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Supersymmetric quantum mechanics, phase equivalence,
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Supersymmetric quantum mechanics links two Hamiltonians with the same scattering (phase
equivalence) but different number of bound states. We examine the Green's functions for these
Hamiltonians as a prelude to embedding the two-body dynamics in a many-body system. We
study the effect of the elimination of a two-body bound state near zero energy for the E6mov
effect and Beg's theorem.

There are many applications where it is convenient to
represent scattering off a composite object by a local po-
tential; sometimes the projectile itself is also composite.
The phenomenological local potential one naturally con-
structs may permit bound states of the projectile-target
system that are in fact forbidden by the Pauli princi-
ple. Supersymmetric quantum mechanicsi (SSQM) can
be used to construct the unique local potential that has
exactly the same scattering amplitude as the first po-
tential, but does not support the forbidden bound state.
This was first discussed by Baye in the problem of alpha-
alpha scattering and has subsequently been studied in
detail in a number of formal and numerical examples.

Suppose one wants to employ this phase-equivalent po-
tential in a few- or many-body system. For example, we
have recently discussed how SSQM can be used to con-
struct a nucleon-alpha local potential without the bound
state as a prelude to application to deuteron-alpha scat-
tering. There are results in few- or many-body scattering,
for example, the Efimov effect, or Beg's theorem, that
are supposed to depend only on features of the physical
scattering and be independent of the potential. Are they
in the case of phase equivalent potentials? The purpose
of this note is to explain how they are not, particularly
in the case of scattering with a low energy anomaly, that
is with a nearby zero energy bound state.

It is generally believed that in potential scattering a
very large positive scattering length is the sign of a vir-
tual (near bound) state while a very large negative scat-
tering length is the sign of a bound state near threshold.
For a very small binding energy B (B ) 0), the scatter-
ing length is given by a = —1/~B (we take fi = 2m = 1).
Efimov's effect, the existence of a logarithmically diver-
gent number of three-body bound states in a system of
three identical bosons interacting by pairwise potentials
in the limit that B —+ 0, is said to depend only on the
divergence of the scattering length and not on the details
of the potential. Hence one might expect that the phase-
equivalent potential shows the effect as well, since the
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where n = 0, 1, . . . , includes the continuum. We assume
(~)that there is a lowest bound state 4& at energy Eo ——

B= —Ii2 (B )—0). Then we can write Eq. (1) in
factored form

H, = A+Xi —B,
where

scattering length is the same (by the definition of phase-
equivalence). But the phase-equivalent potential has no
two-body bound state. It is in fact mostly repulsive, in
particular at very small and large r. How then can it
have any three-body bound state, let alone an infinite
numbers We will show that it does not. In essence the
phase-equivalent potential is pathological. It can have a
very large scattering length and no bound state. It avoids
Levinson's theorems by having a 6jr2 repulsive behavior
at the origin for an s-wave potential. As we shall see it
also becomes long range as B —+ 0.

Beg's theorem also raises questions for phase equiva-
lence. The theorem states that scattering of a projectile
from a set of static objects depends only on the on-shell
two body scattering input if the range of the force is fi-
nite and the objects are separated by more than that
range. We shall see what goes wrong with this argument
for phase equivalence and in particular when the original
potential has a bound state near zero energy.

Since our argument is framed in the language of
SSQM, i s we begin by reviewing it briefly. Consider the
s-wave radial Schrodinger Hamiltonian for a local poten-
tial Vi(r); with Ti = 2m = 1 and r running from 0 to oo,
we have
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A =+—+Wg.
dr (4)

The superpotential R'~ is given in terms of the bound-
state wave function by

is not the exponential growth of 4'z at large r, which

cancels in W2, but rather that 4O has no nodes because(2)

—B is below the bound-state spectrum of H2. We can
now construct the supersymmetric partner H3 of H2.

d@0 /dr
@(i) (5) dp dp dp

(15)
The supersymmetric partner Hamiltonian to Hi, H2 is
defined by

H2 ——Aq Aq —B = Hy —2
de

dp

H y(3) —E y(3)

for n = 1, 2, . . . , and (up to a normalization factor)

(16)

H gr(2) —@ gr(2) (7)

for n = 1, 2, . . ., i.e., except for the state at —B that is
present in H» but absent in H2 since

and it is easy to show that Hz is isospectral (same bound
states and continuum) to Hq

e(') = A-e(') = A, A, e(') (17)

Clearly, Hs has the same spectrum as Hq with no missing
states, but also with no extra states; in particular, it has
no bound state at —B. Since the asymptotic value of the
superpotential in Eq. (13) is W2(oo) = +I~, we obtain
for the S matrix Ss, using Eq. (10)

In general, 2dWq/dr is nontrivial and Hq is a different
Hamiltonian from Hy.

By considering asymptotic states, the S matrix Sq of
Hq and that Sz of Hq at energy E (E = k ) are related
by3 '

k —iI~
—k —iI&

(10)

This relation shows that the bound state pole of Sq at
k = iI~ is removed in Sq. These facts follow from the
asymptotic value of the superpotential (5), Wq(oo)
—K.

We can rewrite Eq. (6) in the factorized form

A, C, =0.(~l

The eigenfuntions of H2 for energies E„,n = 1, 2, . . . ,

are given in terms of those of Hi at the corresponding
energy, up to a normalization factor, by

k+ iI&
Ss = . , S2 = Si—k+iK

Hence Ha and H~ are phase-equivalent Hamiltonians; i.e. ,

they have the same S matrix even though they corre-
spond to diA'erent potentials. In particular, H~ has a
bound state at E = —B while H3 does not.

To better understand what is happening and to apply
this understanding to the Efimov eA'ect or to Beg's theo-
rem, let us examine the full interacting Green's functions
of each of the Hamiltonians in Eqs. (3), (6), and (15) and
relate them. In terms of the properly normalized states
of H2, the corresponding partial-wave Green's function
G+z(p) at energy E = p can be written as

y(2) y(~) t
G+( ) ) ~ A ( tl )

2

If for simplicity we take H2 to have only a contin-
uum spectrum (we have removed the bound state at
E = B= —I~—) with E„=k, we have

Hg —A2 A2 —B
with A~ given by

(~)
(~) Ai 4~

ik —A' (2o)

A =+—+Wg
dp

and the superpotential R'g given by

d@0 /dr
2 (g)

with, now,

H~C, = —B4,(2} = (2)

(12)

(14)

+( ) y
Ai@„(C„)A,(~) (~) t +

„(p' —E-)(E-+ B) (21)

Writing

where the factor ik —K comes from the action of A& on

the incoming wave at very large r. It is such that 4( )

has a properly normalized incoming wave if 4( ) does.
We then get

However, there is no true bound-state eigenfunction of
H~ at the energy E = —B. Hence 40, while regular(2)

at the origin r = 0, is non-normalizable and grows like
e " at large r. Nevertheless, the above construction is
legitimate and Wg is bounded. The important feature

1 1 1 ( 1 1

+ B pz —E p~+ B (p2 —E„E„+B)
(22)

we obtain finally
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(G+, (p) —G+, (i') &

(23) G+(& pl. p) [eiP[&—t'
( g ( ) iP(r+r')]1» 2 1 (25)

where we have been a bit cavalier about interchanging the
order of the summation and operation with Ai . This is
particularly clear from the appearance of Gi (iIi ), which
is infinite since 0+& has a pole at p = iI~, but since the
operator Ai annihilates the residue at that pole (the
bound-state wave function) there is no singularity. In
fact, it is easy to show that Ai G+, (iI~)A+i is equal to
the unit operator.

An exactly equivalent analysis gives

For p & p, the lowest-energy wave function is 4'(0 )(p) oc
e K" so that in this region Eq. (5) reduces to Wi(p) =

I~—. It is then easy to show using Eq. (21) or (23) that

2p

for p, p' & p, with Sq is given by Eq.(10). The solution

(p) of Eq. (14) reads for r & p

@(2)(„) Kr + p Kr— '

G+( ) A
—~~G2 (p) G2 (' '

) A+p 2
~ 2+~ 2 (24) Hence, the superpotential W2(p) of Eq. (13) for p & p is

where now the G2+(iI~) term is neither singular nor triv-
ial.

To understand what happens to these Green's func-
tions, in particular, when there is a bound state near zero
energy in Hi, consider the Green's functions in coordi-
nate space. Suppose the potential Vj (r) has a finite and
short range p. For r, r' ) p the outgoing-wave Green's
function G+i(p) is

W , -Z-"
e Kr-

o,eKf' + pe —Kf)' (28)

That is, W2(r ) goes to +I~ for large p with corrections of
the order of 2' Pe "/a. We then find that Gs (P, P'; P)
given by Eq. (24) is for r, r' & p (p& and p& denote, when
required, the larger and the smaller of p and p'),

(„„)[p —t W2( p()][p + 2W2(p) )] p K(„) ~() [IY —W2(p()] [I% + W2(p) )]

2p K(„+„)[I~ + W2(p)][I~ + W2(p')]
2 + Ig~2 (2I~)2

p( + ') [p+ 'W2 (")][p + 'W2 (" )]
(p+ I')'

where I'i(Ii ) is the residue of Si(p) at the pole at I- = iI~ .
This term comes from S2(p). Because W2(i) ~ I~ as
r ~ oo we see that for fixed Ii Gs (p, r'; p) ~ Gi (i', r', p)
as r, r' ~ oo. This is phase equivalence at the Green's-
function level. However, for fixed r and r' it is easy
to verify that Gs+(p, p', p) has no pole at p = iI~, that
is, that Gs+(p, p'; i') is perfectly finite, while of course
G+, (r, p', iI~ ) is not. Hence the limits p, p' ~ oo, p —+ iI~
do not cornrnute (we have seen a similar feature of SSQM
befores). We have found explicit, analytic calculation
of these Green's functions using a delta shell potential
helpful.

From Eq. (29) we can begin to understand what hap-
pens in composite systems. While, for fixed I~, G3 ——6&
asymptotically, one is never really asymptotic in the com-
posite system. In particular, the range of the diAerences
between Gs and Gi is set by I/Ii and not by the range
of the potential Vj. Hence in finite systems H3 is not

equivalent to Hq. What goes wrong in Beg's theorem
is particularly easy to see from Eqs. (29) and (25). If

Vj has range p and the scatterers are static and sepa-
rated by distances greater than 2p, all that ever enters
in the propagation of the scattered wave from scatterer
to scatterer is Gi of (25), and it depends only on on-
shell scattering [the actual case is more complex because
(25) is only for one partial wave, but adding the partial
waves up will not change the substance of the argument].
But Q3 is not asymptotic for r, r' ) p, . If the distance
between the scatterers is not large compared with 1/K,
propagation from scatterer to scatterer is substantially
different in Gs and Gi and Beg's theorem is different for
H3 from H~ . In particular, as K —+ 0 the interscatterer
distance must go to infinity for the scattering to depend
only on the on-shell two-body data.

For the Efimov eKect, 5 the situation is somewhat more
complex. Amado and Noble show that if the homoge-
neous (bound-state) three-body equation is written

(30)

where P is a three-body wave function and K is an inte-
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gral operator that depends parametrically on the three-
body center-of-mass energy E, the Efimov effect arises
because an infinite number of the eigenvalues of K, A„,
(Ky„= A„y„) exceed 1 as B ~ 0 and E ~ 0. This fact
is manifested in the divergence of the trace of K in this
limit since trK = P„A„. They write Eq. (30) explicitly
as (h=2m=1)

P(p, k)

2(k+ I /2I~(E —3/2»') II '+ p/2)
E —2p2 —2k 2 —2p k

and argue that since the divergence of the trace is a low

energy or small momentum phenomenon, dominated by
the two-body virtual or bound-state pole of the two-body
t-matrix near zero energy, one can study the effect by
using a separable potential with that pole. The vertex
functions of that separable potential contribute nothing
to the low energy singular behavior of the integral. They
do ensure convergence at high momenta. The singular (as
E ~ 0, B ~ 0) contribution of the separable f matrix to
the trace can be expressed in terms of the full two-body
Green's function at fixed r and r', the r dependence being
taken up in the irrelevant vertex functions. The divergent
part of the trace of the kernel of Eq. (31) comes then from
the lower limit of the following integral

trK(E) = d kK(k, k)— k2dk

E-642

Gs(i, r', p) = [1 —rW2(i. )][1 —r'W2(i. ')).
p

The i/p term appears to again trigger the Efimov diver-
gence, but in fact the 1 —rW2 factors are zero at I~" = 0
and there is no divergence. In deriving (33) we have as-
sumed that vertex factors will keep the domain of r, r'
finite so that the exponentials can be expanded. As we
have stressed above it is precisely this finite r, r depen-
dence that makes Gs g Gi. To study the vanishing of
(33) we need to know W2(i) for I& = 0. Equation (28)
does not give a clear limit. At B = 0 the solution of
(14) that is regular at the origin becomes the zero energy
scattering solution. Hence 4& with B = 0 goes over to
that solution. Outside the range of force (r ) p), the

(32)

If we use Gi of (25) with B = 0 in (32) we note that
since S = —1 for I~ = 0 and p small, Gi(p) i/p-
near p = 0, and the trace diverges logarithmically as
E ~ 0. This is the Efimov effect. For G3(p) at IC = 0
and r, r' ) p we find for small p,

most general form of 4o at B = 0 is r+ a2, where a2(2)

is the scattering length of H2. But at K = 0, 9'& ———1

at low energy, with corrections of order k, Hence from

(10), S2 —1 up to order k, which means that a2 ——0.
If iso

—i for r ) p then W2(i) = I/r T. hus the coef-(2)

ficient of i/p in Gs vanishes at It = 0 and K has finite
trace.

There is no Efimov effect for H3. This is reassuring
since for most simple models V3 turns out to be com-
pletely repulsive, if Vi has only one bound state. Even
one three-body bound state, let alone an infinite num-

ber, would be surprising for a repulsive two-body poten-
tial. Furthermore, for H~, the many bound states be-
come few with increasing coupling strength because for
B & 0, there is a scattering threshold at E = —B that
covers the Efimov poles. Amado and Noble have stressed
that the Efimov effect arises from the singular collision
of the two-body threshold with the three-body thresh-
old at E = 0. For H3 there is no such threshold, and
hence if we had an infinite number of bound states, we

would not be able to get rid of them. Thus the phase-
equivalent Hamiltonian does not lead to a large number
of three-body bound states, even though it has a large
negative two-body scattering length. Nevertheless, the
point E = 0, B = 0 is a singular point of the integral
equation and care must be exercised in numerical solu-
tions in the vicinity of that point. This is clear from the
fact that at B = 0, W2 ——I/r so that at large r, Vs has
a 2/r2 long-range repulsion.

In conclusion, we have seen that, using SSQM, it is pos-
sible to relate two local partial-wave Hamiltonians that
yield the same on-shell scattering (S matrix) while one
has a bound state and the other does not. This can be
done even if that bound state is very near threshold so
that the scattering length is very large. We have exam-
ined situations in which these two dynamical schemes
are the input to few- or many-body scattering to see
whether features such as the Efimov effect or Beg's theo-
rem, which are purported to depend only on the on-shell
scattering data, are identical for the two Hamiltonians.
We find that they are not. For example, there is no Efi-
mov effect for the two-body dynamics that does not have
the bound state, even though the scattering length is very
large. We have done our analysis by using the interacting
Green's functions of the various Hamiltonians, exploiting
the formal algebraic relations among the sytems.
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