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Nucleon self-energy in relativistic nuclear matter with pion ring series
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Nucleon self-energies from the pion-ring series are studied in the relativistic mean-field theory of
linear o. model with the co meson and the A. Near the Fermi surface of nuclear matter, the pion
rings generate attractive scalar and vector potentials of 10—15% of the nucleon mass. These strong-

ly energy-dependent potentials cause the nucleons to have a significant probability to be in a collec-
tive X-hole or 6-hole configuration.

I. INTRODUCTION

Since Yukawa conjectured a meson theory of nuclear
force, the pion has been known as an important com-
ponent of the nuclear force field. It is commonly believed
that the one-pion exchange (OPE) generates the long-
range nuclear force. However, the lowest-order OPE
does not contribute to the binding energy in nuclear
matter. On the other hand, the second-order OPE has a
significant effect on the binding energy due to the OPE's
strong tensor force. '

For the intermediate-range nuclear force, 2m. exchanges
(TPE), correlated or uncorrelated, are known to dom-
inate. In nuclear matter, TPE's effects on the binding en-

ergy are expected to be even more important than the
second-order OPE mainly because of the presence of the
6 isobars.

Pion propagation in the nuclear medium can generate
a collective spin-isospin mode by coupling to the
nucleon-hole and 6-hole states. Without the short-range
correlations between baryons, the collective spin-isospin
mode would develop into a so-called pion condensate
even at normal densities.

If pion propagation in the nuclear medium is modified
so as to excite collective modes, the effects of the uncorre-
lated 2m exchanges and the second-order OPE on the
binding energy of nuclear matter should be enhanced cor-
respondingly. In other words, the exchanged pions be-
tween nucleons can be rescattered by other nucleons, thus
amplifying the attractive nuclear force. The combined
effects of the uncorrelated TPE (plus the second-order
OPE) and the modified pion propagation on the binding

energy of nuclear matter are represented by the pion-ring
series.

In our previous report, we investigated the inAuence
of the pion-ring series on the nuclear matter saturation
properties based on the relativistic mean-field theory ' of
the linear o model with the vector meson (co) and b, .
The role of 6-hole excitations was emphasized along with

the dependence on the md%- and ~XX-form factors. One
of the most important features of this approach is that
the attraction from the scalar meson mean field is rela-
tively small compared to the pionic attraction at normal
nuclear matter densities. Thus the scalar field provides
only a small shift of the effective Dirac mass of the nu-
cleon from the free-space value. But pion effects cause
such a shift, which we investigate here.

The shift of the Dirac mass of the nucleon is related to
the single-particle energy and wave function of the nu-
cleon. Clearly, these quantities are an important part of
nuclear physics. Thus we wish to determine the effective
mass (or proper nucleon self-energy). We do this by solv-

ing the Dyson equation for the nucleon propagator.
Note that the properties of the nucleon propagation in

the presence of the nuclear pion field has not extensively
studied in relativistic field theory models. There have
been some related works, ' but these are based on nonre-
lativistic formalisms. Here we attempt to study the
single-particle nature of the nucleon in relativistic nu-
clear matter by calculating the nucleon self-energy in the
presence of the pion-ring series.

II. FORMALISM

First, we briefly review the formalism concerning the
single-particle nature of the nucleon in relativistic nu-
clear matter. In the rest frame, parity conservation,
time-reversal invariance, and Hermiticity lead to the fol-
lowing general form of the proper nucleon self-energy:

Then the Dyson equation for the nucleon propagator can
be solved formally as
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G~ '(k)=G)v '(k) —X~(k)

=y-k —M (2)

G)v(k, k)= J dao
(o —

( k —p)( I+i g )
(3)

where p is the chemical potential. Defining a function
6&, which analytically continues to Gz,

( ~) y
de A (co, k)
27? cO Z

G~(k, k) =G~((k —p)(1+i'),k),

(4)

where k "=(k +X)v(k), k(1+X)v(k)) and M=—M
+X&(k). The analytic structure of G&(k) in the complex
k plane must be specified to invert Eq. (2).

The analytic structure of the Green's function can be
specified by the following Lehmann spectral representa-
tion:

the spectral function A (co,k) is related to Gz by

A(~, k)= —i[G)v((o+ig, k) —G~(co i—g, k)] .

Then Eqs. (2) and (5) lead to

G~ '(k —p, k)=y k —M

which can be readily inverted because of its analyticity as

G~(k —p, k) =
k —M

Hence we get the analytic structure of the nucleon propa-
gator:

G~(k, k) =
k —M +iris(k )e(k —p)

where e(x) =8(x)—8( —x) =sgn(x)
For noninteracting nuclear matter of density

p = (2/3m )k~, p = (k~+M ) '~, and

o yk+M
k M+—ice(k )e(k p)—,

=(y k+M), , +2~i5(k' —M')8(k')8(kp —li I)
1

k —M +iq
(10)

In general, X&(k) is complex because of various excitation modes (e.g. , two nucleon —one hole or one nucleon —two
hole) that alter the Fermi distribution of the noninteracting ground state. The nucleon-nucleon correlations modify the
Fermi distribution further.

To make a connection with the shell-model picture, one usually assumes the quasiparticle property
~
ReX~

~
))

~
lmX& ~. In the limit ImX&~0, the Dyson equation for the nucleon has the solution

G)v(k) = [y k+M(k )] +2mi5(k —M )8(k )8(p k)—
k —M (k)+iri

—:G~(k)+ G)v(k) .

The single-particle spectrum is the zeros of the argument in the delta function. There are two regular zeros:

Eq —'= [+E(k)—X~(k)] „p (+),
k

with E(k)= [[M+X~(k)] +It [I+X&(k)] ]' . The spectroscopic factor Z&
—'is given by

(12)

(Z„'+-')-'= 1+ + 0ak' E(k) ak' E(k) ak' ko E(+)
k

(13)

The Lehman representation requires that 0 ~ Zk (1. Zk =1 would mean that a particle propagates freely with no cou-
pling to excitation modes.

Now we may rewrite the nucleon propagator as

G~(k) = [y.k+M(k ) ]
k —M (k)+i'

Z(+ )

+xi 5(k E„'+')8(p—k )—
E(k)

(14)

We will make use of this representation of the nucleon propagator in our calculations with further assumptions on the
momentum dependence of X and Z& and the distribution function 8(p —k ).

III. NUCLEON SELF-ENERGY

We derive the nucleon self-energy from the entire pion-ring series including the lowest-order exchange term. It is
convenient to separate the contribution of the intermediate pion-nucleon propagation from that of the intermediate
pion-delta propagation (Fig. 1):
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Xvr
( k ) Xm N( k ) +Xm 5( k )

Feynman rules lead us to
2

X& (k)=3i f y y qGg(k —q)y y.qI (q)D (q)II(q)D (q)+X&,„,

(15)

d4q
X~ (k)=2i f (q" gy —qy")D (k —q)(q' gy—'y q)l (q)D (q)II(q)D„(q) .

2M* (2m. )

Here Gg(k —
q ) is the nucleon propagator in the mean-field approximation (MFA):

[6"(k)] '=y k* —M*,
where M* and k * are de6ned by

M*—:M —g $0, k*"—:(k —g coo, k), (17)

with $0 and coo being the mean fields of the scalar and the vector mesons, respectively. And D (q) [D (q)] is the free
[full] pion propagator and II(q) is the proper pion self-energy containing the effects of the short-range baryon-baryon
correlations through the Landau-Migdal parameter g':

II(q) = 11 (q) (18)
I+(g'/q )II (q)

with II (q) =II~(q)+II~(q) (see Appendix). I"(q) is the modification of the mNN or vrNb, vertex due to g' effects (Fig.
2):

I (q)= 1+
2

II (q)
q

The parameter g in X~ is to consider the eff'ects of the off'-mass shell b, . '

There is also X~ „,the exchange diagram contribution neglecting correlation e6'ects:

X (k)=3X,ex
d 'q e(kF —Ik —

ql )f ~ [(y k*+M*)q —(k* —M* )y q]D (q)l 0 „eo e
q k E~

(20)

(y k*+M—*)q.'+(k*' M*')y q
—

. I-( )2D0( )II( )D ( )(k„)2 M„2 y'qXnN(k) —3
~

2M

Note that the nucleon self-energy is diagonal in isospin space for symmetric nuclear matter, i.e., Xz,b
=2~6,&.

Simplifying the y-matrix algebra, we obtain
2

+3
2M*

2

2 e(k, —
~I

—q~)f [(y k*+M*)q —(k* —M* )y q](2~) 2Eq*

Xl (q) D (q)II(q)D (q)~ 0 o« ~e +X~c„
q —k EI,

(21)

d4
X~ (k)=2i f +ADA(k, q)+A, (k, q))+A~(k, q)g I (q) D (q)II(q)D (q), (22)

2M* (2~) (k*—
q )

—Mq

where A(k, q )'s are defined as

Aoi(k, q)=
2

[(k* q) —k* q ]( —y q+y k*+M~),2

2
Ao~(k, q)= q ( —y q+y. k*+M~),

3M

Ai(k, q)= q + (q —k q)y. q,2 4 2

A2(k, q)= — q~ — [q y.k" +(q' —2k* q)y q] .
3M' 3~2~

Remembering that II(q) is analytic in the region Req .Imq )0 of the complex q plane, we can make use of Wick
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rotation to perform the q integral. For the q integral of XN, we use

" do fq'
(k0» 0)2 E»2

k q
l 'g

= —f dv + [9(k»o Ek—" )f(k 0 Ek—» ) —8( —k" Ek—* )f(k* +Ek )] .
k —

q k —
q

A similar relation applies to the q integral of XN, where additional nonpole terms are straightforward to compute.
Also, the angular integral is simplified by rotational invariance:

dq yk dq
g k, q y.q= g k, q q.k,

(2~)' '
lkl' (2~)'

where g(k, q) is a scalar.
Then the nucleon self-energy is reduced to the following two-dimensional integral which we need to evaluate numeri-

cally:
2

X (k)= —3
2M* q I qD q HqD q

dlq dv

+3
2M

2

X[—(y k*+M*)q I, —(k* M* )(y—vI +y kI )]l

q I qD qHqD„qd qd(q k)
(2'} 2Ek

X (y k*+M*)q —(k* —M* ) y q
—y k

x [8(k —lk —
ql )

—8(k * E„* ) ]+—X,„(k),

qo=k~0 —E*
k —

q

(24)

X~ (k)= —2
2M*

2

3 q K' q D q H q D„qz z

2

3M~
—(k* +q —Mz) —k* q [(y.k'+Ma)I, +y vIz+y kI3 ]

——(M —k* —
q )(y k*+M~)+2q M~(1+/ —2g )

+2q y k*(1—
g )+[4(g —g)+I] —y k* v +—y.klql

3

Here I 's and I 's are the angular integrals of the pole terms on the imaginary q axis:

yN
(k* Ek ) +v — (k* +E* ) +v

I&l
—

Iql

q =iv
(25)

N
k, —E

I ~I —
Iql

k —E l~l+ IqlI2 =
Iql lkl

tan —tan '
V

+Eljl-I
I+tan '

k*'+E Ikl+ Iql—tan '

I = 2+ —(lkl +lql +M* —k* +v )I —k* v I1 1
V ) V

where E ~&~+
~

= [M* +(lkl+ lql ]' and I, 's are the same as I, 's with the replacement M* —+M&.

The integration over lql and v can be done by using polar coordinates. The imaginary part of the nucleon self-energy

comes from the second integral of (24) only because II (q) is real on the imaginary q axis. It is apparent that ImX&

changes sign at k * =(kz+ M* )
' so that the chemical potential is still the same as the MFA result

p=(kF+M* }'~ +g coo. This is an artifact of using the MFA nucleon propagator in the evaluation of the nucleon
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self-energy. In general, the chemical potential may be determined from baryon number conservation.
Note that the Lorentz structure of the nucleon self-energy from the pion-ring series is of the general form (1):

+77 +7Ts+ yo+%~0 ~ 1 +ST U

N N N (26)

The total nucleon self-energy is the sum of the self-energy of the MFA and the above self-energy from the pion-ring
series:

X~(k) =6~ '(k) —G~ '(k),
= G '(k) —G* '(k)+ GJv '(k) —G~ '(k),

=X~(k)+X~(k),

where X~(k)= —g Po+y g„coo.

(27)

(28)

(29)

IV. INPUT PARAMETERS

We evaluate the nucleon self-energy X& explicitly with the parameters determined by the nuclear matter saturation
properties. This provides an idea of how the dynamics of the nucleon changes in the presence of the pionic medium po-
larization.

First, we discuss how the input parameters are determined. The energy density from the pion-ring series "" is

d k.'"s= ' f——" "
[in[i —D'.(k)11(k)]+D„(k)II(k)]+8:".

2 (2ir)"
(30)

We add this pion-ring energy density to the mean-field energy density (6 " of Ref. 4). Then the total energy density is
minimized with respect to the scalar mean field or M*. Phenomenological parameters g' and A (see Appendix) are tak-
en as conventional values g'=0. 7 and A=1 GeV. ' *' However, the dependence on the cutoff A is rather delicate, and
A= 1 GeV is favored by the stability and the incompressibility of nuclear matter. The parameter g has been suggested
to be 1 ~ g ~ 0 from theoretical or phenomenological considerations. ' The other parameters in the theory, m& and g„,
are adjusted to the saturation properties of nuclear matter: The binding energy per nucleon has a maximum value of
15.76 MeV at k+=1.3 fm

For the case of /=0, g'=0. 7, and A= l. 15 MeV, which reproduces the density dependence of the binding energy
very well with the resulting incompressibility being around 200 MeV, we have (at k~=1.3 fm ') M*=0.95M,

m& =2815 MeV, and g =8.844. These are the values of the input parameters we use to calculate the nucleon self-

energies. Figure 3 shows the kF dependence of the binding energy of nuclear matter. In Fig. 4 the pion-ring energy and
the scalar mean-field energy are shown separately. The saturation of nuclear matter is achieved adding the co mean-Geld

energy to the short-dashed curve of Fig. 4.
Next, we mention that our method to include the short-range correlation effects in calculating the energy density of

nuclear matter differs from the nonrelativistic formalism. In the nonrelativistic approach, the pion propagator is re-
placed by the one-pion-exchange potential in momentum space. The short-range correlation effects may be included in
different ways, one of which is to replace the one-pion-exchange potential by the effective particle-hole interaction
V,s(k) in the pionic channel (diagonal in isospin space for symmetric nuclear matter):

1
I

V, (k) +
k —m k

(31)

Then substituting the nonrelativistic pion self-energy Ii~a(k) for II(k) in (30) leads to the conventional ring series
which might be divergent due to the zero-momentum repulsion if D (k)II(k) (—1. '

In our approach, we consider that the e mean field simulates part of the repulsive short-range baryon-baryon interac-
tion. The inhuence of the short-range repulsion on the pion propagation is also included in an analogy with the nonre-
lativistic treatment of the pion dynamics. Then our pion-ring energy rejects the effects of the short-range repulsion as
follows:

I I

in[1 —D (k)11(k)]+D (k)II(k) =ln 1 —Do(k) — 'II (k) + D (k) — II (k)
t

I— in i + g, 11'(k) — , 11'(k) +D'.(k)11'(k)
k k 1+(g'/k~)II (k) (32)
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FIG. 1. Nucleon self-energy diagrams. (a) Contribution of

the intermediate m.-lV: Xz . This includes the lowest-order ex-
change contribution X&,„. (b) Contribution of the intermediate

X

FIG. 3. kF dependence of the binding energy of nuclear
matter.

If we identify D (k) —g'/k as V'„, then the difference
between our pion-ring energy and the conventional pion-
ring energy is that the diagrams with fewer than two pion
propagators (Fig. 5) are not included explicitly except the
exchange diagram. In the presence of the mean field of co

mesons, including these diagrams would be wrong since
they are caused by the co-meson effects already included.

V. RESULTS

Now we discuss our numerical results. We are espe-
cially interested in the quasiparticle properties. Thus it is
informative to look into the energy dependence of X&
near the Fermi surface [i.e., at ko=p=(k~+M*
+g~~o 1.

From Eqs. (24) and (25), it is apparent that the Lorentz
structure of the nucleon self-energy at ko =p is given by
(y k*+M") for XP and mostly by (y k*+Mz) for
X~ . This implies that both the scalar part Xz' and the
vector part X~ are attractive and !X~ ! )!X~'!.Thus,
combined with X&, the total real nucleon self-energy be-
comes roughly X&=50' —100 MeV at k+=1.3 fm

In Fig. 6(a), !ReX&'(ko, kz)! is shown as a function of
ko for k+ = 1.3 fm '. Note that the derivative of
!ReX&'(ko,k~)! with respect to ko has a minimum at
ko =p, which is a consequence of the nucleon
propagator's analytic structure and a well-known result
in the dynamic shell model. ' However, the ko depen-

ImX~(ko, !k!) =ak(ko —p) e(IM —ko) . (33)

Here a& measures the spreading of the quasiparticle spec-

0 I
I

O

C3

c: 0 5
L
QP
CL

dence of ReX& is so strong that the spectroscopic factor
or quasiparticle strength Zt, ( (0.5 for k+=1.3 fm ')

F
becomes too small. It should be recalled that most calcu-
lations in the conventional approach result in ZI, =0.7

F
for k~=1.3 fm '. ' The small Zk means that a nucleon

F
(X) in the nuclear medium has a significant chance to be
in a 1VX-hole or 1VA-hole state. Therefore, the strong en-
ergy dependence of ReX& makes it necessary to keep
ImX&, which might be important for realistic calcula-
tions of the observables. It is worthwhile to mention that
most of the energy dependence comes from X& as is
known in the nonrelativistic calculations.

Figure 6(b) shows the result for !ImX~(ko, k~)!. The
imaginary part of the nucleon self-energy vanishes at
ko =p, if the nucleus is stable. At ko =p it behaves as

N, 6

7r 0 0 0
r~q) e- --- — ----- + IT

--- + H ---+ -"
g gl

Ql

LLJ f.5
kq(fm ')

FIG. 2. Modification of the form factor due to g' correla-
tions.

FIG. 4. Pion-ring energy versus scalar mean-field energy:
The long-dashed curve is the scalar mean-field energy, the solid
curve is the pion-ring energy, and the short-dashed curve is the
sum of the two.
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0

~ ~ ~II H +

FIG. 5. Diagrams for repulsive short-range interaction ener-
gy. These diagrams, present in the nonrelativistic approach, are
absent in our approach because they are included in terms of
the co mean-field energy.

trum (or decay rate of the quasiparticle). Again, the in-
termediate 6 propagation does not contribute to the
imaginary part of the nucleon self-energy.

VI. DISCUSSION

Now we discuss the limitations and possible improve-
ments of our approach. First, we should mention that
the above nucleon self-energy was obtained by replacing
the full nucleon propagator with the MFA nucleon prop-
agator. Although the mean field is determined by a vari-
ational method, it does not include the complete pionic
dressing of the nucleon propagator.

The strength of the self-energy from the pion ex-
changes is larger than 10% of the nucleon mass for
kF ~ 1.3 fm . Thus the nucleons move in rather strong
pion-exchange-induced potentials. These potentials are
not as strong as those of the Walecka model. More im-

portantly, the self-energy is strongly energy-dependent,
which means that the quasiparticle approximation may
not be valid at high densities. Then it may be necessary
to keep ImX& in the calculation of the pion and nucleon
self-energies.

The net result is that self-consistency corrections seem
to be important. To be self-consistent, the input propaga-
tors appearing in the nucleon self-energy diagrams should

I

E

0.5—
LI

O

p z

(b)

v kF+M" +g~tu

k (fm '}
FIG 6. Nucleon self-energy at the Fermi surface. (a) The real

part of the nucleon self-energy:
~
ReX~(k, kF ) ~. (b) The imagi-

nary part of the nucleon self-energy: ~ImX~(k, kF) ~.

be equivalent to the output propagators resulting from
self-energy calculations. Carrying out the fully self-
consistent procedure would require an extremely ela-
borate calculation, because treating the important k"
dependence requires the determination of X&(k) at each
k". There are also problems associated with avoiding
overcounting. Moreover, the phenomenological parame-
ters (g', A) are not well understood yet. This is a neces-
sary step before making detailed self-consistency calcula-
tions.

Thus we limit our discussion to the qualitative aspects
of self-consistency. A commonly used approximation is
to neglect the k" dependence entirely. This may be
reasonable to calculate the correlation effects due to co ex-
change, ' but is less accurate when one calculates the
strongly energy-dependent pionic correlations.

The important issue is how to treat the energy depen-
dence more consistently in a practical way. In this re-
gard, we follow the procedure in Ref. 7 and the represen-
tation (14) in the quasiparticle limit is informative. If we
use this nucleon propagator in the calculation of the pion
self-energy, the main effects would be the suppression due
to the spectroscopic factor Zk ( & 1) and enhancement
due to the M ( &M*). Thus one may expect the simple
iteration with constant values for X~ and Xk would be
working. Here X&=Xz+ y X~. Guessing the input
values for X&, X&, and Zk, we evaluate the pion self-
energy and then the nucleon self-energy at

~
k

~

=k~,
where the quasiparticle limit is exact. When the output
values for X~, X~, and Zk coincide with the input values,
the self-consistency is achieved.

However, so far as we have checked, the above itera-
tion procedure does not converge for kF ) 1.4 fm '. The
nonconvergence of the direct iteration method has al-
ready been observed in the self-consistent Hartree-Fock
calculations for high densities (p+2po) '' . In our case,
the main reason for the failure of the iteration method
seems to be the oversimplifying of the momentum distri-
bution of the nucleons.

While the momentum distribution of nucleons is a Fer-
mi sphere in the mean-field approximation, it is modified
by the interaction through pion exchanges. In the quasi-
particle limit, the momentum distribution is still a step
function 0(p Ek(+)), which is an a—rtifact of the assump-
tion ImX&~0. Keeping the imaginary part of the nu-
cleon self-energy results in the leak out of the momentum
distribution above

~
k

~

=kF. Thus Z„& 1 becomes con-
sistent with the baryon number conservation. In other
words, the energy dependence of the nucleon self-energy
requires keeping ImX& to get the correct momentum dis-
tribution of nucleons. Hence there is definitely more
work to be done in this direction.

Also, it would be important to investigate the effects of
the correlated 2~ exchanges, which are difTicult to com-
pute explicitly. For instance, with the idea that
correlations in the J=0, T=0 channel might be strongly
enhanced in the nuclear medium, Schuck, Chanfray, and
Norenberg' studied nuclear matter saturation by consid-
ering a two-pion pair-coherent state as an alternative to
the o. meson of the relativistic mean-field theory. In-
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terestingly, however, they found that the attractive mn in-
teraction does not play the major role in nuclear matter
binding properties. In this model, nuclear matter satura-
tion is achieved mainly due to the strong density depen-
dence of screening effects in the nucleon-hole and 6-hole
excitations. But the important co repulsion is not includ-
ed explicitly. Nevertheless, their result seems to indicate
the importance of summing the nucleon-hole and 6-hole
excitations to all orders (this corresponds to the pion-ring
series) and emphasizes the effects of the short-range
correlations between baryons.

Finally, there is an ongoing issue about pionic enhance-
ment in nuclei. An interesting concept is the pion excess
per nucleon, which is suggestive of overall pionic
enhancement in nuclei. Nonrelativistic calculations agree
with the presence of roughly one excess pion per ten nu-
cleons. Since more virtual pions may be associated

with the increase of sea quarks (correspondingly, anti-
quarks) in nuclei, the idea of nuclear pion excess has been
rather successful in explaining the slight enhancement of
the nuclear structure functions at low Bjorken x.
However, the recent E772 experiment at Fermilab claims
no nuclear enhancement of the antiquark distribution per
nucleon. The details of the nuclear pion excess in our
formalism and whether or not the idea of nuclear pion ex-
cess is compatible with this experiment will be discussed
elsewhere.

APPENDIX: ANALYTIC EXPRESSION
OF THE PION SELF-ENERGY

The effective ~XX and nXA interactions in the mean-
field background are as follows (see Ref. 10 for the dis-
cussion of the parameter g):

N y y"2..d„n N+ 8(m ),
2M*

g (g& y"y"g)T—8 mN+0(rr )+H.c.
L

The lowest-order pion self-energies Ho~(q) and H~(q) including the form factor F(q) =exp(q /A ) can be expressed in

analytic forms for certain kinematical regions.
Performing the angular intergration, we have

'2

no (q)=—

where

q F(q) M* Iy(q, kF, M*),
2M* q~

(q'+ 21k
I I q I' 4q "E*'—

I (q, k, M*)=f dlkl, ln
Ez* (q —2 k q 4q Ek*—

and with g& /2M =f~ /m
2

II ( )= —— F(q)q 9 2M* q M2 2

(M2 M e2 2)2
X' qM*—

4
(M*+Mg) —

q
I~(q, k~, M*)

4q

+ (q +M* —M—
& )[(M*+M&) —

q ]
—2M* lql

2

+8M* q (g —
g )+4M* q (g —1)+4M*M~q (2g —

g
—1) I, (k~, M*)

O2+
3

(4g —4g —1) I2(k~, M*)

where

(q'+M" M~+2lkllql )' 4—q "Ek'—
I~(q, k~, M*)= d lkl ln

Ek* (q +M* Mq —2lkllql ) 4q—Ek—
kp lkl2 k~Eq~ M „2 k~+Ef~

r, (k„M*)= f 'd lkl = — ln
o ~,* 2 2 M*
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I,(k„M') = f 'd
I 1

I Ek'

kF'Ek, ——M kE +—M 1n
8 F kF 8

For q (1—4M* /q ) ~ 0, I&(q, kF, M*) can be evaluated analytically:

kF —(x+
I~(q, k~, M*)=g (Ek E*—)ln

where

+E* 1n
E Ek +M —(x+k~

—2o.'+1n
kF+a+

1/2

a+= — ~q~+ q 1—1 o2 4M*
2

For q It 1+(M* —Mz)/q j —4M* /q I ~0, I&(q, kF, M*) can be evaluated analytically:

kF-
I~(q, kF, M*)=g (Ek Ep )ln— +El3 ln+ kF+p+ ~+

Ep Eq* +M* +f3+kF

El3 Ek +M* f3+kF—
—2P+ln

where

M* —M~ 02
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q
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