a reasonable residual force.
Therefore, the coefficient F in (18a) is positive. We im-
mediately see that the number of valence pairs Ni in the
normal-parity levels increases with the increasing angular
momentum L. According to Eq. (14a), the increase of N,
naturally leads to the decrease of a and, thus, the in-
crease of the moment of inertia, and also to the deforma-
tion of the nucleus, as we shall see later [Eq. (22b)]. This
is precisely the nuclear stretching.

Substituting Eq. (18a) into Eq. (14a), one gets the ener-

gy formula from Eq. (16c):

where az is the effective charge. Using (A. lc) in Ref. 13,
we have

Q(((2N„O)y=O)=a~&(2'/5)(4N, +3) . (22a)

Thus the intrinsic quadrupole moment predicted by the
FDSM is

QD(FDSM) =azv'(2'/5)(4N) +3) . (22b)

Equation (22b) shows that the deformation is proportion-
al to the nucleon number in the normal-parity levels.
Note that Eq. (22b) has the same form as (6) of the IBM
except that N is changed to Ni. As we will see, this
"slight" modification has profound effect.

The B (E2) transition rate for the ground band is [see
(A.2b) in Ref. 12]

B(E2,(2 N)0)L +2~L )

(L +1)(L +2)
2L+3 2L+5

(23)

V. RESULTS AND DISCUSSIONS

Equation (23) has the same form as Eq. (4.9) of Ref. 6,
except that the integer N in the latter is now replaced by
Ni. To take into account the stretching effect, the quan-
tity N, in Eq. (23) is to be calculated according to (18a).

L L+1 +B

(19a)

where Eg, is the ground-state energy:

( n (0)vr n (0)v
)g. s. O &i

n(,"=2N(0' (~=~ v)
(19b)

= A'(2N() ) —1),6,
2F

a
2

' (19c)

B= ' =B'(2N',"—1)', B'= '
2F ' '

26,
(19d)

D+=1 AB

[L (L +1)+B] (20)

Equation (19a) or (20) contains three parameters D, A ',
and B'. From Eq. (20) we see that an increase of the an-
gular momentum L naturally leads to an increase of the
moment of inertia ZJ .

From (19a) and using Eq. (4-19) of Ref. 1, we obtain the
moment of inertia:

Using the formalism discussed above, we have ana-
lyzed the experimental data [energy levels and B (E2)'s]
for the actinides and rare earths. It should be mentioned
that the actinides have protons and neutrons occupying
shells 7 and 8, respectively, thus having Sp6 X Sp6 syrnme-

try. The rare earths have protons and neutrons in the
shells 6 and 7, respectively, thus SO8 XSp6 symmetry.
The former has a coupled SU&+ dynamical symmetry,
while the latter does not. However, Wu and Vallieres'
have demonstrated, using their SO8 X Sp6 code, that for a
deformed nucleus, if the n-p quadrupole-quadrupole in-
teraction is strong, the energy spectra and B (E2) transi-
tion rates of the ground band of a SO8XSp6 system
behave very much like an Sp6 XSp6 system. Thus, in this
paper, we shall assume that the SU3+ formulas [Eqs.
(19) and (23)] can be applied to both actinides and rare
earths.

The B (E2)'s and the energy levels before the backbend
for rare earths and the energy levels for the actinides are
fitted by the least-square method. From Eq. (20) one sees
that when pairing vanishes ( A =0) the moment of inertia
is 1/2D, which corresponds to the rigid-rotor moment of
inertia, i.e., 2„=1/2D. Thus the parameter D should
decrease with increasing Ni since 2„ increases as mass
number increases. To take this into account in a simple
manner, it is assumed that for a given Z, the parameter D
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TABLE I. Eftective charges a2 for the rare earths.

Nucleus
CX2

154S

0.188

156~d

0.185

1s8~d

0.185

160Dy

0.172

162D

0.168

164Z)y
0.167

164E

0.180

166E

0.171

168E

0.164

170E

0.164

Nucleus
CX2

166Yb

0.186

170Yb

0.169
72Yb

0.180
4Yb

0.172

176Yb

0.158 0.183

178Hf

0.168

180Hf

0.170

186~

0.263

for different isotopes varies linearly with X', ':

D =D$ +D2X) (24a)

bo bcT'+
a a

(24b)

Empirically it has been found' that a universal formula
can be applied to both actinide and rare-earth nuclei and
for both protons and neutrons:

Ni ) =0.75+0.5%, 0 =m, v ) (24c)

where X" and X are the number of valence proton and
neutron pairs, respectively. If X', ' )0&/2, the above
distribution is assumed to be the same except that X'& '

(N ) is now the number of normal-parity hole pairs (total
number of hole pairs).

For nucleons in Sp6 shells (the valence nucleons of ac-
tinides and the rare-earth valence neutrons), there is a
dynamical Pauli effect that when NI ' )0|/3, the sym-
metric SU~ representation (2N', ', 0) is Pauli forbidden
and the nuclei have to be in less symmetrical states with
higher energies. This effect tends to decrease the incre-
ment of X& ' . To take this into account, we shall assume
that the slope of Eq. (24b) is reduced from 0.5 to 0.25

where D& and Dz are parameters. Thus, instead of three
parameters for each nucleus, we have four parameters
D1, D2, A', and 8' for each set of nuclei with the same
z.

The values of Np' can be determined by Eqs. (18b) and
(1 lb):

when X', ' )Q& /3, i.e.,

20''+0.2S X — '+1.51 (24d)

for 0& /3 (Np' (0& /2. The number 1.5 in (24b) is
added to ensure the continuity of X& ' . Of course, the
slope reduction cannot be easily justified on physical
grounds. Fortunately, our results are insensitive to such
variations.

Strictly speaking, when N&
' )A&/3, not only is here

uncertainty for the X
&

distribution, but also some
changes must be introduced for the matrix elements given
by Eq. (A14), the energy formula given by Eq. (19), and
the B (E2) formula given by Eq. (23). This is because the
SU3 representation is no longer (2Np', 0). According to
Ref. 12, there are in principle no technical difhculties in
computing such matrix elements for arbitrary SU3 irreps.
However, in the interest of clearly exhibiting the physics
and that such details do not alter the essential features of
our microscopic stretching mechanism, and using the
fact that most well deformed nuclei satisfy X'& ' (0&/3,
we have in this paper employed only the symmetric irreps
for all deformed actinides and rare earths. Hence the ter-
minology "ground band" is synonymous here with the
term "yrast band. "

A. B(E2) values

For the rare earths, we first fit the B (E2) values in or-
der to obtain the parameter B' by (18a) and (19d). The

TABLE II. Parameters for the formulas (20) and (24d): D1, D„A' (in keV), and 8' for rare earths
and actinides.

Nuclei

60N

62Sm

64&d

8Er

70Yb
72Hf
74M

90Th
92U
94Pu
96Cm
98Cf
100Fm

D1

10.6701
10.2513
11.8212
10.1063
10.1812
12.7529
10.5153
11.8283
4.2208
3.3707
3.5935
3.5919
3.5919
3.9919

D2

—0.3544
—0.4144
—0.6948
—0.7672
—0.6855
—0.8731
—0.6070
—1.0921
—0.0987
—0.0143
—0.0028
—0.0075
—0.0075
—0.0064

6.8725
13.4980
17.5078
29.2785
29.2031
25.1005
26.8036
37.4509
20.4028
14.7546
13.9980
11.6860
11.3455
12.3455

0.1484
0.1673
0.1604
0.1656
0.1685
0.1642
0.1689
0.1677
0.3118
0.2171
0.2042
0.1521
0.1437
0.1437



43 NUCLEAR STRETCHING 2229

effective charge a2 is determined from the experimental
B(E2,2~0) value. The parameters az and B' are listed
in Tables I and II, respectively.

In Fig. I typical results for rare earths are presented

( 152sm 156Qd 160D 166Er 166Yb 170Hf nd 186~)
experimental data are taken from Ref. 19. It is seen that
for not too large values of L, the stretching effect does
improve the fit between the experimental and theoretical

I I

156Gd
I I I

Q
2

A

CQ
+ 1

CR
I I I I I I

A
I

CQ
+
CQ

CQ
I I I I I

—2 0 2 4 6 8 10 12 14
L

0 2 4 6 8 10 12 14
L

I

160Ds'

I I I I I I I

166K

A
I

02
+
02

A
I

CQ
+
G2

I I I I I I I

—2 0 2 4 6 8 10 12 14
L

I I I I I I

—2 0 2 4 6 8 10 12 14
L

I I I I I I I I I I I I I I I I

170H~

A
I

CQ

+

0 I I I I I I I I

—2 0 2 4 6 8 10121416
L

A
I

CQ
+

CQ

t-CI

0 I I

—2 0 2 4 6 8 101214161820
L

I I

186
I I I

A
I

CQ

+
02

I I I I I

—2 0 2 4 6 8 10 12 14
L

FIG. 1. B(E2) values for ls2Sm ls8Gd, 16ooy l66Er l66Yb, ' Hf, and l86W. The curve I (curve II) represents the resu1t for which
the stretching e8ect has (has not) been taken into account.
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results. Without it, X& is fixed for a given nucleus, and
Eq. (23) shows that the 8(E2) value will increase first
with I., but will soon decrease with I., and finally become
zero when Li =2N, (i.e., when all pairs in the normal-
parity levels become the D pairs), as indicated by curve

II. It should be mentioned that this rapid vanishing of
the 8 (E2) s is because our study is limited to the heri-
tage zero space. We have shown recently that by consid-
ering the nonzero heritage space, ' one can account for
the so-called loss of collectivity and band termination.

2.5

Exp
14+ 14

—12' 12'

Exp
—14 14+

—12 12

Th
xp +

—14

—12—12

Exp Th

12' 12'

—10 10' 10 10+
Exp Th

—10+ 10 10 10 10 10'

0.5

8+ 8+

+ +6

8 —8 8+ 8

Exp

0.0

4
2+

4
2+

—4
2+

4
2+ 2+

4+ 4
2+ —2+

98 100
NEUTRON NUMBER

102 104

2.5

Exp Th

—14 —14 Exp
14

Exp Th

14 14

Th Th Exp Th
Exp

+ —14 14 —14 —14—14 14+

Yb

2.0
—12 12+

12+ 12 —12 i —12 —12 12 12—12

1.5
—10 10+

—1010+ —10 —10 + 10 10 10+ 10+

1.0
8 8+

8 8+ 8+ +
8+ 8

8+ —8 8+ —8

0.0

—8

4
2'

—4
—2'

—6

4
2+

—4 —4
2' 2'

+ +6+ —6 6+ 8

—4
2'

+

2+ 2+

Exp Th

2+ 2+

98 100 102 104
NEUTRON NUMBER

106 108

3.0

2.5

2.0

Th Th Th
Exp Ex14+ P 14++—14+ 14 —14+

—12
12+—12 —12+ +
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FIG. 2. Experimental and FDSM predicted spectra for the ground bands of the isotopes of Er, Yb, and Hf.
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Such additional ingredients of the theory are not included
so that we may clearly focus on the problem of stretching
in low spins. With stretching, X& will increase with I.,
and the B (E2) strengths will continue to increaes with L
over a broader range.

B. Spectra

For rare earths the parameter 8' is determined from F
obtained from the B(E2) fit by Eq. (19d), and the param-
eters D&, D2, and 2 ' are determined by the spectra fit,
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while for actinides, all the four parameters D„Dz, 3',
and 8' are determined from the spectra fit. The parame-
ters are listed in Table II. We have fitted the energy spec-
tra for deformed rare earths (eight group of isotopes: Nd,
Sm, Gd, Dy, Er, Yb, Hf, and W) and deformed actinides
(six groups of isotopes: Th, U, Pu, Cm, Cf, and Fm). Ex-
perimental data are taken from Refs. 20—29. Typical re-
sults are given in Figs. 2 and 3. Good agreement for the
rare earths and very good agreement for the actinides be-
tween theory and experiment are obtained. In some cases
the spin goes up to 28 for the actinides and 12 for the
rare earths, which is very close to the region where the
onset of backbending or backbending has been observed
or expected. From Table II we also see that the
coefficients D& are nearly constant, while the coefficients
Dz are small negative numbers, as they should be. The
better fit for the actinides than the rare earths is not
surprising, since the SO8XSp6 symmetry for the latter is
approximated by Sp6X Sp6 in this study.

C. Moment of inertia

D. Comparison between several models

Figure 6 shows a comparison between seven energy
formulas for fitting the energy levels of typical rare-earth
and actinide nuclei (' Yb and U). The curves denoted
as FDSM are the present calculations, HYB the hybrid
model, WZ Wu-Zheng's, AB ( ABC) —+two- (three-) term
formula in the expansion in terms of the power of
L(L + I), and VMI (GVMI)~the variable moment of
inertia model (the generalized VMI). Figure 7 shows a
comparison between the six formulas for the moment of
inertia SL as a function of the angular momentum L for
166Er 168Yb 238U d 248cm

From Figs. 6 and 7, we see that the FDSM curves give
a better account of the data than the two- or three-term
formulas, about the same as the VMI and slightly inferior
to the formula of WZ. However, it should be emphasized
that all the former fits, except those by the HYB, are
done for each nucleus individually (i.e. , each nucleus has
its otvn set ofparameters). If such a flexibility is allowed
and used in the present approach, then we can obviously
obtain excellent fits to the data for all the rotational levels
with the ratio R (4)=E (4)/E (2) )3.2.

In Figs. 4 and 5, typical moments of inertia J'L for the
Hf and U isotopes are plotted as functions of I.. The in-
crease of ZL with increasing L is obvious and is in agree-
ment with Ref. 9.

K. Microscopic mechanism for the stretching

The physical reason for stretching can be easily under-
stood with our formalism. In order to generate rotation,
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one needs to shift nucleons from the S to D state, i.e., re-
ducing the number of S pairs and thus the effectiveness of
the pairing. Therefore, rotation is in favor of the quadru-
pole forces and consequently in favor of large deforma-
tion, which is realized by shifting nucleons from the
abnormal- to normal-parity levels, i.e., by increasing n &,

since the deformation is proportional to %&, as shown in
(22b). This is in contrast to the Coriolis antipairing
(CAP) eft'ect' where the increase of the moment of iner-
tia is realized by breaking pairs without changing n &.

Another interesting fact worth mentioning is that from
Eq. (14) we see that stretching will disappear either when
there is no pairing: Go = Gz =0, or when the number of
nucleons becomes infinite, X,~ ~. When there is no
pairing or when X& ~~, a nucleus behaves like a rigid
body. For a given pairing strength, the smaller the X&
value, the larger the F [Eq. (18c)], thus the softer the nu-
cleus. This is also in agreement with the empirical situa-
tion. It shows that the stretching effect is microscopically
due to the superfiuidity of the nuclear matter and the
finiteness of the particle number This of course is .a well-
known generic feature in nuclear-structure physics.

If there is no distinction between the normal- and
abnormal-parity levels, and N& in Eq. (22) is interpreted

as the total number of valence nucleon pairs, X, as in
HYB or IBM, then the nuclear deformation will not
change. The widely observed stretching effect indicates
the correctness of the assumption that the valence nu-
cleons in the normal-parity levels are mainly responsible
for nuclear deformation.

F. Are there other mechanisms causing the moment
of inertia to vary with L'?

There are of course other physical mechanisms which
can cause the moment of inertia to alter with L. Two
mechanisms readily come to mind. One is the mixing due
to pairing of the I3 or y band with the ground band and
the other is the mixing of the u&0 with the u=0 states.
For well-deformed nuclei, neglecting the mixing due to
pairing may be a reasonable approximation. However,
the mixing of the u WO states, which does not break the
SU3 symmetry, can have a significant effect on the mo-
ment of inertia. After all, it is intuitively clear that
sufTiciently strong rotational motion can either break the
S pairs in the abnormal-parity level (UOWO) or the S,D
pairs in the normal-parity levels (u, &0). We have previ-
ously shown ' that the broken pairs in the abnormal-



43 NUCLEAR STRETCHING 2235

120 140

100
Q

120

60
0

I i I i I i I

4 8 12 16 20
60

0 12 16 20
L

240 240

200

160

200

160

20 I I I I I I I I I I I I I I I

0 4 8 12 16 20 24 28 32
120

0 4 8 12 16 20 24 28 32
L

FIG. 7. Comparison of the several models in their predictions for the 2-vs-L curve.

parity levels are primarily responsible for backbending
and may affect the smooth increase of the momenta of in-
ertia at low spins as well (below the crossing or backbend-
ing point). On the other hand, the broken pairs in the
normal-parity levels, which correspond to the CAP effect
in the geometrical model language, will primarily affect
the low-spin moment of inertia via strong mixing with
the ground band.

A subtle point has emerged in the present studies
which requires some discussion here. Even though the
CAP effect (and other effects as well) is not explicitly con-
sidered here, the data appear to be well fitted with the
formula given by Eq. (19a) (Figs. 2 and 3). We must em-
phasize that this does not mean that the CAP effect plays
an insignificant role in stretching the nucleus. On the
contrary, its importance can be succinctly seen as fol-
lows. Note that the required energy to change X& from
1V' ' to X' '+1 is 2A' [note that 2A'=a; see Eqs. (19c)
and (1 la)]. This means that since there is no known ex-
cited 0+ state below 600 keV, there is de facto a con-
straint on 2': It cannot be less than 300 keV. However,
according to Table II, in order to At the data, 2'=7—37
keV, which is obviously too small by an order of magni-
tude compared with the energy constraint lower bound.
Clearly, there must exist other physical mechanisms to
effectively reduce A'. The mixing of u&0 states (i.e., the
CAP effect and the coupling between abnormal-broken
pairs and the ground band) is most likely to play such a
role since its effect is to increase the moment of inertia
which, to some extent, is equivalent to reducing 2 '.

For the 8(E2)'s, the mixing of u&0 states also plays

an important role. In fact, in previous studies' ' ' by just
taking this effect into consideration we were able to ac-
count for the 8 (E2)'s behavior, from low to high spins.
We have also shown that the CAP band crossing is in fact
responsible for the 8 (E2) fluctuations in the low-spin re-
gion of actinides. ' On the contrary, here we have only
included stretching, and it appears to fit the low-spin
B(E2) equally well. Hence, as in the study of the mo-
ment of inertia, other physical mechanisms may also be
masked by the parameters. This is what we will next dis-
cuss.

The L dependence of the 8 (E2)'s depends on a (di-
mensionless) parameter 8' [see Eqs. (23), (18a), (18c), and
(19d)]. One knows well that the pairing gap energy
GOB, is of the order of 2 MeV. Thus, with Eq. (14b),
one can easily estimate that 5& should be around —,

' MeV.
We also know that a is of the order of 2 MeV. Then, ac-
cording to Eq. (19d), the parameter 8' must be around 3.
However, according to Table II, 8'=0.14—0.31, which is
also an order of magnitude too small. This suggests that
stretching cannot be the sole eft'ect in enhancing the
8 (E2)'s. Mixing the u&0 states will also have the same
effect. Note that the angular momentum L in the 8(E2)
formula (23) is actually the "core" angular momentum
(i.e., the angular momentum of S Dpairs in the norm-al-

parity levels); only for the u=0 case is L equal to the to-
tal angular momentum J. When there is an alignment I
due to the broken pair, the core angular momentum for
the yrast band will be reduced, L =J —I. As one can see
from Eq. (23), reducing L and keeping X& constant is
equivalent to increase X, and keeping L constant; both
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will lead to an increase of the B(E2). Thus taking the
broken pairs (u&0) into account is tantamount to in-
creasing N& or, equivalently, reducing 8' [see Eqs. (19d)
and (18a)].

It is thus seen that near the SU3 limit of the FDSM, by
using the pairing force as a perturbation, we can obtain a
microscopic explanation for the stretching effect of nu-
clei. Based on the stretching effect, an energy formula
and 8 (E2) formula for the yrast band of the even-even
nuclei can be obtained and fit to the experimental data
rather well. However, an analysis of the fitted parame-
ters suggested that the increase of the moment of inertia
and the 8(E2)'s in the low-spin region appears to be a
more complicated process than just a stretching of the
nucleus. A more detailed study including both stretching
and u&0 mixing is clearly called for. This work is now
in progress.
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APPENDIX: FDSM HAMILTONIAN
IN SU3 SYMMETRY LIMIT

The most general two-body Hamiltonian in the u=O
subspace [Eq. (8)] can be rewritten in the following form:

HFDSM H +HSU3+ Hbr+ g
(8 1 8 2 (A 1)

where L is the total angular momentum, HsU the excita-
3

tion energy coming from the SU3 Casimir operator, Hb,
the SU3 symmetry breaking Hamiltonian, and H the
remaining part of the Hamiltonian:

H = g eorzo+e, n, +SOS(o) S(o )+ rzo + rzon, + n, +G2 [Csp —So(SO —6)]2"' ' 1 2 Sp6
C7 —7T, V

+(8 —G 8" )C (n—0) +8 C (n 0)+23 ' " '+b "n'+b' 'n +8" /2n n' (A.2)

(8 0 Gcr 8mv )gCu +8 mvgCm+v
SU3 ~ 2 2 2 SU3 2 SU3

O =m', V

Hb, = g I(GO —G2 )S(o ) S(o )+—', [(8
&

Bz ) ——(8& —82 )]L +go [S(o ) S(o )+S(cr) S(o')]I

(A3)

(A4)

In deriving Eqs. (Al)—(A4), the following relations have been used to convert quadrupole pairing D(o. ) D(cr) and mul-
tipole operators P"(o) P"(o ) into monopole pairing S(o ) S(o), SU3 Casimir operators CsU and CsU ", number opera-
tors n& and n&, and angular momenta L and L:

2

D(cr) D(o. )=Csp —So (So —6)—S(o) S(o )
—g P"(cr) P"(cr),

r=l

2P (m) P (v)=P P —P (m. ) P (m) —P (v) P (v),
P (o) P (n) =C~ —P'(o) P'(o) P .P =C~+v —P' P',

3 3

P'(o )=v'(3/8)L, 2P (o)=n, , P'=v (3/8)L, 2P =n, .

Note that the expectation values of Sp6 Casimir operator Cs„and S~S in the u =0 space are"

(u =O~Cs ~u =0) =
—,'Q, (Q, +12),

(u =0~4 S~u =0)=
—,
' (2f1 — +2),

(A5)

(A6)

(A8)

(A9)

(A10)

So =—'(n, —0, ) .0 (A 1 1)

Therefore, H is a quadratic function of number operators n, and n (rzo =n —n, ).
In the SU3 symmetry limit, we neglect the off-diagonal terms and only consider the diagonal term of Hb, denoted as

(Hb, ). Thus the term [S(cr) S(cr)+S(o.) S(o.)] is omitted since it has only off diagonal terms. We employ the
irrep~JV&Pl&(A, p )(A. p )(Ap)&LM) as the basis, where JVo=rzo/2 and N, =n&/2 are pair numbers in the abnormal- and
normal-parity levels, respectively, v is the Vergados quantum number, ' and I.,M are angular momentum quantum
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numbers. Using (6.4) and (6.5) in Ref. 12 and the SU3 Racah coefficients, it can be shown that

( JVON, (ni, 0)(n„O)(n„O)i~LM~S(o ) S(o ) ~ AVON, (n„O)(n„O)(n, , O)~LM )

n, (0, n—, +2)[n, (n, +1) L(—L+1)]=(S( )'S( ))=
4n, (n, —1)

01=

n, (n, —1)
(AVON&(ni, O)(n&, 0)(ni, 0)vLM~L ~AONi(ni, O)(n&, 0)(ni, 0)ELM ) = L (L +1),

n, (n, —1

and one can obtain

2Q1

3
(A12)

(A13)

(H, ) = V (L =0)+
go

1

n —11

n, (n, —1)L(L+1),
ni n, —1

(A14)

where V (L=0) is the pairing interaction for L =0 in the normal-parity level,

(n, +1)
V (L =0)= g —,'(Go —G2 ) n, (0, n, +—2)

0' =7T~V n, —1

—,'(Go —G2 )n, (Q, n, +—2)

and

5, =
—,'(G2 —Go )(Q, +1),

5 =—,'(G2 —Go ) ——', [(B, B2 ) —(B—,
—B~ )] .

(A16)

(A17)

Note that H [Eq. (A2)] and V~(L=O) are both quadratic functions of n, and n, . Therefore, they can be combined into
a single quadratic function Hp:

Ho= g (a N, —2b, N, 2b2N, N —+c,N +c2N )+dN"N
0' =m, v

(A18)

In Eq. (A18) the part for identical particles is the most general one, where a, b, , b2, c, , and c2 are parameters, which
are linear combinations of the interaction strengths in H and V (L=O) [(A2) and (A15)]. For the n pmono-pole-
monopole interaction, we have assumed that only dN N is important, where d is a parameter. The fact that empirical-
ly the ground-state proton- (neutron-) number distribution among normal and abnormal levels does not sensitively de-
pend on the neutron (proton) number' seems to provide a justification for this simplification.

The second term on the right side of (A14) can be combined with the rotor term [the last term in (Al)] and provides a
correction to the moment of inertia. Thus Eq. (Al) can be written as

HFDsM =Hp+ HSU +A'L(0) 2 (A19)

where

5 n (n —1) + 3 (B17v B1Tv
)

n, (n, —1) (A20)

From (A16) and (A17), one see that 5, )&5, because it contains a large factor (0 i + 1). Assuming that the parame-
ter 5 is negligible and 5, for protons and neutrons are roughly the same, i.e., 5i =5",:—5„then Eq. (A20) can be further
simplified:

3 (B77v B77v
) 5 —(51t+5v)/2

n1 1
(A21)

Equations (A19), (A18), (A3), and (A21) are the Eqs. (10), (11), (12), and (14), respectively, in Sec. II.
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