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The Fermi energy EF is defined as the negative of the average between the separation energies of
a nucleon from the (A+1)- and A-nucleon systems. In the independent-particle limit, EF is the
average between the energies of the last occupied and of the first unoccupied shell-model orbits.
For mass numbers 40 A ~208, the experimental neutron Fermi energies EF„ increase approxi-
mately linearly with increasing asymmetry parameter g =(N —Z)/A. In contrast, the experimental
proton Fermi energies Ez~ are, on the average, nearly independent of g; when the average single-
particle Coulomb energy Ec is subtracted, the quantity E+~ —Ec decreases linearly with increasing

q, with a slope whose modulus differs from that found for EF„. These features are analyzed in the
framework of two mean-field models; they both include an isoscalar and an isovector central corn-

ponent, as well as a Coulomb correction in the case of protons. From the comparison between the
n-' 'Pb and p- Pb mean fields, it is derived that the depth of the symmetry potential is nearly in-

dependent of energy in the domain 15 ~ E ~ 50 MeV, in close agreement with a recent phenomeno-
logical study of the global optical-model potential for nuclei with mass numbers 40 A ~208. In
the vicinity of the Fermi energy, the isoscalar and isovector components are assumed to have
Woods-Saxon radial shapes and linearly energy-dependent depths. In both models, the depth of the
symmetry potential is taken equal to (23.2—0.46E) MeV. In the first model, all the parameters are
extracted from a recent dispersion relation analysis of the mean fields felt by neutrons and protons
in 'Pb; then, the calculated neutron Fermi energies are in good agreement with the experimental
values but the calculated proton Fermi energies are larger than the experimental values, except for
the lead isotopes. The second model incorporates, in addition, information derived from dispersion
relation analyses of the n- Ca and n- Zr potentials; its main characteristics are that the potential
radius parameter r&=R&A ' and the isoscalar depth both depend upon mass number; this
second model yields satisfactory agreement with the experimental Fermi energies, not only on the
average but also along isotope and isotone chains associated with a magic number of protons or of
neutrons. The definition of the isovector potential adopted here is compared with prescriptions
used in previous works. Some intrinsic limitations of a mean-field description are pointed out.

I. INTRODUCTION

The experimental determination of the isovector (or
symmetry) component of the nuclear mean field faces
many problems. ' These are due to the smallness of this
component, whose size reaches at most a few percent of
the isoscalar strength. They also refIect the difficulty of
disentangling the dependence of the mean field upon the
mass number 3 from its dependence upon the asymmetry
parameter

il=(N Z)/A . —

In the case of protons, the existence of a "Coulomb
correction" further blurs the empirical analyses. These
difficulties can now be efficiently overcome in view of the
following recent progress.

(a) An improved phenomenological "global" nucleon
optical-model potential has been constructed; here, the
word "global" refers to a smooth dependence upon 3, q,
and the nucleon energy E. This new "CH89" parame-
trization has been derived by performing optical-model
fits to experimental scattering cross sections by targets
with mass numbers 40& 3 +209, for energies 16~E 65

MeV in the case of protons and 10~ E + 26 MeV in the
case of neutrons. '

(b) In some nuclei, a unified description of the mean
field at positive and at negative energies has been
achieved by making use of a dispersion relation that con-
nects the real and imaginary parts of the field. The re-
sulting mean field is more accurately determined than in
previous phenomenological studies, since it takes into ac-
count empirical information at negative as well as at posi-
tive energies.

Hence, an improved investigation of the isovector and
isoscalar components of the average nucleon-nucleus po-
tential is now feasible. This is the main purpose of the
present paper. Our presentation is as follows. In Sec. II,
we define the Fermi energy and present a compilation of
its empirical values for neutrons and protons in nuclei
with mass number 40 ~ 3 ~ 208. Section III contains the
basic equations which will be used in the following, and
the derivation of the isoscalar and isovector potential
depths in Pb from recent dispersion relation analyses
of the neutron and proton mean fields in Pb. In the
next three sections, we study to what extent the results
obtained in Pb account for the main properties of the
experimental Fermi energies of other nuclei with
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40~ A ~ 208. Section IV specifies the quantum numbers
of the shell-model orbits adopted in our calculations. In
Sec. V, we consider a parametrization which is akin to
previous phenomenological analyses in the sense that the
potential radius parameter

(1.2)

0

S(A)
Il)

-4 =

S (A+

g9l2 )

is independent of A. Section VI deals with an improved
parametrization in which one takes into account the fact
that recent analyses indicate that rv depends upon mass
number. Some limitations of a mean-field description are
discussed in Sec. VII. In Sec. VIII, we compare the
definition of the isovector potential adopted in the
present work with those used by other authors. Finally,
Sec. IX contains a summary and our conclusions.

I ~ 0~ I ~ ~ ~ ~ ~ ~ 0 ~ \ ~ ~ ~ ~ ~ ~ ~ ~ 8 ~ ~ ~ ~ ~ ~ \ ~ ~ 0% ~ II~ I ~ \ ~ ~ ~ ~ ~ ~ I ~ ~

-6

neutrons in Pb
~ 208

FIG. 1. Illustration of the definition of the quantities EF+,
EF, and EF for neutrons in 'Pb. In the shell-model descrip-
tion, the last occupied subshell is the 3p2 orbit, while the first

unoccupied subshell is the 2g —orbit.

II. EXPERIMENTAL FERMI ENERGIES
A. De6nition

EF, =(M„—M„,—m, )c (2.1a)

where Mz is the mass of nucleus A, while m, denotes the
mass of a proton (r=p) or of a neutron (r=n ). The sep-
aration energy of a nucleon from the ( A + 1)-nucleon sys-
tern is the modulus of

The separation energy Sz, of a nucleon from a system
with A nucleon is the modulus of

rameter. We only include even-even nuclei in order to
ensure that EF )EF; otherwise theoretical difficulties
could exist because the one-body Green's function may
have overlapping left-hand and right-hand branch cuts in
the complex energy plane. The nuclei with a magic
number of neutrons are represented by special symbols
because these are the ones which are best suited to a sim-
ple mean-field interpretation, as will be discussed in Sec.
VII; a linear least-squares fit to the corresponding trian-
gles yields

EF, =(M„+,—M„—m, )c (2.1b) EF„=(
—12.52+ 31.3g ) MeV . (2.3a)

The index ~ will be omitted when not necessary. We
define the Fermi energy EF as the average:

EF= ,'(EF +EF )—. (2.2)

Note that EF, EF, and EF are negative quantities. In
the independent-particle model, EF is identified with the
energy of the "last" (least bound) occupied orbit and EF
with that of the "first" (most bound) unoccupied orbit.
This is illustrated in Fig. 1 by the example of neutrons in

Pb, for which EF+, = —3.94 MeV, EF„=—7.37 MeV,
and EF„=—5.65 MeV. In this section, we perform a
compilation of the experimental values of the Fermi ener-

gy for neutrons and protons in nuclei with mass numbers
40+ A ~208.

Our motivation for considering the average EF rather
than EF or EF is the following. The coupling of the sin-
gle particle to the collective degrees of freedom consider-
ably influences EF and EF but leaves EF approximately
unchanged. Since this coupling depends upon the
specificities of' the low-lying excited states of the
nucleon core, EF is the quantity that most naturally lends
itself to an analysis in the framework of a mean field
which depends smoothly upon the quantities 3, g, and E.
In contrast, a description of both EF and EF would re-
quire a complicated dependence of the potential radius
R v upon energy, besides a dependence upon mass num-
ber.

B. Neutron Fermi energies

In the upper part of Fig. 2, we plot experimental values
of the neutron Fermi energy versus the asymmetry pa-

The experimental value of EF„are seen to cluster rather
closely in the vicinity of this linear parametrization.
However, some features indicate that the Fermi energy
does not solely depend upon q. For instance, two trian-
gles lie at g=0. 111 and are separated by 2.44 MeV: they
correspond to S (EF„=—7. 14 MeV) and to Zr
(EF„=—9.58 MeV).

C. Proton Fermi energies

The lower part of Fig. 2 shows experimental proton
Fermi energies. As in the case of neutrons, we use
different symbols for nuclei with nonmagic Z than for nu-
clei with magic Z; a linear least-squares fit to the latter
values yields

EF =( —6. 88 —7. 1g) MeV . (2.3b)

The experimental proton Fermi energies show consider-
able scatter about this linear approximation. In particu-
lar, the open symbols fall on nearly parallel lines which
tend to intersect the linear approximation (2.3b); each of
these lines corresponds to a different isotope chain, as
will be discussed in Sec. VI. The comparison between
Eqs. (2.3a) and (2.3b) shows that the dependence of the
Fermi energy upon g is much weaker for protons than for
neutrons. A similar difference exists between the
dependence of the volume integral per nucleon of the
optical-model potentials for protons and for neutrons. '

We now brieAy discuss the Coulomb energy shift and
the "Coulomb correction. " Let us for simplicity consider
an N =Z nucleus. Then, the difference between the pro-
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Ec = (1.73Z/Rc ) MeV, (2.4a)
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ton and neutron mean fields is due to the fact that a pro-
ton feels a Coulomb potential. In the nuclear interior,
one can approximate this effect by means of an average
"Coulomb energy" Ec given by

U (E+Ec)=U„(E) for N=Z . (2.4b)

In that approximation, the difference between the neu-
tron and the proton Fermi energies is approximately
equal to Ec. The central values of the proton and neu-
tron effective masses are defined as follows:

m,*/m =1— U, (E),
dE

(2.5)

with ~=p, n. By expanding the left-hand side of Eq.
(2.4b), one finds

where R& is the "Coulomb radius" expressed in fm. The
depths of the neutron and proton potentials are related
by
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U (E)=U„(E)+Uc, for N=Z,
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Uc= (1—m */m )Ec
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is called the "Coulomb correction. "
An empirical method for determining Ec has been pro-

posed by DeVito et al. ' These authors derive Ec from
the difference between the energies at which the maxima
and minima of the proton and neutron elastic-scattering
cross sections lie at the same angles. This procedure
yields '

FIG. 2. Dependence upon the asymmetry parameter of ex-
perimental Fermi energies, as derived from separation energies
compiled in Ref. 8. (a) The upper drawing shows the neutron
Fermi energies: the open triangles correspond to nuclei with a
magic number of neutrons, namely, N=20, ( Ca, Ar, and ' S,
in order of increasing q), N=28, (' Ni, ' Fe, ' Cr, ' Ti, and

Ca), N=50 ( Ru, Mo, Zr Sr, Kr, and Se), N=82
(' Gd, ' Sm, ' Nd, ' Ce, "Ba "Xe, and ' Te), and N=126
{ ' Ra, ' Rn, ' Po, Hg, and Pb); in the evaluation of EF
for '" Gd, EF has been associated with the first excited state (at
27.3 keV) in ' 'Gd because it has the same angular momentum
and parity 2

+ as the ground states of the other N = 81 nuclei of
this series of isotones. The dashed straight line represents the
linear least-squares fit to the triangles, Eq. (2.3a). The plusses
correspond to other even-even nuclei chosen at random, namely
(in order of increasing g) Ar, Ni, Cr, Ca, Ge, Ca, Ar,
' Kr Mo Ca ' Pd ' Sn "Xe "Sm' Dy ' Yb ' W

Sn, ' Qs, Hg, Pb, and ' Sn. (b) The lower drawing
shows proton Fermi energies: the open squares correspond to
nuclei with a magic number of protons, namely Z=20 ( Ca,

Ca, Ca "Ca, and 'Ca), Z =28 (ssNi 60Ni 62Ni 64Ni, and
66Ni)Z50(112Sn114Sn116Sn 1 1 sSn120S122Sn124Sn126S
and ' Sn), and Z = 82 { Pb, Pb, Pb, and Pb). In five

cases ( Ca, Sn, Sn, Sn, and Sn), thc encl gics of thc
first excited states of K, ' 'Sb, ' 'Sb, ' Sb, and ' Sb were used
for evaluating Epp or Ez~, in order to retain the same angular
momentum and parity for the nuclei of each isotope chain, so
that the levels correspond to the same shell-model orbits
throughout the chain. The dashed line is the linear least-
squares fit to the open symbols, Eq. (2.3b). The crosses corre-
spond to even-even nuclei chosen at random, namely (in order
of increasing g) Ti, ' Cr, " Ti, ' Fe, 'Ti, ' Ge, Zn, ' Kr,

Ar 4Mo Zr Zn Se '0 Pd 74Ge ssSr s4Kr 130X 140Ce) e,
Sm ' Dy, ' Yb Hg ' Hf, and' Os.

Ec( Ca) =7.0 MeV,

Ec( Pb) = 18.8 MeV;

(2.7a)

(2.7b)

the uncertainty of these empirical values is about 10%.
The estimate (2.7a) is in good agreement with the
difference (7.29 MeV) between the proton and neutron
Fermi energies in Ca. The precise value of E& is not of
much importance in the present context. Henceforth, we
shall adopt the following parametrization for the
Coulomb radius:

Rc=(1.39+1.04M '~
) fm; (2.7c)

the numerical values of the coef5cients on the right-hand
side have been determined in order to reproduce the
empirical values (2.7a) and (2.7b) of the Coulomb energies
in Ca and Pb. The parametrization (2.7c) is similar
to the one used in the CH89 global optical-model poten-
tial. 4'

Figure 3 gathers the experimental values of the neutron
Fermi energy EF„and of the following "Coulomb-
corrected proton Fermi energy:"

EI-,J, —c =EFJ, —Ec . (2.8a)

EF c=(—11.88 —57.5g) MeV . (2.8b)

The latter quantity takes some account of the Coulomb
shift implied by Eq. (2.4b); here, we introduce it in order
to be able to include in a single drawing an overview of
the experimental information on both the neutron and
proton Fermi energies. A linear least-squares fit to those
experimental values of E+z & which are associated with
nuclei with magic Z yields
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U„(E)= Uo(E)+r/ U, (E), (3.2a)

LL
LU

U (E)=Uo(E)—q U, (E)+Uc .
m

These relations yield

(3.2b)
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m
(3.3a)

m*
U, (E)= 2q [ U„(E)—U (E)+Uc], (3.3b)

FIG. 3. Dependence upon the asymmetry parameter of the
empirical values of neutron and Coulomb-corrected proton Fer-
mi energies [Eq. (2.8a)], with the same notation as in Fig. 2. The
dashed lines are linear least-squares fits to the open symbols
[Eqs. (2.3a) and (2.8b)].

where

(3.3c)

The experimental values of Epp c cluster rather closely
about this linear fit. At first sight, this appears to support
the often stated property that Ec and g vary "in parallel
fashion" along the stability line (Ref. 1, p. 412); however,
Fig. 4 exhibits that the latter statement only holds "glo-
bally, " in particular because Ec is nearly constant along
isotope chains.

III. ISOSCALAR AND ISOVECTOR
POTENTIAL DEPTHS IN "'Pb

A. Basic equations

U„(E+gU, ) = Uo(E)+gU, (E) .

U (E —gU, +Ec)= Uo(E) rl U, (E) .—
(3.la)

(3.1b)

Here, Uo(E) is the depth of the isoscalar potential and

U, (E) that of the isovector potential. By expanding the
left-hand sides of Eqs. (3.1a) and (3.1b) and retaining
terms up to first order in q and in the energy derivatives,
one finds

For nuclei with XWZ, the relation (2.4b) must be
modified to take into account the existence of a symmetry
potential with depth +g U, , where the + ( —) sign corre-
sponds to neutrons (protons). One then has"

Vk(r;E) = Uk(E)f (Xv ),
f(Xv ) = (1+expXv )

Xv=(r —Rv)/+v~ Rv rvA

Uk(E) +k +PkE

(3.4a)

(3.4b)

(3.4c)

(3.4d)

The latter linear approximation will only be used in the
vicinity of EF. Equations (3.2a) —(3.3c) yield

is the average effective mass. Above, we do not explicitly
refer to a possible energy dependence of the effective
masses because we shall approximate the potential depth
by linear functions of energy in the vicinity of the Fermi
energy: then, the effective masses are independent of en-
ergy.

In the vicinity of EF, the potential radius increases
with energy. This energy dependence sizably decreases
the particle-hole energy gap (EF EF ); it s—hould thus be
taken into account if one wanted to reproduce the values
of both EI+; and EF . However, it can be neglected if one
only wants to reproduce the average of E~+ and EI; as in
the present work. Since we shall omit the energy depen-
dence of the potential radius, we expect to find too large a
value for EF and too small a value for EF as compared
to the experimental quantities.

We parametrize all potential shapes by Woods-Saxon
form factors. We thus write (k =p, n, 1, or 0)
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FICx. 4. Plot of the Coulomb energy [Eqs. (2.4a) and (2.7c)]
versus the asymmetry parameter, with the same notation as in
the lower part of Fig. 2.

a&=0.68 fm,
1 d

V/. (r)=U/. —
d f(Xk»r dr

(3.6a)

(3.6b)

UIs =11.5 MeV, ri, = 1.105 fm, a/, =0.50 fm . (3.6c)

We shall adopt, for all nuclei, the following typical values
for the diffuseness and for the spin-orbit coupling
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B. potentjgl depths jg, pb

The dispersion relation approach has recently been
used to evaluate the average potentials felt by protons
and neutrons in Pb. In that work, slightly different
values were adopted for the proton and neutron radius
parameters at the Fermi energy, namely, rz =1.235 fm
and r~„=1.225 fm. Since the difference between these
two values is smaller than their uncertainty, we take here

in the energy domain 20&E & 50 MeV. This feature ac-
counts for the phenomenological observation that, in the
optical-model analyses of Refs. 4 and 5, no evidence was
found of any energy dependence of the symmetry poten-
tial in the energy domain 20 ~ E ~ 50 MeV. In this
"CH89" global parametrization, the depth of the phe-
nomenological symmetry potential is U, = 13.1+0.8
MeV.

r~=1.23 fm . (3.7) IV. SHELL-MODEL ORBITS

Near the Fermi energy, the corresponding potential
depths are equal to

U„(E)= (
—45.78+0. 178E ) MeV,

U (E)=( —59.23+0.324E) MeV .

(3.8a)

(3.8b)

Uo (E)= ( —49.82+ 0.258E ) MeV,

U
&
(E)= (23.22 —0.461E ) Me V .

(3.8c)

(3.8d)

The depth of the symmetry potential deviates from the
linear approximation (3.8d) for energies larger than 10
MeV. In particular, it presents a plateau ( U, =15 MeV)
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These depths reproduce the experimental values of the
Fermi energies for protons and neutrons in Pb. Be-
cause of that requirement and of the radius parameter,
Eq. (3.7), adopted here, the parametrizations (3.8a) and
(3.8b) are slightly different from those given in Ref. 6; this
difference also derives from the values adopted here for
the diffuseness and for the spin-orbit coupling.

By using Eqs. (3.3a), (3.3b), (3.8a), and (3.8b), one ob-
tains the values of Uo(E) and U, (E) shown in Fig. 5.
These results confirm that the depths Uo(E) and U&(E)
can accurately be approximated by linear functions of en-
ergy in the vicinity of the Fermi energy, ' there, one can
write

In the next two sections, we shall consider two
different mean-field models for calculating the Fermi en-
ergies. In order to perform these calculations, one must
be able to associate with well-defined shell-model orbits
the odd particle or hole in the ground states of the
(A+ I)- and (3 —1)-nucleon systems. For this main
reason, we shall apply these mean-field models to the neu-
tron Fermi energies of nuclei with a magic number of
neutrons, and to the proton Fermi energies of nuclei with
a magic number of protons. In the case of protons, the
average Coulomb field will be identified with the
Coulomb potential of a uniformly charged sphere whose
radius Rc is given by Eq. (2.7c).

We adopt the following quantum numbers for the
shell-model orbits. For X or Z=20, we associate F+
with the 1f ,'subshell and —I' with the (ld —', )

' subshell.
For X or Z=28, we take I'+=2p —,

' and F =(lf—,')
For X or Z=50, we adopt F+=2d —,

' and F =(lg —,')
For %=82, we take I'+=2f ,'and I' =(2d—,

'—) ', while

for Z=82 we set I'+=1k—,'and F (3s—,') '. Finally,
I'+=2g —,'and F =(3p—,') ' for N=126.

These quantum numbers are in keeping with the mea-
sured angular momentum and parity of the relevant
ground states, with the following few exceptions. The
ground states of +'Sb for 2 +1=113, 115, 117, 119,
and 121 have J =

—,'+, in keeping with our 2d —,
' assign-

ment. However, the ground states of + 'Sb for
2+1=123, 125, 127, and 129 have J =—,'+; in these
cases, we calculated Ez+ from the first excited state,
which has J"=

—,
' . For a similar reason, EI; for protons

in Ca has been derived from the first excited state of
K which has J =

—,
'+ in keeping with our (2d —,') ' as-

signment (the ground state of K is a —,
'+ level). In the

case of neutrons, the sole similar situation is E~ in ' Gd,
that we derived from the —,

'+ first excited state of ' Cxd in
keeping with our (3s—,

'
)

' assignment.

V. CONSTANT-GEOMETRY MODEL

FIG. 5. Energy dependence of the central depth of the sym-
metry potential and of the absolute value of the depth of the iso-
scalar potential in Pb, as derived from dispersion relation
analyses of the neutron- and proton- Pb mean fields. The neu-
tron and proton potential depths found in Ref. 6 have been
slightly readjusted to account for the di6'erent values adopted
here for the radius parameter, the di6'useness, and the spin-orbit
coupling. The arrow points to the value of the Fermi energies
for neutrons ( —5.65 MeV) and protons ( —5.91 MeV); they are
too close to be graphically distinguished.

In most phenomenological investigations of the isovec-
tor component of the mean field, it is a priori assumed
that the quantities Uo, U„and r ~ are independent of
mass number. This is the model considered in the
present section. We refer to it as the "constant-geometry
model" because one of its main characteristics is that the
radius parameter r~ is independent of the mass number

We determine all the parameters of the model from
the dispersion relation analysis of the mean field felt by
protons and neutrons in Pb; they are fully specified by
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FIG. 6. Dependence upon the asymmetry parameter of the
neutron Fermi energies and of the Coulomb-corrected proton
Fermi energies [Eq. (2.8a)] for nuclei with a magic number of
neutrons or protons. The open symbols represent the same
empirical values as in Fig. 3, while the solid symbols have been
calculated from the constant-geometry model of Sec. V. The
dashed lines are the same as in Fig. 3.

VI. DISPERSIVE MEAN-FIELD MODEL

A. Motivation

One of the main assumptions of the constant-geometry
model is that the radius parameter rz is independent of
the mass number A. This is at variance with the follow-
ing two recent findings.

(a) In the recent "CH89" global parametrization of the
optical-model potential at positive energies, it has been
found that the fits to the scattering cross sections are
significantly improved if r z increases with increasing
mass number; namely, if one takes '

rz=(1.25 —0.225A '~
) fm, (6.1)

this parametrization is represented by the thick dashed
line in Fig. 7.

(b) Dispersion relation analyses of the neutron mean
field in "Ca, Zr, and Pb led to the following values

Eqs. (3.6a) —(3.8d). We calculate the energies EF and EF
of the shell-model orbits specified in Sec. IV, and their
average EF. The results are plotted in Fig. 6. It is seen
that the constant-geometry model yields a good agree-
ment with the experimental neutron Fermi energies but
that it overestimates the proton Fermi energy, except for
the lead isotopes. The fact that the proton Fermi ener-
gies are overestimated indicates that the assumptions
made in the constant-geometry model are not fully
justified. An improved model is considered in the next
section.

The agreement between the calculated and experimen-
tal Fermi energies in Pb is trivial since the potentials
have been constructed to achieve it. However, the
agreement between calculated and observed proton
Fermi energies in Pb(rj =0.188), Pb(g =0.196),

Pb(g=0. 204), and ' Pb(g=0. 219) is by no means
trivial. Indeed, it supports the accuracy of the symmetry
potential given by Eq. (3.8b) in the vicinity of 2osPb and,
by the same token, the meaningfulness of the defining
equations (3.3a) and (3.3b) for the isoscalar and isovector
potential depths.

1.24

1.20

1.16 CH89

1.12
O

1.08-

1.04
Q. 16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

A- 1/3

FIG. 7. Dependence upon 3 ' of the radius parameters rz
(associated with the average potentia1) and r (associated with
the point charge distribution). The open circles give the values
of rv derived from dispersion relation analyses of neutron
scattering and bound single-particle data in Pb, Zr, and Ca
[Eqs. (6.2a) —(6.2c)]; the solid line represents their parametriza-
tion {6.3). The thick dashed line shows the value of r& in the
CH89 global optical-model potential [Eq. (6.1)]. The thin dot-
ted line is the parametrization of r~ used by Negele (Refs. 13
and 14).

for the radius parameter at the Fermi energy:

r z( A =208 ) = 1.23 fm

for neutrons in Pb (Ref. 6 and present work),

r~( A =90)= 1.21 fm

for neutrons in Zr (Ref. 15), and

(6.2a)

(6.2b)

r~(A =40)=1.18 fm (6.2c)

for neutrons in Ca (Ref. 16). These results are
represented by circles in Fig. 7. They are seen to be in
excellent agreement with the parametrization

rv=(1.298 —0.4053 '
) fm, (6.3)

which is represented by the solid line in Fig. 7. Equations
(6.1) and (6.3) are in qualitative agreement. A quantita-
tive agreement should not be expected since Eq. (6.1) was
derived from experimental data in the energy domain
20(E (50 MeV, while Eq. (6.2) gives the potential ra-
dius parameter at the Fermi energy. The decrease of rz
with increasing mass number is in keeping with the de-
crease of the radius parameter r associated with the
point charge density distribution. This is exhibited in
Fig. 7, where the thin dashed line represents the parame-
trization of r proposed by Bethe. ' The difference be-
tween r and r~ is due to the range and to the density
dependence of the effective nucleon-nucleon interaction. '

B. Isoscalar potential depth

Uo( Ca) =( —53.5+0.44E) MeV (6.4a)

Henceforth, we adopt the parametrization (6.3) for the
radius parameter of both the isoscalar and isovector po-
tentials. Since g=0 for Ca, the neutron- Ca potential
is equal to the isoscalar potential Uo(E). In Ref. 16, the
following pararnetrization was found from a dispersion
relation analysis:
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in the vicinity of the Fermi energy. This result was ob-
tained for a diffuseness a& =0.70 fm and a spin-orbit cou-
pling slightly different from Eqs. (3.6b) and (3.6c); it
furthermore yields EF„=—12.16 MeV instead of the ex-
perimenta1 value Ez„=—12.0 MeV. We thus slightly
modify the parametrization of Ref. 16 and take the fol-
lowing depth, which reproduces the experimental value
of EF„ in Ca for r&=1.18 fm and for our choice of the
diffuseness and spin-orbit coupling:

U-50- (a)

Q7 -51

-52

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

Uo( Ca)=( —51.95+0.44E) MeV . (6.4b) -53

U„( Zr) =( —52.45+0.24E) MeV (6.5a)

in the vicinity of EI;„=—9.583 MeV. For the same
reasons as in Ca, we modify this value into

For the system n- Zr, the dispersion relation analysis of
Ref. 15 yields

0.44

0.40

0.36
C)

0.32-

0.28

r
/

/
/

/
r/

///
/

r
rrrr

(b)

U„( Zr)=( —50.30+0.24E) MeV, (6.5b)

which reproduces the experimental value of Ez„ for
r&=1.21 fm. For the system n- Pb, the dispersion rela-
tion analysis of Ref. 6 yielded

U„( Pb)=( —47. 1+0.223E) MeV . (6.6)

For the same reasons as above, we replace this approxi-
mation by Eq. (3.8a).

For simplicity, we assume that the isovector potential
is given by Eq. (3.8d) for all nuclei. Then, Eqs. (3.3a) and
(6.5b) yield the following values of Uo.

U&( Zr) =( —52.261+0.279E) MeV . (6.7)

Equations (6.4b), (6.7a), and (3.8c) yield Uo(E) =ao+PoE
for A =40, 90, and 208. The values of ao and Po are Plot-
ted in Fig. 8; we parametrize them as follows:

ao ———27. 196—201.5A -1/3+ 3993 -2/3

Po=0. 786 —5.78/I ' +15.7A

(6.8a)

(6.8b)

These parametrizations are represented by the dashed
curves in Fig. 8.

One of the striking features of Eq. (6.8a) is that the iso-
scalar potential is deeper for Ca and Zr than for Pb.
Figure 9 shows that this is in qualitative agreement with
the A dependence of the density near the nuclear center;
the latter dependence is implied by the decrease of r
with increasing value of A (Fig. 7) if one assumes that the
density distribution has a Fermi radial shape. '" The simi-
larity between the 2 dependence of ao and of p„„„,&

can
only be qualitative in view of the density dependence of
the effective interaction; note also that the A dependence
of Uo(E) depends upon the value of E.

The A dependence of po can in part be ascribed to the
A dependence of the central density, since po is expected
to decrease with increasing density. It also reflects the
inAuence of the coupling between the single-particle and
the collective degrees of freedom, indeed, this coupling
gives rise to a decrease of Po, and this decrease is larger
for heavy nuclei because it approximately scales as A '

0.24
0.16 0.18 0.20

I

0.22 0.24 0.26
A-1(3

I ~ I

0.28 0.30

Flax. 8. Dependence of ao and Po upon A ' '. The open
symbols are derived from Eqs. (3.8c), (6.4b), and (6.7a). The
dashed curves represent the parametrizations (6.8a) and (6.8b)
adopted in the dispersive mean-field model.

C. The model

The "dispersive mean-Geld model" that we now de6ne
differs from the "constant-geometry model" of Sec. V by
the following two features. (a) The potential radius pa-
rameter depends upon A as described by Eq. (6.3). (b)
The depth of the isoscalar potential also depends upon 3
as specified by Eqs. (6.8a) and (6.8b). For all nuclei, we
retain the value of U, (E) given by Eq. (3.8d), mainly be-
cause no empirical information exists on a possible
dependence of U&,

' the results shown below support this
simplifying assumption.

We recall that the numerical values of the parameters

E

O
CL

U
C5

C)

I

52.5 ~
= 0

50.5

49 5 I I ~ I j I I I

40 60 80 100 120 140 160 180 200
A

FICi. 9. The dashed curve gives the dependence upon mass
number of the absolute value of the depth (in MeV) of the iso-
scalar potential at zero energy, as parametrized in Eq. (6.8a).
The solid curve represents the central density in nuclei as
parametrized by Bethe and Negele (Refs. 13 and 14), expressed
in units (nucleon/300 fm').
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which appear in Eqs. (6.3), (6.8a), and (6.8b) have been
determined by dispersion relation analyses of the n-" Ca,
n- Zr, and n- Pb systems; the dispersion relation
analysis of the p- Pb has also been used to derive the
symmetry potential U, (E). Hence, the dispersive mean-
field model will, by construction, reproduce the neutron
Fermi energies in Ca, Zr, and Pb and the proton
Fermi energy in Pb. The test of the reliability of the
model will thus be provided by the comparison of the
other Fermi energies with their experimental values.
This comparison is shown in Fig. 10. The overall agree-
ment between the calculated and empirical values is
much better than that achieved in the constant-geometry
model (Fig. 6). This is remarkable in view of the fact that
only four Fermi energies have been fitted, and that the
model neglects complications which may arise, for in-
stance, from pairing or from a possible surface peaking of
the symmetry potential.

The quality of the agreement between calculated and
experimental Fermi energies suggests that a more de-
tailed comparison would be instructive. In Fig. 11, we
thus plot the experimental and the calculated values of
EF, EI;, and EI; for isotope chains associated with magic
numbers of protons. The calculated values of EF are too
large and those of Epp too small; this is due to the fact
that a simple mean-field model could not reproduce the
particle-hole energy gap since the latter is strongly
affected by the coupling between the single-particle de-
gree of freedom and the collective low-lying excitations of
the surface of the A-nucleon core. Thus, the following
discussion only bears on the Fermi energies proper.

Let us first consider the calcium isotopes (Z=20).
The experimental value of the proton Fermi energy in

Ca is reproduced within 0.03 MeV, that of Ca within
0.06 MeV, and that of Ca within 0.20 MeV. This agree-
ment is significant since no proton-calcium data have
been used as input in the model; it also puts into better
perspective the fact that, in Fig. 10, the calculated values
of EF„are somewhat too large for Ca (iI=0.048) and

Ca (i'd=0. 091). Indeed, the fact that the calculated EF
values closely follow the experimental ones along the
Z =20 chain supports the reliability of the model values
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I

0.07
I

0.11 0.15

3

-5I
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0.15

Z=82
I
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for the symmetry potential and for the Coulomb correc-
tion. More generally, the fact that the calculated and ex-
perimental proton Fermi energies fall on nearly parallel
lines for each isotope chain indicates that the strength of
the model symmetry potential is reliable.

Figure 12 shows that the difference between the calcu-
lated and experimental values of the proton Fermi ener-
gies is largest for Ca (0.71 MeV) and Ca (0.55 MeV);
in all the other cases, it is smaller than 0.40 MeV.

In Sec. IV, we pointed out that the angular momentum
and parity of the ground and first excited states in the tin
isotopes indicate that the energies of the 2d —,

' and 1g—',
"unoccupied" proton orbits cross each other between
A =120 and A =122. Figure 13 shows that this feature
is reproduced by our model, although in the latter no pa-
rameter has been adjusted to this isotope chain.

Figure 14 shows a detailed comparison between the
calculated and experimental values of the neutron Fermi
energies. Here again, the agreement is quite satisfactory
in view of the simplicity of the model. The least satisfac-
tory case is the X= 82 chain, for which the difference be-

I I I I
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FIG. 10. Dependence upon the asymmetry parameter of the
neutron and Coulomb-corrected proton Fermi energies for nu-

clei with a magic number of neutrons or protons. The open
symbols represent the same empirical values as in Fig. 6, while

the solid symbols have been calculated from the dispersive
mean-field model of Sec. VI. The dashed lines are the same as
in Fig. 6.
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FIG. 11. Dependence of the proton Fermi energies upon the
asymmetry parameter, for isotope chains with Z=20, 28, 50,
and 82. The solid lines connect experimental values of EF+, EF,
and EF (from top to bottom); the experimental values of EF are
represented by open symbols. The dashed lines connect the
values of EF, EF, and EF calculated from the dispersive mean-
field model of Sec. VI; the calculated values of EF are represent-
ed by solid symbols.
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FIG. 12. Difference between the Fermi energies calculated
from the dispersive mean-field model and the experimental
values. The open squares are associated to protons and the solid
triangles to neutrons.

D. Components of the neutron and proton potentials

tween calculated and experimental values ranges from
0.71 and 1.10 MeV. This is mainly due to the value of
EF„. Even in that case, however, the calculated EF,
values run nearly parallel to the experimental values,
which confirms that the strength of the model symmetry
potential is reliable. We estimate its uncertainty to be
about 5 MeV, but a quantitative evaluation of uncertain-
ties in model parameters would require detailed investiga-
tions which lie outside the scope of the present study.

Figure 12 shows that the dispersive mean field is, on
the average, somewhat too attractive in the case of neu-
trons and not sufFiciently attractive in the case of protons.
This could suggest to increase the value of U, with de-
creasing A; one should then also modify the parametriza-
tion of Uo( A) as given by Eqs. (6.8a) and (6.8b). We be-
lieve that this type of finer adjustment would not be
justified in view of the approximations inherent to any
mean-field description, as will be outlined in Sec. VII.
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upon 3, the symbols fall on distinct lines. These lines are
nearly independent of the asymmetry parameter because
nuclei with given magic Z or X have nearly the same
mass number. The larger N or Z ~28 is, the larger A is,
and the less deep Uo is.

Equation (3.2a) expresses the neutron depth U„(E) as
the sum of Uo(E) and of the contribution of the symme-
try potential, namely (rjm„*U&/m). The latter quantity
is shown at the top of Fig. 16. The expression (3.2b) of
the proton depth is more complicated, since it involves a
Coulomb correction Uc besides the contribution
( —pm~* U, /m ) of the symmetry potential; these two con-
tributions are plotted at the bottom of Fig. 16. The
Coulomb correction is nearly constant along isotope
chains and its absolute value increases with increasing Z,
as expected from Fig. 4. For neutrons as well as for pro-
tons, the contribution of the symmetry potential lies in
the close vicinity of a straight line; the absolute value of
the slope of this line is slightly difFerent in the two cases
because m * & m„* in medium-weight and heavy nuclei.

The depths of the proton and neutron potentials are
plotted in Fig. 17. In the case of neutrons, the smooth g
dependence of the symmetry contribution maintains the
type of structure which exists in the isoscalar depths. In
the case of protons, the global increase of Uo with g is
compensated by the increase of the absolute value of the

We now discuss some features of the calculated depths
of the neutron and proton mean fields and of their com-
ponents. We display them at the energy —8 MeV, which
is typical of the experimental Fermi energies.

The depth of the isoscalar component of the potential
is shown in Fig. 15. Because of the dependence of Uo
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FIG. 13. Dependence upon mass number of the energies of
the proton 2d2 and 1g~ orbits in the tin isotopes, as calculated
from the dispersive mean-field model.
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FIG. 14. Same as Fig. 11, for neutron Fermi energies of the
isotone chains with N =20, 28, 50, 82, and 126.
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attractive contributions of the symmetry component and
of the Coulomb correction, so that the resulting values of
U (E) all lie in the close vicinity of a straight line for the
nuclei considered here.

6

5

0.04 Q.08 0.12 0.16 0.2Q 0.24

N 20 -8MeY neutrons
N 28
N~

E. Fine structure

0.00 0.04 0.08 0.12 0.16 0.20 0.24
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~--+-- o '0" -y '0-' 0

-56

Percy et al. ' ' performed optical-model fits of the
elastic-scattering cross sections of 11 MeV protons by nu-
clei with 48 A ~72, namely, Ti, Cr, Fe, 6 Ni, and

(T= —,'), Fe, Ni, Zn, and Ge (T=3), and Ni,
Zn, and Ge (T=4); here, T=(K —Z)/2 denotes the

isospin. They found that, if the same geometrical param-
eters rz, az are adopted in all cases, the phenomenologi-
cal depths fall close to four different straight lines, each
of these being characterized by the value of T. This has
been referred to as a "fine structure"; it has been argued
that it is closely related to a "fine structure" in the exper-
imental values of the Fermi energy. ' Hence, a brief dis-
cussion is of interest in the present context.

The upper part of Fig. 18 shows the proton potential
depths at E= —8 MeV as calculated from the dispersive
mean-field model, for the nuclei investigated by Percy
and Percy. ' ' These depths fall in the vicinity of a
straight line, with no visible fine structure. However, one
should keep in mind that the model radius parameter rz
depends upon mass number, Eq. (6.3). We now argue
that an analysis in terms of an 3-independent radius pa-
rameter would yield a fine structure. The middle part of
Fig. 18 shows the volume integrals per nucleon of the
proton potentials, as evaluated from the dispersive
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FIG. 16. The upper part shows the contribution of the sym-
metry component to the neutron potential depths, for nuclei
with magic N. The lower part gives the dependence of the con-
tributions of the symmetry component and of the Coulomb
correction to the proton potential depth, for nuclei with magic
Z. All quantities have been evaluated from the dispersive
mean-field model, at E= —8 MeV.

mean-field model. It exhibits a fine structure; however,
the latter mainly rejects the dependence upon 2 of the
volume integral per nucleon, which is proportional to
(1+xv), with x~=ma~/R~. ' In order to unravel this
factor, we calculate the depths U (E = —8 MeV) which
reproduce the same volume integrals per nucleon as the
dispersive mean-field model if one adopts fixed values for
the geometrical parameters of all nuclei, namely,
r&=1.20 fm and a&=0.68 fm. The results are plotted at
the bottom of Fig. 18. It is seen that they exhibit a fine
structure. This fine structure is analogous to that found
in the phenomenological optical-model fits of Percy et ai.
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FIG. 15. Dependence upon the asymmetry parameter of the
depth of the isoscalar potential for neutrons in nuclei with mag-
ic N (top) and for protons in nuclei with magic Z (bottom), as
calculated from the dispersive mean-field model. The depths
are evaluated at E= —8 MeV.
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from the dispersive mean-field model.
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Indeed, the calculated depths fall on straight lines which
are each characterized by a value of T and increase with
increasing g. This fine structure is due to the 2 depen-
dence of the isoscalar component of the mean field, in
keeping with an analysis performed in the framework of a
nuclear matter calculation with the Reid hard-core
nucleon-nucleon interaction. A more quantitative dis-
cussion would require the calculation of the Fermi ener-
gies EF. As outlined in the next section, this would in-
volve problems which fall outside the scope of the present
work.

VII. LIMITATIONS OF A MEAN-FIELD MODEL
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Figures 3 and 4 exhibit that the Fermi energies of nu-
clei with nonmagic values of X or Z follow the general
trend associated with magic values of Z or X. Despite
this, the theoretical interpretation of the Fermi energies
of nonmagic nuclei requires caution, as had been noticed
by Cohen in a pioneering phenomenological study. Let
us consider the illustrative example of neutrons in Ca.

The experimental separation energies yield EF = —7.93
MeV, EF = —11.48 MeV; the corresponding EF= —9.71
MeV is represented by the cross which lies at g=0.048 in
the upper part of Fig. 2. The quantity EF is derived
from the separation energy of Ca, whose shell-model
configuration is ( 1f—', ); the quantity EF+ is the negative of
the separation energy of Ca, whose shell-model
configuration is ( lf—', ) (lf—,'). The difference between the
experimental values of EF and EF thus mainly derives
from the pairing energy. The latter is included in a
mean-field model in only a global way. Indeed, a mean-
field model yields only one (lf ,') orbit —and thus one
E

$f7 /2 energy. Roughly, this energy corresponds to Ez
since the experimental value of EI; includes the energy
required to break one (lf—,') neutron pair. The disper-
sive mean-field model of Sec. VI yields E»7&2= —7.79
MeV. This is in good agreement with the experimental
value of EF in Ca. This agreement is somewhat ac-
cidental since the mean-field model is not expected to
reproduce E~ or EF . Moreover, a more quantitative
reasoning should include the influence of the (1f—,') neu-

tron pair in "Ca on the neutron separation energy of
Ca. This discussion shows that it would be incorrect to

relate the difFerence [E~„( Ca) —Ez„( Ca)] with the
size of the symmetry potential. This remark also applies
to the difference [E~„( Ca) —E~„( Ar)] which has re-
cently been considered in that context.

Pairing effects also inAuence the separation energy of a
neutron from a closed shell. That is the main reason
why, in Sec. VI, we mainly considered the Fermi energies
associated with isotope or isotone chains with a given
magic value of Z or X. Indeed, the Fermi energies of
each chain are influenced by pairing in approximately the
same way. Nevertheless, one must keep in mind that the
size of pairing effects varies from one shell to another. In
view of these complications, we believe that it would not
be very meaningful to try to improve the agreement
reached here between the calculated and experimental
values of the Fermi energies.
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VIII. COMPARISON WITH OTHER
DEFINITIONS OF THE SYMMETRY POTENTIAL

In Ref. 11, the symmetry potential had been defined by
Eqs. (3.1a) and (3.1b), which are approximately
equivalent to Eqs. (3.2a) and (3.2b). We now briefiy dis-
cuss the difference with some other definitions.

(a) In many phenomenological analyses, one omits the
factors m„*/m and m*/m which multiply U, on the
right-hand side of Eqs. (3.2a) and (3.2b). The "symmetry
potential" considered in these analyses should thus be ap-
proximately identified with the following quantity:

FIG. 18. Depths of the proton potentials at E = —8 MeV, for
the nuclei investigated by Percy et aI. (Refs. 18 and 19). The
upper drawing contains the depths calculated from the disper-
sive mean-field model. The middle drawing shows the corre-
sponding volume integrals per nucleon. The lower drawing
gives the depths which reproduce the volume integrals per nu-

cleon of the middle drawing when rI, is set equal to 1.20 fm and
a v to 0.68 fm for all nuclei.

fly
(8.1)

This remark applies to Refs. 4 and 5. The origin of the
factor m */m on the right-hand side of Eq. (8.1) was first
described in Ref. 25. As discussed in Sec. III B, the value
of V, found in Refs. 4 and 5 (for positive energies) is in
keeping with the present work; it is sizably smaller than
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the ones which had been obtained from earlier less com-
plete optical-model analyses.

(b) In Ref. 16, the depth Ui of a "symmetry potential"
was derived from the neutron mean field in Pb and" Ca by using the following "prescription:"

i)U (E E—)=U (E E —
) U—(E E—) (8.2)

—U„(E =EF„+b, ) . (8.3)

By using a linear E-dependence approximation and the
notation (3.4d), Eq. (8.3) yields

U, (E=EF„+b.)=
m

U208(E E208+g)

—1 208 ~40+ g p208 @40
0 0

+P208E 208 P40E 4o (8.4)

where m„* is the neutron effective mass in Pb. If one
makes the approximations

40 208 ~0 ~208
&o &o ~ I~o ~o

Eq. (8.4) gives

(8.5)

U, (E=E,„+a)= " Ufos(E=E,'08+a)

+i) pp(EF„EF„) . —(8.6)

The second term on the right-hand side of this relation is
equal to 10.5 MeV for Pa=0. 35. It approximately can-
cels the effect of the factor m„*/m in the first term.
Hence, U, (E=E~„+6)would be approximately equal to
Ui (E=EF„+6)if the approximations (8.5) would be
valid. This was the main motivation for introducing the
prescription (8.2) in Ref. 16. In practice, however, the
approximations (8.5) are not accurate. Relatedly, the
prescription (8.2) yields a result which depends upon the
pair of nuclei used in the right-hand side: different re-
sults have been obtained from the pair ( Zr, Ca) and
from ( Pb, Ca). ' The main origin of this difficulty lies
in the fact that the isoscalar potential depends upon mass
number.

EX. SUMMARY AND DISCUSSION

Our main purpose was to investigate the strength of
the symmetry potential in the vicinity of the Fermi ener-
gy for mass numbers 40 ~ 3 ~ 208. In order to be able to
use a mean-field approach, the following two main condi-

where g=0.212 is the asymmetry parameter of Pb. In
Ref. 16, the prescription (8.2) was used for the "Hartree-
Fock" component of the potential, but this is irrelevant
in the present context. The interpretation of the
prescription (8.2) is the following: the value of U, at
some energy b, above the Fermi energy is given by (il)
times the difference between the value of U„at the ener-

gy (E~„+b, ) and the value of U„at the energy
(EF„+6):

(E E +g) U208(E E208+g)

tions should be fulfilled.
(a) The Fermi energy should not be too sensitive to nu-

clear structure details. It is for this reason that we
defined the Fermi energy as the average between two sep-
aration energies (Fig. 1), since this quantity is less
influenced than each separation energy by the coupling of
the single-particle degree of freedom to the low-lying col-
lective core excitations.

(b) The experimental Fermi energies should have a sim-
ple dependence upon the asymmetry parameter. Indeed,
a mean field that is a smooth function of X and Z could
not yield a complicated dependence upon neutron excess.
This second condition is fairly well fulfilled on the aver-
age (Fig. 3) although on closer examination the experi-
mental Fermi energies reveal a substructure, which is
most conspicuous in the case of protons (Fig. 2).

In order to construct a mean-field model, we made full
use of the information on the average potential felt by
neutrons and protons in Pb recently derived from the
dispersion relation approach. The latter presents the ad-
vantage of making use of empirical information at both
positive and negative energies, thereby yielding mean
fields which are more reliable than those constructed
from purely phenomenological studies. We derived the
depths of the isoscalar and isovector potentials from the
n- Pb and p- Pb potentials (Fig. 5). While the energy
dependence of the isoscalar depth is approximately linear
between —20 and +50 MeV, it turns out that the isovec-
tor depth presents a plateau in the domain 15 ~ E ~ 50
MeV. This feature is in excellent agreement with the glo-
bal optical-model parametrization recently deduced from
extensive phenomenological optical-model fits of elastic-
scattering cross sections by nuclei with mass numbers
40~ 3 +208. '

In the vicinity of the Fermi energy, the isovector and
the isoscalar depths in Pb can both be approximated by
linear functions of energy [Eqs. (3.8c) and (3.8d)j. We
first considered, in Sec. V, a "constant-geometry model"
in which these values are adopted for all nuclei, along
with the assumption that the potential radius parameter
is independent of mass number. This model systematical-
ly overestimates the proton Fermi energies, except for the
lead isotopes (Fig. 6). Hence, some of the assumptions of
the constant geometry are not fully justified. One likely
weakness lies in the assumption that the potential radius
parameter is independent of mass number. Indeed, re-
cent phenomenological optical-model fits as well as
dispersion relation analyses indicate that I ~ increases
with increasing mass number (Fig. 7). In addition,
dispersion relation analyses suggest that the depth of the
isoscalar potential also depends upon mass number (Figs.
8 and 9).

In Sec. VI, we thus considered a "dispersive mean-field
model" in which the potential radius parameter and the
isoscalar depth both depend upon mass number in a way
determined by dispersive relation analyses of the n- Ca,
n- Zr, n- Pb, and p- o Pb systems. This model yields
good agreement with the experimental Fermi energies
(Fig. 10). The agreement between calculated and experi-
mental Fermi energies extends to the Fermi energies of
each chain of isotopes and isotones with magic values of
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Z and N (Figs. 11 and 14). The model also reproduces
the crossing of the energies of the 1g—', and 2d —,

' proton or-
bits in the tin isotopes (Fig. 13). This detailed agreement
has been made possible by the introduction of an
dependence of the isoscalar potential (Fig. 15). This
dependence would appear as a "fine structure" in the
dependence of the proton depth upon the asymmetry pa-
rameter (Fig. 18) if the data were analyzed in terms of a
potential with a radius parameter independent of mass
number as in the phenomenological optical-model fits
performed by Percy et al. ' '

The comparison between the experimental and calcu-
lated Fermi energies has been carried out for nuclei with
a magic number of protons or neutrons, because in the
independent-particle limit the (A+1) systems can then
be associated with specific shell-model orbits (Sec. IV).
This does not imply that the model is useless in other
cases, but caution must then be exercised in the interpre-
tation of the Fermi energy (Sec. VII): indeed, difficulties
arise from pairing.

In the study of some nuclear structure problems, e.g. ,
high-spin states, it would be convenient to have at one' s
disposal a mean field that would reproduce the values of
the two separation energies EF and EI; instead of simply
their average EF. This would be more difficult because
the dispersion relation approach shows that the potential
radius depends upon energy in the vicinity of EF. This is
the main reason why the dispersive mean-field model
yields too large values for EF+ and too small values for
EF (Figs. 11 and 14). It would be conceivable to

parametrize the dependence of the radius upon energy as
well as upon mass number. However, this would be un-
duly complicated for most purposes. Indeed, it should
often be sufficient to parametrize separately the values of
EF+ and those of Ez, using potential wells which have a
larger (A-dependent) radius in the case of EF than in the
case of EF . The resulting single-particle wave functions
would still be orthonormal because the valence particle
and hole orbits have different angular momentum and/or
parity.

Our parametrization of the A dependence of the iso-
scalar and isovector potentials was based on dispersion
relation analyses of only four systems, namely n- Pb, p-

Pb, n- Zr, and n- Ca. It would be of interest to study
other systems and to improve the accuracy of the avail-
able analyses. For instance, the imaginary part of the
mean field was not required to vanish in the energy inter-
val E~ &E &E~ in the analyses of the n- Zr and n- Ca
systems as well as in a recent dispersion relation study of
the p- Ca system. A reanalysis of these systems would
thus be useful. In particular, it would also be of interest
to compare the results derived from the two existing ver-
sions of the dispersion relation approach, namely the
dispersive optical-model analysis' ' ' ' and the varia-
tional moment approach. "' The latter method has
not yet been applied to the n- Ca, p- Ca, and n- Zr sys-
tems.
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