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Elastic difterential, total, and integrated reaction m
—- Ca cross sections are calculated in a

semimicroscopic model for incident energies from 65 to 292 MeV. Kinematical and binding e6'ects,

as well as Pauli blocking of 5 decay are calculated exactly on a shell-model basis, whereas shadow-

ing due to multihole channels is represented by means of a phenomenological spreading potential

with central and spin-orbit parts. Compared to lighter targets, the central 5-nucleus potential

scales to a very good accuracy with the target mass number. The strength of the potential has

smooth energy dependence up to T =241 MeV. Below 100 MeV a repulsive S-wave p term in the

optical potential is required in order to fit the experimental angular distribution. At 292 MeV corn-

parison with the measured elastic cross section favors a strongly repulsive spreading potential. The
distorted pion wave function is calculated and an interesting focusing eFect is observed at low ener-

gies. The total n—- Ca cross section is partitioned into elastic and reaction parts. Our calculation

agrees well with an experimentally extracted m+- Ca elastic-scattering amplitude at 0=0, but

disagrees for m . Finally, a pion "absorption" cross section is calculated and its physical interpreta-

tion is discussed.

I. INTRODUCTION

We present here a calculation of elastic differential, to-
tal, and integrated reaction cross sections for pion
scattering from Ca at intermediate energies. We use a
model that describes the process microscopically at the
one-hole level and provides a physically meaningful, al-
beit phenomenological, understanding of the role of mul-
tihole intermediate channels, most importantly of pion
absorption. The main aim of the calculation is to extend
to a wider range of nuclei the above approach, which, be-
cause of the technical complexity associated with its mi-
croscopic nature, has been limited so far to light nuclei.
Further, we would like to seek hints toward a more phe-
nomenological treatment of still heavier targets. A tech-
nically simpler approach, based for instance on the local-
density approximation, ought to become adequate for
sufficiently heavy targets.

Theoretical investigations of a variety of ~-nucleus re-
actions at intermediate energies (T =100—250 MeV)
have produced a consistent framework around the follow-
ing basic ideas: While the dominating presence of the 6
resonance renders the simple impulse approximation
inappropriate, it justifies at the same time a 6-hole door-
way state expansion which concentrates on the formation
and propagation of the 6 isobar. ' The isobar propagator,
and consequently the ~-X scattering amplitude, are

severely modified in the nuclear environment compared
to the ~-X interaction in free space. The rapid variation
of the scattering amplitude with energy implies that
kinematical and medium effects have to be treated with a
great deal of care. The sizable absorption cross section at
intermediate energies has to be rejected in the
modification of the free elementary amplitude, if a mean-
ingful connection between the total cross section (which
includes pion absorption) and the forward elastic ampli-
tude is desired. The type of corrections often introduced
to the static first-order optical potential (shift of energy
argument, angle transformation, etc. ) are clearly inade-
quate below resonance and do not have a clear physical
meaning even at resonance. In the light of the above con-
siderations, pion elastic scattering from various nuclei
(with 3 ~ 16) was studied on the basis of a microscopic
(in the sense of the shell model) calculation of such efFects
as frame transformation, nuclear binding of the 5, and
Pauli blocking of 6 decay. In the absence of a fundamen-
tal theory of the 5-X interaction, the remaining
nucleus physics has to be treated phenomenologically.
Elastic and inclusive inelastic scattering can be adequate-
ly described if one introduces a local (central+ spin orbit)
6 spreading potential whose strength varies little within
the above energy and mass-number ranges. ' The
strength of the spreading potential obtained from fits to
elastic-scattering data is consistent with the assumption
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that its origin lies mainly in pion absorption, which is, at
the energies of interest, the most important reaction
channel besides quasielastic scattering. Since the latter is
already accounted for in the microscopic part of the cal-
culation, a successful breakdown of the total
nucleus cross section into elastic, absorption, and
inelastic/charge-exchange contributions was obtained in
the above framework.

We extend here the semimicroscopic model of Refs. 1

and 2 to a heavier closed-shell nucleus, Ca. The calcu-
lation is interesting in its own right because it will estab-
lish whether or not the simple parametrization of the
phenomenological component of the model is adequate
for heavier targets. Even if the possibility of producing
satisfactory fits to the elastic differential cross section and
forward amplitude is established, it is only by producing
a meaningful interpretation of the parameters that the
phenomenology will acquire content. It is clear that a
reasonably smooth dependence of the fitted parameters
on energy and mass number would provide a strong indi-
cation that the chosen parametrization reAects faithfully
the relevant physics, but useful information would still
have to be extracted from the phenomenology. The
decomposition of the total m.- Ca cross section, per-
formed as for lighter targets, provides an important test-
ing ground of the model. Unfortunately, we are con-
fronted in this connection with a disappointing paucity of
published experimental data. It is our hope that they will
soon become available. The predicted total absorption
cross section will deserve particular attention, since it is
instrumental in the interpretation of the spreading poten-
tial.

The strength of the 6-hole model lies in the fact that it
has been able to consistently describe not only elastic and
inclusive inelastic pion scattering, but also various ex-
clusive inelastic and charge-exchange m-nucleus reac-
tions. In some cases [coincidence nucleon knockout, ex-
citation of the 1+ T=O (12.71 MeV) and T= 1 (15.11
MeV) states in ' C (Ref. 5)] failure of the model in its
original form has provided hints as to its extension. Pur-
suing these hints has led to valuable information about
the 6-X interaction in nonabsorption channels. In other
cases [2+ (4.44 MeV) excitation in ' C, single, and dou-
ble charge exchange] serious problems were encountered
and remain unsolved. Extending the existing calculations
to the calcium isotopes would be a very serious test of the
dynamics inferred from lighter targets. Calculations of
pion-induced longitudinal nuclear excitations and in-
clusive inelastic scattering will heavily refer to and sup-
plement the results of the present calculation. In fact, a
study of the former type of excitation has been reported
elsewhere. The inclusive inelastic reaction will require a
concerted theoretical and experimental effort, as neither
has been undertaken yet. The same holds for exclusive
reactions (e.g. , coincident nucleon knockout), which will
provide information about the 6-X interaction. Our re-
sults are also a necessary prerequisite for charge-
exchange calculations. The theoretical situation with sin-
gle charge exchange is seriously in need of clarification,
and an improved database from the mass region of Ca
would be highly welcome. A relevant calculation will be

reported elsewhere. Finally, double charge exchange
from various calcium isotopes (exclusive and inclusive)
possesses a great deal of inherent interest, and calcula-
tions which treat both the nuclear structure and the dy-
namics of the sequential process correctly are indispens-
able before any remaining dynamics can be identified and
understood.

It appears that a tedious microscopic calculation is
necessary in order to separate the well-understood and
calculable part of the physics from the important ques-
tions concerning the residual 6-N interaction and m ab-
sorption, where phenomenological constraints are need-
ed. The required effort increases rapidly with the mass
number of the target, and extra effort has to be exerted
for nuclei with open shells. ' The full calculation of the
elastic differential cross section from a nucleus such as

Pb would claim unreasonably long computational time.
Moreover, the large size of the 5-hole space needed in
that case and the expected slower convergence of the
doorway expansion" would make the physics less trans-
parent. The situation may, however, be less complicated
than it appears. We expect, namely, that the characteris-
tic features of the scattering of hadronic probes from
heavy nuclei (for which the radius by far exceeds the skin
thickness) is largely determined by simple geometrical
properties of the nuclear density, at least for moderate
momentum transfers (the situation is more complex at
forward and, probably, backward angles, but systematic
approximation procedures can extend our predictive
power into these angular regions). ' This still leaves
room for the dynamics relevant to each probe to
inhuence aspects of the elastic differential cross section,
such as the absolute magnitude, the precise position of
diffraction minima, etc. For instance, the nonlocality as-
sociated with 6 propagation and the medium
modifications to the primary ~-X interaction have to be
treated explicitly for quantitative comparisons with ~-
nucleus cross sections. We expect that medium correc-
tions become less sensitive to the shell structure of the
target and, consequently, a local-density description of
the in-medium m.-X amplitude becomes more accurate as
the target becomes heavier. Then a microscopic ap-
proach is redundant for sufficiently heavy targets, and a
calculation based on nuclear densities is expected to be
adequate for all practical purposes. A version of the ap-
proach described in the previous paragraph, in which,
however, medium effects were calculated in a local-
density approximation, has been applied to elastic pion
scattering off nuclei ranging from ' 0 to Pb. ' Such
calculations have the merit of a short computational time
and, if successful, they delimit the amount of useful infor-
mation that can be accessed via pion elastic-scattering
measurements.

Our calculation is also meant to act as a reference
point for simplified versions of the model, such as the
local-density approximation mentioned above (there has
been a simplified microscopic treatment, ' which, while
retaining much of the complexity of the full 6-hole calcu-
lation, incorporates the Pauli correction term in the local
6 self-energy and omits the b, spin-orbit potential). How-
ever successful, the local-density approximation is poorly



43 m- Ca ELASTIC SCATTERING 1913

justified for very light nuclei, and one has to consider a
target at least as heavy as Ca before the approximation
can be meaningfully tested by comparison with a micro-
scopic calculation.

It is clear from the above that we see our calculation as
a first stage of a broader theoretical endeavor, which will
hopefully motivate the respective experiments in the
many areas where they are missing. Given the scale of
the calculation involved, we would encourage the coordi-
nation of experimental and theoretical efforts.

The present article is organized as follows. In Sec. II
we present, in a self-contained but concise manner, our
formalism. The basic ideas underlying the model have
been discussed before, so we emphasize the points which
contribute to the improved efFiciency required for the ex-
tension to Ca. Section III contains the details of the
shell model used to describe the Ca target. In Sec. IV
we present our results for the elastic differential cross sec-
tion, compare them to a first-order static calculation, and
discuss the fitted parameters. In Sec. V we present and
discuss our results for integrated m- Ca cross sections.
Finally, in Sec. VI we bring together the conclusions of
the present and earlier 6-hole calculations and look at
the prospects of applications to other reactions.

II. FORMALISM

the ~-N t matrix due to the strong but nonresonant in-
teraction.

We define the scattering states of Ho
PO—HPo=Po(H +H„+Vb )Po as the solutions to the

equation

(E H—)lf„' +—') =0, (2.3)

where k is the asymptotic pion momentum and E the to-
tal energy. The elastic transition matrix for scattering
only via Ho is given, in terms of the above scattering
states, by

) =5k k 2'—5(E' E)Tg—, (2.4)

where

Tbs + & 4 '
l
H poD &gh (E )HDpo l

gk+ (2.5)

where k is the incoming and k '
( l

k 'l =
l kl ) the outgoing

pion momentum. Then, if coh =(k +m )'~, the total
energy is given by E =coh+ AMh +k /2AMht. (In what
follows all momenta are to be understood in the ~-
nucleus center-of-mass frame, unless otherwise stated.
The energy is measured with respect to the nuclear
ground state. ) Simple manipulations lead to the follow-
ing result for the elastic transition matrix, including the
resonant channel:

A. Formal derivation of the scattering amplitude

Our starting point is the Hamiltonian,

~Eh(E ) = ~DD ~ ~DP1~1 ~P1D

HDg(E ——
H1212) HgD ) (2.6)

8 =H +8„+Hh+ g (P, +F; )+ Vb +H ', (2 I) and the different terms in Eq. (2.6) are defined as follows:

where A is the target mass number and

=(P +m )' H„=AM~+ g (f';+V;) (2.2)

'N=HDp (E+ Hp p ) 'H—
p D,

VDp =HDp +HDTV(E Hgg) H—gp

(2.7a)

(2.7b)

are the free pion and target Hamiltonians, with obvious
definitions of pion and nucleon mass and pion momentum
operator. T, =P, /2Mht is the kinetic energy of the ith
nucleon and 0; is a single-particle shell-model potential.
The delta Hamiltonian Hz will be discussed in Sec. II C.
The mN —+5 transition is described by the operator F, .

is the first-order pion optical potential due to its non-
resonant (background) interaction with the target nu-
cleons. Finally, H' contains the residual 5-N interac-
tion.

Since H is symmetric in the nucleon labels, we can re-
strict ourselves in what follows to the Hilbert space of an-
tisymmetrized many-nucleon states. Following Refs. 13
and 15, we define the operators Po, P„and D, which pro-
ject on the pion-plus-nuclear-ground-state, pion-plus-
one-particle-hole-excitation, and delta-hole subspaces.
We also define Q=I Po P, D. We—now—intr—oduce
the doorway assumption, according to which all other
channels are reached from the elastic channel only via
the b, -hole channel. Formally, Hp p =A&p =0, where

A A A
Hp p =P1HPo etc. Vb by definition does not connect

1 0
to excited nuclear states: ebs =Po( V, '+ g;",tbs; )Po,
where V, is the ~-nucleus Coulomb interaction and tbg;

G, (E) ':E+ Hp —p Hp —g(E+ —Hgg) 'Hgp—

R~(E)=HDp (E+ Hp p ) 'Hp D—, (2.8)

and denote the sum of what remains of that term and the
last term by 2, . We refer to 2, as the "spreading opera-
tor."

Following a partial-wave decomposition, the resonant
part of the elastic transition matrix [the second term on
the right-hand side of Eq. (2.5)] is calculated from the ex-
pression

& ek' lHPOD~hh(E)HDPO leak

= g YIM(Q„.)V;„I(E)Y~M(Q„), (2.9a)
LM

(2.7c)

In Eq. (2.6) HDD describes the motion of the b, in the en-
vironment of A —I nucleons and %' the propagation of
the pion in the presence of the background interaction
between two successive applications of the resonant opti-
cal potential. Hence we refer to %' as the "rescattering
operator. " From the next term in 0 &h' we extract a
piece,
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g „,i(E)= 4(2L+1)

N, N' oct..

P, K, and k are here the momenta of the 6, the nucleon,
and the pion, x is the momentum in the m.-N center-of-
mass frame, and m, is the third isospin component of the
pion. The m-N center-of-mass momentum is given by

X&aN' ', LID&&(E)laN ',L&

(2.9b)

where k=(k, Qk) and V, (k) is defined by the fol-
7

lowing sequence of equations:

(~2+M2 )1/2

co =(k +m )'COk—

(2.12)

9', (k)=4m. I dr r 9'
& (r)ul (kr), (2.10a)

S= (Ex + cok )
—(K+k)

F, ( ):—V . ( )I'*M(fl„

d
(2m. )

(2.10b)

(q)=&aN ', LMIP'Iq& . (2.10c)

In Eq. (2.10c) the right-hand side denotes the matrix ele-
ment of the spatial-spin part F ' of the vertex operator F
[P=P 'F; see Eq. (2.11); the index i is redundant in this

case and is omitted] between a pion plane wave of
momentum q and third isospin component m, and a 6-
hole state of total angular momentum quantum numbers
L,M. We use an independent-particle shell model in
which b =(nz, iz„ja) and N=(nz, lz,jz), and assume a
closed-shell nucleus with N=Z. In Eq. (2.10a) uL is the
regular solution of the Lth partial-wave radial component
of Eq. (2.3), with asymptotic behavior ul (kr)
—sin(kr n ln2kr ,'L—m+gl —), w—here n =col, ZQ„e /k

1'~ OO

(Q e is the pion charge) and i)r is the background phase
shift, including the Coulomb contribution
argl"(L+ 1+in ). We now proceed to describe how the
difFerent terms in the b, -hole energy denominator [Eq.
(2.6)] are treated in our model.

fu„(~ )x"S +fv (k )(-k bK').S,— (2.13a)

f=—0 Ex+ &~f

a =&g(E~+co„)a—,

The 4X2 matrices 5 and T (m„m, = —1,0, 1) per-
S

form the N —+6 spin and isospin transitions, respectively.
The parameters f and a will be discussed later.

The operator defined by Eq. (2.11) is, however, not easy
to handle in configuration space, because of its complex
dependence [via v (~ )] on the nucleon momentum. We
eliminate the inconvenient K dependence by taking
K~&K& = —k/A, which can be thought of as averag-
ing out the intrinsic nucleon motion, in evaluating

I
a

I

[this is the only place where the "frozen-nucleon approxi-
mation" is made in the model described here; the approx-
imation is well justified in this case, because v (~ ), as a
smooth function of ~, is not sensitive to the precise treat-
ment of the nucleon momentum]. Then

B. Vertex function

The fundamental ingredient of our calculation is the
vertex function in configuration space, V~z & ~(r). The

7

latter was defined by Eq. (2.10b) in terms of the vertex
operator P which eff'ects the transition to the b;hole
channel. In free space F is parametrized as follows:

b=-
+N+ ~k /~

EN+
A

2 2 —1

(2.13b)

&PIPlkm„K&=(2~)'fi(P —K—k)g (~),

gm (a.)=i u~(~ )x"Sf'~, u (~ )=(I+~ /a )
P7Z

(2.11)

Here EN and 5 are defined as Ez and 5, but with K re-
placed by —k/A. K ' is the momentum of the nucleon
involved in the transition relative to the remaining A —1

nucleons.

In terms of these parameters, the vertex function in
momentum space, F, (k) [see Eq. (2.10c)], acquires

the form
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F~N i L~. (k)= g (
—1)" "&i g(~+mN)JN ~Nl j~jNLM &

mN

d K'
Xi f gz~M+ ~(K'+ k)u (k )(k —bK')SgN~ (K') (2.14)

Here g~ and gN are the momentum-space wave functions of the delta and the missing nucleon.
N

For an off-shell pion momentum q, we obtain F, (q) by an equation analogous to (2.14), with the exception
7

that we define the parameters f, a, and b in terms of the on-shell pion momentum k as in Eq. (2.13b). Since f, a, and b

depend smoothly on the pion momentum and the elastically scattered pion is never far off shell, one can safely use the
on-shell momentum in the definition of the parameters without unnecessarily complicating the calculation.F, (q) is employed in Eq. (2.10b) to derive the vertex function in configuration space. After some angular

7

momentum algebra, which is outlined in the Appendix, we obtain
1/2

+& +I. (2j ~+1)(2jN+ l)(2l&+1)
AN;L 4'( 2L + 1 )

t, l„L+1
X a( —1) +21N+1 &(L+1)(2L+3)

tz —,
' jz

.x(+ )

L+1 1 L

l~ L —1

+&L (2L —1) tz —,
' j~ -X~

L —1 1 L

—ib( —1) &2L + 1

l~ l~+ 1 L t~
X Q(lN+1)(2lN+3)

l~ t~ —1 L l~
QlN(21N ——1)

jw

3
2

L l~+1

Jx
z( —)

t~ —1 1

Jg tg 2 J~
Z(+)

L

(2.15a)

where

XI'+' =—h&'+'(iar) f dR R Rz(R )j&+&(iaR )AN(R )+ji(iar) f dR R A&(R )hi'+I(iaR )AN(R),
0

XI '—=h&'+'(iar) f dR R J7&(R)J'I &(iaR)RN(R)+j&(iar) f dR R Wz(R)h& &'(iaR )RN(R),
0

Z&'+ ' ——hi + '(iar )f dR R Az(R )j&( iaR )
tx

%N(R )

+j&(iar )f dR R Az(R)h&' I(iaR )
l

%N(R ), (2.15b)

Z&' ' =hf+'(iar) f—dR R Az(R)j&(iaR) + %N(R)
0 dR R

+jr(iar) f dR R %z(R )hI+'(iaR ) + %N(R) .
7"

Here hL+'=ihL ', where hL" is the standard spherical
Hankel function and, for a harmonic-oscillator (H.O. )
shell-model potential, Az and %N are obtained from the
shell-model radial wave functions by the transformation
a „~a,"„=[2/(3—1)]a„, (see the Appendix). Note
that 9'

& (r) is a real quantity.

(1+Ko/a ) M~ 1 0=3m2
4~ 2E =0.90, (2.16)

We perform the calculation with a =300 MeV/c and f
as obtained from the 6 width at resonance:
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with M~ = 1232 MeV/c,
2 [(M2 m 2 M2 )2 4 2~2 ]/4M2

E =(Ko+MN )', and I 0/2=55 MeV.

C. 5 propagation

HDD operates in the space of one 6 and A —1 nucleons
and has the form

HDD =D(H( +H„,)D, (2.17)

where H~ =—g;H~;, with Hz, =Pz; /2+S + Vz; being
the Hamiltonian of the isobar formed by excitation of the
ith nucleon (Pz, =P;+P ) and bound by a poten-
tial V~, , and H~ (—=g,H(„)),, with H(~ )),—= (A —1)MNI, +QJ&, (T, + VJ ), is the residual nucleus
Hamiltonian. In our overall center-of-mass system this
can be written as

P~;
HDD —D g + V();+H(~ )); D =Hq,

2p
(2.18)

where (M—= (A —l)MN+S /[(A —1)MN++S ], V~; is

the 6 binding potential, Pz,. is the momentum of the 6
with respect to the residual nucleus, and AI„(); is the
intrinsic Hamiltonian of the latter. For Vz; we assume a
potential of the form Vo[p(r)/p(0)] (where p is the nu-

clear density and r the position of the b, ) plus the
Coulomb interaction with the nuclear charge distribu-
tion. In practice [i.e., in Eq. (2.25) below], we also re-

place the many-body operator H [„,~; by the separation
energy of the ith nucleon.

D. 6 self-energy and Pauli correction

We consider a typical matrix element of the operator
R~ defined in Eq. (2.8) and insert a complete set of
particle-hole and pion states:

(5 v -'lR, (E)l5v-')

f d

(2m) (2coq)

2

(5'lFlqmt, v, ) E++e,—e, —AMN — —co
N

(qm„v, Ptl5) . (2.19)

Here greek indices specify completely the quantum state of a 6(5,5') or a nucleon (v, v', v, ), e and e are single-
1

particle energies, and the pion charge (m„m,') is given by charge conservation.
If we replace the sum in Eq. (2.19) by one over the complete set of single-particle nucleon states, X~(E) reduces to the

free b, self-energy, X~z '(E Hz ). If v'—S is the invariant energy of the ~X system, we have

—,'I ( S )
X(f)(v'S )=E (v S )

—i I (v'S )/2, E (&S )= — +v S
tan533( S )

(K +(X ) K()

(2.20)

where 533 is the m-K phase shift in the (3,3) channel. In fact, we expand to first order in H~, i.e. , we take
Xz '(E Hz ) =X& '(E) —[d—X(~ '(E) IdE ]H ~. This approximation is expected to be worse at lower energies.

To obtain the right-hand side of Eq. (2.19) we have to subtract from Xzf' the appropriate matrix element of the opera-
tor 5%' defined as follows:

&5'v -'IWV(E)15v-'&

d 2

f ", ' &5lPlq .. . & E +.,—.. AM„—
(2~)'(2~ )

" ' ' ( " 2AMN
&qm„v)lP l5& . (2.21)

We finally obtain the result

',I 15m(E)lSX-';I ) = —5„, 1+
AMN

32l +1
, q„„f "d ' '

Nl occ.

x f dr r V~N) (
(r')J'(, (qNN r )h('+'(qNN r) )V~ (, (r),

0 1 2r 1 ;I

'qNN = [(E 'EN FN AMN ) m]/[1+co—„/AMN ] (2.22)

Here we have introduced "relativistic kinematics" for the pion and neglected terms of order (q /2AMN ) . We refer to
5'N as the "Pauli correction term. "
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E. Rescattering term

A typical matrix element of the rescattering operator 'N can be calculated similarly to the Pauli term in the preced-
ing section:

k dr'r' dr r
0 0

(2.23)

where Ul+' is the irregular solution of the Lth partial-
wave radial component of Eq. (2.3), which asymptotically
behaves as vL(+ ~(kr ) —exp[i(kr —n ln2kr —,'Lm+i)—L )].

where r is the position of the h. The complex parameters
V, and VL& are to be fitted at each energy. %'e have al-

ready mentioned in the Introduction that we expect ab-
sorption channels to dominate Q-space medium effects.
To test this we have to relate the above parameters to the
pion absorption cross section (see Sec. V).

Assembling together the different pieces of the 6-hole
energy denominator, we obtain

G~(, (E)= E E~ (E)+—1 (E—)

~ Iy(E )M~ —'K —MV ——f',
p

(2.25)

where y(E)=1 dX&~'(E)ldE The abov—e fo.rm of Gaz
is used in Eq. (2.9b) to obtain the resonant part of the
elastic transition matrix. Of the different terms in the
resonant denominator, the matrix elements of %' and MV
are the most tedious to calculate. As can be seen from
Eqs. (2.22) and (2.23), however, these matrix elements can
be readily computed if the vertex function 7, (r ) is

1

known. Our strategy has been precisely to first calculate
and store the vertex function, thus achieving the im-
provement in efficiency (compared to previous calcula-
tions with the same model, but lighter targets) needed for
our Ca calculation.

F. Spreading potential

The spreading operator 2, incorporates the effect of
multihole channels and can be thought of as a complex,
nonlocal 6-nucleus interaction. This will give rise to a 6
self-energy as well as to a +X' vertex correction.
Motivated by experience from lighter nuclei, ' we assume
that for our purposes a local 6-nucleus potential ade-
quately represents the impact of the Q-space on elastic
scattering. In particular, we assume the form

V,„(E;r)

p(0) m'„r « p(0)

(2.24)

III. NUCLEAR STRUCTURE

We describe the Ca ground state by means of a single
Slater determinant of single-particle wave functions gen-
erated in a Woods —Saxon potential. The single-particle
potential [P; in .Eq. (2.2), from which we drop for our
purposes here the index i] is given by the expression

(~) (&)
V(r )

—V(v)f (&) (p)+ V(&)

m„r

(3.1)

where v stands for n (neutron) or p (proton) and f has the
Fermi form

I 1+exp[(r —R(& '2 '~ /a&" ][
with /=0, LS.' The Coulomb potential acts on proton
states and is that of a uniformly charged sphere of radius

Because of our detailed treatment of the nonstatic and
dynamical aspects of the scattering problem, the calcula-
tion is only feasible in the framework of an independent-
particle model, with a closed-shell ground state. It is
known, of course, that the s-d shell in Ca is not quite
closed, as the residual interaction produces substantial
configuration mixing. Thus, variation al calculations
yield up to —35% 2p-2h admixtures to the Ca ground
state, ' whereas long-range correlations (e.g., of the
random-phase approximation type' ) are needed to de-
plete the 2s proton shell and reduce the peak of p(r) at
r =0. Our choice of a closed-shell description will affect
the nuclear density at small radii, and will therefore have
consequences mainly for the central pion-nucleus partial
waves. Since our simple parametrization of multihole
effects cannot provide a completely adequate description
of the central partial waves, where the physics is intrinsi-
cally more complicated, ' we feel that the single Slater
determinant suffices for our purposes. Possible nuclear
structure deficiencies will be effectively absorbed in the
values of the phenomenological parameters.

The well parameters of the Woods —Saxon potential
( V(& ', R(& ', a(& ', R,h) are chosen so as to reproduce best
the "experimental" single-particle energies near the Fer-
mi energy (we use the values quoted in Ref. 21), as well as
other relevant experimental quantities, such as the charge
form factor and the rms radii of the charge, proton,
neutron, and matter distributions. In order to calculate
the charge density, form factor, and rms radius (r ),'h
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TABLE I. Well and H.O. parameters.

Vp

(Mev)
~LS

(Mev)
a0

(fm)
aLs
(fm)

R0
(fm)

RLS
(fm) (fm)

a osc

(fm )

Protons
Neutrons

—52.5
—50.0

—4.0
—4.0

0.52
0.65

0.65
0.65

1.32
1.32

1.1
F 1

1.02 0.258
0.261

from the shell-model nuclear wave function, we assume a
Gaussian charge distribution of the proton (rms radius
0.80 fm). The single-particle Hamiltonian is diagonalized
on a harmonic-oscillator (H.O. ) basis and the overall
center-of-mass motion is removed, assuming the nucleus
in the 1s orbit of a H.O. with A times the oscillator con-
stant [with the dimensions of (length) ] used in the ex-
pansion of the single-particle states. The well and H.O.
parameters used in our calculation are summarized in
Table I. Table II shows the single-particle energies calcu-
lated on the basis of these parameters. The rms radii are
displayed in Table III. There is reasonable agreement be-
tween the calculated and experimentally determined
quantities (fitting the single-particle energies of the
deepest-lying shells is only possible with a shell-
dependent well). Figure 1 compares the calculated
charge density with that extracted from the high-
precision measurement of Ref. 20.

We use the Woods —Saxon wave functions in all nu-
clear matrix elements of our calculation. For the single-
particle energies [e.g. , in the Pauli correction, Eq. (2.22)]
we use the "experimental" values listed in Table II. '

The Coulomb interaction of the ~ or the b, with the nu-
cleus is described using the analytic fit to the experimen-
tal charge density of Refs. 20 and 23. The same density is
employed in the calculation of spreading potential matrix
elements. Finally, the 6 states are expanded in the same
H.O. basis as the nucleon states.

IV. RESULTS AND DISCUSSION

In Figs. 2 and 3 we show the result of our calculation
of the m+ and m. elastic differential cross-section, respec-
tively, for various incident pion energies from 65 —241
MeV (solid lines). The strength of the central and spin-
orbit spreading potential was fitted to the experimental
data. At 65 and 80 MeV an S-wave p term of
strength 24 and 20 MeV, respectively, at the center of the
nucleus had to be added to the ~-nucleus optical poten-
tial in order to reproduce the measured cross section
beyond 50 (the curve labeled p was obtained by omitting
the p term). This repulsive potential emerges systemati-
cally in theoretical analyses of pionic atoms and low-
energy pion scattering (in Refs. 1 and 29 a p potential
with central strength 20—30 MeV was inferred from low-

energy pion scattering from ' 0 and ' C, respectively),
but its origin is not understood. The curves labeled FSA
are the same cross sections calculated in a static first-
order optical model (except at the lowest two energies,
where a second-order S-wave potential of the strength
quoted above was added).

There are qualitative features of the differential cross
sections which do not require an elaborate calculation to
be understood. Thus the diffractive minima are deeper
for m+ than for m. scattering below resonance, and the
situation is reversed above resonance. The minima are
deepest for both m+ and vr at resonance (T =163 and
180 MeV), where the strong vr Nscatte-ring amplitude is
most dominant and purely imaginary. The Coulomb in-
teraction and the real part of the elementary amplitude
tend to fill in the minima, and they are most effective in
this when they are both attractive or both repulsive (oth-
erwise their effects cancel). ' Taking into account the
fact that the real part of the m-N interaction is attractive
below and repulsive above resonance, the relation be-
tween the depth of the minima for m+ and ~ follows im-
mediately. The rate of falloff of the secondary cross-
section maxima with angle is also worth noting. This de-
pends very sensitively on the skin thickness of the target,
as can be seen from Fig. 4, where we present the result of
a simple calculation performed in the eikonal approxima-
tion: The larger the skin thickness, the more rapid the
falloff. Our full calculation of the same incident energy
will be discussed separately below, but a few comments
are in order here. First, the size of the forward cross sec-
tion is predicted within 20% of the measured value trivi-
ally on the basis of the elementary scattering amplitude at
O'. Second, the apparently good agreement between the
experimental and the eikonal angular distributions was
made possible by adjusting the rms radius of Ca. This
is a common procedure which results in the erroneous
impression that the physics is, after all, simple. By as-
suming a different target geometry according to the reac-
tion or energy at hand, one conceals precisely the non-
trivial dynamical effects that we are trying to probe over
and above geometrically determined properties of the
cross section. In the discussion that follows, the nuclear
structure is assumed to be given, as in the preceding sec-
tion.

TABLE II. Single-particle energies (MeV). "Experiment" as quoted in Ref. 21.
1/2 lp 3/2 lp 1/2 ld'" 2 I /2 1d 3/2

Protons

Neutrons

Theory
Experiment
Theory
Experiment

—32.5
—50+11
—38.6
—50

—24.9 —21.3
—34+6

—30.1 —26.5
—30 —27

—15.9
—15.5
—20.5
—21.9

—10.1
—10.9
—16.0
—18.2

—9.6
—8.3

—14.2
—15.6
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TABLE III. rms radii (fm). The matter distribution is
defined as p (r)= A [Zp~(r)+Np„(r)] and the mean square
matter radius as (r ) = A '(Z(r, )+N(r„)).

(r2 )1/2 (r2)1/2 ( 2)1/2 (r2 ) 1/2

Theory

Experiment

3.487
3.486'
3.476

3.395

3 393'

3.363

3.367'

3.379

3.380'

'From Ref. 22.
"From Ref. 23.

p(r) (fm ~ )

0. 10

0.08

0.06

0.00

0.02

0.00

r (fm)

FIG. 1. Experimental Ca charge density (Refs. 20 and 23)
compared to charge density obtained in independent-particle
model with the Woods —Saxon well parameters listed in Table I.

That the m- Ca cross section deviates in important
ways from the behavior expected solely from the target
geometry and the elementary amplitude becomes obvious
by observing the result of the static calculation (Figs. 2
and 3). The latter differs from the full calculation only in
the treatment of the resonant ~-N partial wave. The
magnitude, and more distinctly, the diffractive structure
of the cross section, are not predicted correctly. To accu-
rately describe the physics of the process, one has to al-
low for medium and nonstatic effects in the resonant
channel. There is sensitive interplay between these
effects, but one expects on simple grounds damping of the
forward cross section near resonance because of
broadening (this need not be true at very forward angles,
where Coulomb scattering dominates) and outward shift
of the diffraction minima, as a result of the nonlocality
associated with b, propagation (the pions see effectively a
smaller nucleus). We now discuss quantitatively the
medium effects inferred from the full calculation.

The values of the parameters V, and VLz used in the
calculation are listed in Table IV. The spreading poten-
tial was fitted to experimental data which originated with

different groups and machines, and one has to keep in
mind possible normalization inconsistencies. In cases
where different measurements were performed for the
same energy, there are normalization discrepancies of up
to —30% at forward angles (cf. Refs. 26 and 28 for
T =180 MeV). In other cases the measurements are
consistent with each other (cf. Refs. 26 and 27 at
T =116 MeV). The strength of the central part of the
spreading potential is practically the same at all energies,
except the lowest. The strength of the spin-orbit interac-
tion, on the other hand, appears to decrease with energy,
but it is difficult to interpret this tendency physically. In
order to compare the spreading potential obtained here
with that known from lighter targets, we remove shape
dependence by considering the volume integral of the
central and the surface integral of the spin-orbit part, as
was done by Horikawa, Thies, and Lenz:

f r2V~(r) dr, S—:f rVls(r) dr,
A —1 o

(4.1)

where V&(r) —= [Vo+ V, (E)]p(r)/p(0) is the full central
b, -nucleus potential (including the binding potential
defined in Sec. II C) with Vo = —51 MeV and

2 d p(r)+Ls(r) = VIS(E) d ()

[see Eq. (2.24)]. The energy dependence of V, is shown in
Fig. 5(a). We also show the values of the same parame-
ters quoted in Ref. 2 for other targets, but a quantitative
comparison can only be made meaningfully between the
integrated quantities defined above. In Fig. 5(b) ReQ,
ImQ, and ReS, with the parameters resulting from a y
fit at T = 180 MeV, are compared to the same quantities
obtained in Ref. 2 for lighter nuclei. The error bars
shown for Ca correspond to a 20% allowance above the
minimum y . We note the smooth A dependence of the
central 6-nucleus potential. The magnitude of the spin-
orbit term is consistent with that of the lighter nuclei, but
the real and imaginary parts show separately a certain A
dependence (which is not stronger than the typical varia-
tion with 3 of the nucleon spin-orbit interaction in shell-
model calculations). Given our poor understanding of
the origin of this term, as well as the different spatial
dependence assumed here in comparison with earlier
work [cf. Eq. (6) in Ref. 2 with the second term on the
right-hand side of Eq. (2.24) above], there is little we can
say at present about this A dependence. The most im-
portant conclusion here is that the same phenomenology
suffices to describe multihole medium effects in
intermediate-energy elastic pion scattering from targets
with mass numbers ranging from A =4 to A =40 (work
aiming at the application of the model to targets between
A = 16 and 40 is currently in progress).

We saw that at low energy a simple (admittedly poorly
understood, but familiar from a variety of other studies)
addition to the vr-nucleus optical potential (S-wave repul-
sion) suffices to remedy the deviation from the observed
angular distribution. In contrast to this, the situation is
less clear on the high-energy side of the resonance. At
T =292.5 MeV the angular distribution around the first
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FI~ 2 (a) ~+-40ca elastic differential cross section for T„=64.8 80, and 116 MeV: full calculation (solid curve), the same„but
without the g-wave repulsion (dashed curve) and static first-order optical model calculation (dotted curve). The data are from Refs.
24 (64.8 MeV), 25 (80 MeV), and 26 (116 MeV). (b) The same as in (a), but for T =163.3, 180, and 241 MeV. The data are from

Refs. 27 (163.3 and 241 MeV), 26 (180 MeV, 0 (77'), and 28 (180 MeV, 0) 77 ).

minimum can be best fitted for both ~+ and vr with the
parameters Vo = 54 —42i MeV and VL~ =0. This parame-
ter set produces the solid curves in Fig. 6 (cf. the dotted
curves, which are obtained with the spreading potential
parameters fitted to the cross section at resonance; note
incidentally that it is basically when we try to fit the mea-
sured ~ cross section that we are forced to depart from
this set of parameters). The strong repulsion implied
here cannot be excluded on general physical grounds. In
fact, it is reminiscent of a similar problem encountered at
energies above 300 MeV with ' O. ' If we accept the
above repulsive potential as an accurate representation of
the physical reality, we have to conclude that the origin
of the spreading potential becomes significantly different
above resonance, which in turn implies new and possibly
interesting 6-nucleus physics at these energies. It cannot
be excluded, on the other hand, that the strongly repul-
sive spreading potential makes up for unknown
deficiencies of our model, which only become manifest at
higher energies and which are not necessarily related to
excitation and propagation of the A. We have therefore
investigated the quality of fits that are possible while in-
sisting on a central term that does not significantly devi-
ate from the one inferred from the lower energies. It
turns out that the spin-orbit term can be used, to some
extent, as a handle on the angular distribution. As Fig. 6

shows (the dashed curves are typically among the best fits
obtained under the above constraint) one cannot avoid an
enhanced energy dependence of the phenomenological
parameters (in this case, of the spin-orbit potential: For
the high angular momentum 6's produced at large in-
cident energies, the I.&.S& term enhances significantly
any variation in the strength of the spin-orbit interaction;
in peripheral partial waves it is known that the 6's are
produced preferentially in states with spin and orbital an-
gular momentum aligned). At this point we would rather
refrain from drawing premature physical conclusions
from the situation we have described.

Another problem at T =292.5 MeV concerns the rel-
ative deviation of our calculation from the measured
cross section for ~+ and m . We seem to systematically
overestimate the m+ and underestimate the ~ cross sec-
tion. This is particularly serious at forward angles, where
the central part of the spreading potential is practically
our only handle on the size of the cross section. The
latter is, however, fairly insensitive to the strength of the
central term, and varying the spreading potential cannot
resolve the puzzle. It is natural to enquire if our inability
to reproduce the apparently simple Coulomb difference
between the ~+ and m. cross sections is related to our
treatment of the Coulomb interaction: We introduce it
collectively at the ~ (or b;) nucle-us level, rather than at
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the ~- (or 5-) nucleon level. This means that, although
we take into account the most important internal
Coulomb correction, namely, the one to the resonant ~-X
scattering amplitude, we neglect similar corrections in
the background channels. Given the smooth energy vari-
ation of the scattering amplitudes in all m-X channels, ex-
cept the (3,3), we do not expect this to pose any serious
problem away from threshold and up to the highest ener-

gy of interest here. It is certainly hard to think of an im-
provement to our approach which will not involve an ap-
preciable amount of conceptual and computational effort.

We have chosen to represent multihole effects in terms
of a local 6-nucleus potential, which does not always
reflect the full details of the real physics. For the purpose
of describing a coherent process, such as pion elastic
scattering, a global representation of this kind is largely
suScient. Elastic scattering for moderate momentum
transfers appears to convey no information about mul-
tihole channels over and above the global features con-
tained in the spreading potential. This is not the case for
large momentum transfers (9) 100' at resonance), where
the differential cross section is systematically underes-
timated for elastic, as well as inelastic, pion scattering to
longitudinal excitations of light targets. ' This suggests
that the central ~-nucleus partial waves are inadequately
described by the spreading potential phenomenology.
We are aware of only one large-angle measurement of

Ca scattering at T„=163MeV. We compare it to
our calculation (with the parameter set given above) in
Fig. 7. The familiar problem seems to persist, but only
above 140. We can only encourage more measurements
of this kind as a means to gain further insight.

We have already referred to the calculation of Ref. 14,
where a local representation of the Pauli correction to the
6 self-energy was assumed. This allowed the authors of
Ref. 14 to include the Pauli correction in a single 6 self-

energy, together with what we refer to as the "spreading
potential. " Our point of view has been that, to the extent
that this correction is well understood and microscopical-
ly calculable, we would rather separate it from multihole
eff'ects (e.g. , pion absorption). We thus calculate the Pau-
li correction explicitly and fit phenomenologically the
effect of more complicated channels. After all, it is these
latter channels that we would like to learn about.
Without giving up this point of view, we think it is still
interesting to investigate whether the detailed properties
of the Pauli correction (in particular its nonlocal nature)
show up explicitly in the elastic cross section. If, on the
contrary, it can be replaced by a local 5 self-energy, we
would like to know how the latter compares with the
spreading potential. We have therefore switched off tem-
porarily the Pauli term in the resonant denominator and
refitted the spreading potential parameters (which now
incorporate the eff'ect of the Pauli correction). We found
that fits of the same quality as before can be obtained
(Fig. 8). We emphasize that by no means does this make
the full calculation superAuous, as microscopic evalua-
tion of the Pauli correction is still needed if one wishes to
learn something about multihole channels. The most in-
teresting difference of the new parameter set from the old
one is a reduction in the magnitude of the imaginary part
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FIG. 3. (a) The same as in Fig. 2(a), but for ~ . The data are
as in Fig. 2(a). (b) The same as in (a), but for T„=163.3, 180,
and 241 MeV. The data are from Refs. 27 (163.3 and 241 MeV),
26 (180 MeV, 0 & 71'), and 28 (180 MeV, 0) 71 ).
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FIG. 4. ~+- Ca elastic differential cross section for T =292.5 MeV, calculated in the eikonal approximation assuming a ground-
state matter distribution of the Fermi type p(v)= po[1+exp[(r —Rap '~')I'a ] I

~. The data are from Ref 26.

ok+'(r)=4' y i UI(r)YLM(nk)YL~(Q„),
L, M

U~(r)=uL(kr)+ 1

X g I dr'r' gL(v, v')V~, (r')
6,b. '

N, N' occ.

(4.2a)

X (b, 'X' ';L iGqh(E)ib, X ', L )

X9', (k), (4.2b)

COk

gl (r, r') = — 1+ kul (kr ( )Ur'+ '(kr ) ),

(4.2c)

TABLE IV. Spreading potential parameters (in MeV).

~zs

65
80

116
163
180
241

12—42i
6—68i
6—66i
4—65i
3 —65E'

—2 —66i

—20—8i
—15—6i
—11—5i
—4—6i
—4—6i
—5 —6i

of the central 6-nucleus interaction by 10—20 MeV. This
should be seen as a rough indication of the size of the
Pauli quenching to the 6 half-width.

The distorted pion wave function displays interesting
features which are worth discussing. The distorted wave
function is defined by

where k, V, (r), and V & (k) are defined as in

Sec. II [Eqs. (2.23), (2.10a), and (2.15a), respectively]. uL

and UL+' are the regular and irregular partial-wave solu-
tions of (2.3), which are also familiar from Sec. II.

In Fig. 9 we show the probability profile ~VI,+'(r)~
parallel to the incident (z) direction for three different
values of the impact parameters b—:~b~, where r=(b, z).
The undistorted wave function is normalized to unity in
unit volume. We see distinctly the Coulomb differences
among the three pion charges. The most impressive
feature of the wave function at the low energy [T„=65
MeV, Fig. 9(a}] is the strong enhancement at the back
side of the nucleus near the incident direction. The
enhancement of the probability density for small values
of the impact parameter is compensated for by a de-
pletion at large values of the same parameter. Pion tra-
jectories are obviously strongly bent and focused behind
the nucleus. This results in the distortion enhancement
observed in the context of different inelastic processes at
low energies (see, e.g. , Fig. 3 of Ref. 3). In the case of a
double-scattering process like pion double charge ex-
change, the effect can be significant [the forward
' C(sr+, n )' 0(g.s.} cross section is enhanced by more
than a factor of 2 at T„=50 MeV (Ref. 7)]. We under-
stand this focusing as the consequence of the attractive
P-wave ~-N interaction, combined with the reduced opti-
cal absorption at these energies. Also shown in Fig. 9(a)
is the probability profile of vr when we remove the
repulsive p term from the optical potential. We recall
that agreement with the measured angular distribution
requires such a term at the energy shown in Fig. 9(a), but
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FIG. 5. (a) Energy dependence of V, [Eq. (2.24)]: Ca (squares, this work), He, C, and 0 (triangles, circles, and crosses, respectively,
Ref. 2). (b) Mass number dependence of ReQ (open triangles), ImA (solid triangles), and ReS (circles). For the definition of 0 and S
see Eq. (4.1). A =4, 12, and 16 are from Ref. 2; A =40 is from this work.

what interests us here is another way of looking at this
term, namely, through its inhuence on the focusing effect.
We see that the S-wave repulsion reduces the e6'ect (the
repulsive interaction bends trajectories away from the in-
cident direction and partly cancels the focusing), but is
obviously not sufticient to destroy it. At resonance there
is less focusing, but there is still a distinct rise in the pion
probability behind the nucleus (which would not be possi-
ble in the context of the eikonal approximation, but is
also seen in standard static optical model calculations).

after appropriately subtracting the divergent Coulomb
contribution. More precisely, we define the total cross
section o.„,by subtracting from the attenuation cross sec-
tion tT(A) (i.e., the cross section due to the full m-nucleus
interaction, which is measured by subtacting from the in-
cident Aux the pions transmitted into a solid angle Q
around the incident beam) the point Coulomb contribu-
tion, as well as the interference of the latter with the
short-range vr-nucleus interaction (the Coulomb correc-
tion due to the finite extension of the nuclear charge is in-
cluded in the short-range interaction), and then extrapo-
lating to Q=O:

V. INTEGRATED CROSS SECTIONS

The ~-" Ca total cross section is obtained from the
forward-scattering amplitude via the optical theorem

ot t
—lim

Q~O

(5.1)



1924 K. JUNKER, T. KARAPIPERIS, AND M. KOBAYASHI 43

where fc,„, and f~ are the point-Coulomb and short-
range parts of the m-nucleus elastic-scattering amplitude,
respectively. In terms of partial-wave amplitudes the to-
tal cross section is given by

cr„,= g (2L+1)lni.AI
4~

L

AL =CD, C —= — (4~) 1+
N

(5.2a)

(5.2b)

do/d 0 - (rob/sr )

1000

100

10

where A, L is the scattering amplitude in the Lth partial
wave and V'L is related to T [Eq. (2.5)] in the same way
that T„„Lis related to the resonant part of T [Eq. (2.9)].

The total cross section defined above has the disadvan-
tage that its extraction from the measured quantity o.(Q )
involves explicitly the model used for calculating f~. On
the other hand, one can define the quantity cr „,(Q ):

0„„(Q)=o (Q) —f dQ'l fc,„il, (5.3)
A'& 0

0. 01

0.001
20 40 60 80

1

100

whose experimental determination is effected without
reference to any particular model for the short-range in-
teraction. o„,(Q) can then be used to determine the
Coulomb-modified hadronic amplitude at 0', fz(0). '

Ca forward-scattering amplitudes have been deter-
mined according to this scheme, and are compared to
our calculation in Fig. 10. The precise procedure em-
ployed to determine the forward amplitude contains after
all some residual model dependence [which was intro-
duced in order to facilitate convergence in the fit to
cr„,(Q)], but we refer the reader to Refs. 31 and 32 for
detailed discussions. We obtain our forward amplitude
from

ANGLE (deg)
f&(0)= g (2L+1)e AL,

L
(5.4)

do/d 0: (mb/sr) where oL are the (point-) Coulomb phase shifts. Also
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FIG. 6. (a) ~ - Ca elastic differential cross section for
T =292 5 MeV: Full calculation with V, =54—42i MeV,
VLz =0 (solid curve), V, =4—64i MeV, VL& = —2+6i MeV
(dashed curve) and V, = —6—66i MeV, VL& = —5 —6i MeV
(dotted curve). The data are from Ref. 26. (b) The same (calcu-
lation and data) as in (a), but for m.
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FIG. 7. ~+- Ca elastic differential cross section for T = 116
and 163.3 MeV. The data are from Refs. 26 (116 MeV}, 27
(163.3 MeV, 0( 100'), and 30 ( T = 163 MeV, 0) 100').
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FIG. 8. ~+- Ca elastic differential cross section calculated with the Pauli term switched off: V, =2—56i, —4—46i, and —8 —46i

MeV and VLz= —8, —6—4i, and —8 —4i MeV for T =116, 180, and 241 MeV, respectively. The data are as in Fig. 2. (b) The

same as in (a), but for ~ . The data are as in Fig. 3.

~reac—=~tot ~et~ ~et= f d+lf~ I
(5.5)

shown in the same figure is the result of a comprehensive
phase-shift analysis of ~—- Ca scattering. We see that
our calculation agrees well with the phase-shift analysis
in all cases and they both agree with Ref. 32 for ~ . This
is not the case for ~, where the forward amplitude
presented in Ref. 32 exhibits a very different energy
dependence from either our calculation or the phase-shift
analysis.

Having defined cr„t as in Eq. (5.1), we proceed to define
the integrated elastic and reaction cross sections, o.,&

and

0„„,respectively, as follows:

We display the total, integrated elastic, and reaction
cross sections in Fig. 11. There is good agreement be-

tween our result and the phase-shift analysis (see Fig. 5 of
Ref. 33).

The above three integrated cross sections are unambi-

guously extracted from the elastic-scattering amplitude.
Any further partitioning of the reaction cross section in

components related to specific reactions, such as inelastic
scattering or absorption, requires additional assumptions
and should be taken with the appropriate degree of cau-
tion. In the case of the lighter targets the integrated ab-

sorption cross section was related to the spreading poten-
tial:

cr,b,
= g (2L+1)tr,b, L

L

o, , = C g P*, Irn(h'N' ',L
I V, (E;r)Ib,X ';L )I3

N, N' occ.

(5.6)

/3
—= y (hX ';LIC „(E)Ib'X' ';L)V, (k),

6', N' occ.
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where C and 9'
l (k) were defined in Eqs. (5.2b) and

7

(2.10a), respectively. The absorption cross sections for
He, ' C, and ' 0 calculated according to (5.6) agreed

qualitatively with experiment. ' This gave support to
the notion that the imaginary part of the spreading po-
tential is mainly due to the inelastic process AX—NN,
which mediates pion absorption (or production) via the
resonant channel.

At the energies of interest here, absorption and quasi-
elastic scattering are known experimentally to be by far
the most important m.-nucleus reactions (with absorption
claiming an increasing fraction of the reaction cross sec-
tion as one departs from the resonance toward lower en-
ergies and declining rapidly above resonance). Quasielas-
tic scattering is already present in the reactive content of

the lowest-order optical potential (equivalent in our mod-
el to neglecting the spreading potential), but absorption is
not. In this sense the spreading potential is necessary, if
our full optical potential is to account for shadowing due
to pion absorption. Quasielastic scattering and pion ab-
sorption are subject, however, to mutual shadowing in
generating the inelasticity of the spreading potential, and
the imaginary part of the latter cannot be in general
directly related to the absorption cross section (see Ap-
pendix A of Ref. 34 for a detailed discussion). Mutual
shadowing of the reactive channels is weaker for light nu-
clei and low energies, where multistep inelastic processes
are less common. Then the imaginary part of the spread-
ing potential is possibly related in a simple way to pion
absorption and the success of the theoretical predictions

b =Oj
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FIT&. 9. (a) Probability profile of the distorted pion wave at T„=65 MeV, along the incident (z) direction, for diA'erent values of
the impact parameter b: m. + (solid curve), m (long-dashed curve) and m (short-dashed curve), all with a p term of central strength
Bo =24 MeV, and m (dot-dashed curve) with Bo=0. The spreading potential parameters are as in Table IV. The dotted curve
shows the nuclear density profile for each value of the impact parameter. (b) The same as in (a), but for T =180 MeV: sr+ (solid
curve), m (long-dashed curve), and ~ (short-dashed curve), all with Bo =0. The spreading potential parameters are as in Table IV.
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nance region. Since we are not aware of any measure-
ment of the pion absorption cross section on Ca, we es-
timated it by interpolating between the nearest nuclei for
which data are available. With all due caution that
such a comparison to experiment entails, o,b,. appears to
over- (under-) estimate the absorption cross section below
(above) resonance, with a discrepancy by a factor of 2 at
the two ends of the energy range considered. One can ar-
gue, along the lines of the previous paragraph, that the
enhanced probability of multistep processes in Ca renders
the identification of o. ,b, with the absorption cross sec-
tion untenable. A little more surprising is the fact that
the interpolated data appear to peak at a significantly
higher energy than the other integrated cross sections or
the fundamental m+d ~pp cross section. While we ap-
preciate the experimental difhculties, we believe that a
measurement of the a absorption cross section on Ca
would be highly instructive.

VI. CONCLUSION AND OUTLOOK

0
100

f

200 100

7~ (MeV)

l

200

FIG. 10. Real and imaginary parts of the Coulomb-modified
hadronic amplitude f~(0) [Eq. (5.4)] as a function of the in-
cident pion energy: this work (solid circles) and the result of the
phase shift analysis of Ref. 33 I,'open circles). The crosses with
the error bars are the result of the analysis in Ref. 32 based on
an attenuation measurement. The curves are drawn to guide the
eye.
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FIG. 11. Energy dependence of total and integrated partial
Ca cross sections as defined in text.

shows that this is to a large extent true.
The results of Eq. (5.6) for Ca are the curves labeled

o. ,b,. in Fig. 11. We see some of the qualitative features
expected of the absorption cross section: o,b,. tends to
dominate o.„„below 100 MeV, peaks lower in energy
than the other integrated cross sections [a trend already
observed in the analogous calculations for He, 0, and C
(Refs. 1 and 2)j and decreases rapidly across the reso-

Our calculation of n.—- Ca elastic scattering, for in-
cident energies across the 5 resonance, confirms the pic-
ture derived from analyses of elastic scattering from
lighter targets. The ~-X scattering amplitude in the nu-
clear medium is calculated microscopically at the one-
hole level, including the kinematical and medium effects
arising from the fact that the interaction takes place in
the nuclear environment. The model is microscopic in
the sense that the target is described by an independent-
particle model, with a single Slater determinant for the
ground state (the harmonic oscillator of the lighter tar-
gets has, of course, to be replaced by a Woods —Saxon po-
tential). The remaining (multihole) medium efFects,
which can be thought of as a complicated nonlocal in-
teraction of the isobar with the residual nucleus, are
parametrized in terms of a phenomenological spreading
potential. The essential feature in the 6-nucleus interac-
tion is a substantial broadening of the resonance, which
can be qualitatively expressed as an increase in the reso-
nance width of the same order as the free width ( —110
MeV). This is moderated to some extent by Pauli
quenching (-20—40 MeV). A very important result of
our work is that the central 6-nucleus potential scales to
a very good accuracy with the mass number of the target.
Thus, the elastic transition matrix appears to be sha-
dowed by the interaction of the 5 with a nuclear mean
field arising from an effective 6-N interaction.

Our main interest lies in the interaction of a strongly
decaying resonance with a multinucleon environment.
The information we are seeking is contained in the fitted
strength of the spreading potential. The strength param-
eters listed in Table IV were fitted to measured angular
distributions of elastically scattered pions. The calculat-
ed transition matrix naturally contains information
beyond the elastic differential cross section. One piece of
such information is the total ~—+-" Ca cross section shown
in Fig. 11. The forward a-nucleus scattering amplitude
that we calculate is in good agreement with the result of
an attenuation measurement for m+, but not for ~ . It is
clear than an extended total cross-section database would
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provide valuable constraints to our calculation and would
help better determine the phenomenological parameters.
We emphasize the importance of a comparison with ex-
periment at this level, as the relevant predictions follow
directly from the fundamental premises of the model and
it is these premises that are being checked. At a very
different level of confidence we have also calculated an
"absorption" cross section. The calculated quantity is, in
this case, less reliable as a prediction of the real absorp-
tion cross section than the similarly calculated quantity
for lighter targets, because of the expected enhanced sha-
dowing effects in Ca. A measurement of the absorption
cross section at various intermediate energies would still
set a very useful reference standard for the present or fu-
ture, more reliable, theoretical estimates. We stress that
there are no published absorption cross sections for tar-
get mass numbers near Ca. We are aware of the scale of
a microscopic calculation of pion absorption on a nucleus
of the size of Ca. Since we do not anticipate such a calcu-
lation in the near future, we would rather encourage a
theoretical effort to attain a better understanding of the
reactive content of the ~-nucleus optical potential.

As emphasized in the Introduction, the calculation re-
ported here has to be seen in a much broader context.
From our experience with lighter targets, we propose the
following two-step approach. One should first concen-
trate on reactions with a minimal degree of nuclear struc-
ture uncertainties, with the purpose to pin down the in-
medium m-N transition matrix. This t matrix can subse-
quently serve as the starting point for an investigation of
rrNN or more complicated dynamics (e.g. , ~N~d, fol-
lowed by b,N ~b,N or hN ~NN), where a stronger inter-
play with the nuclear structure is to be expected. In each
case one has to weigh the required effort against the ex-
pected returns in order to set priorities. Thus, inclusive
reactions are largely free of nuclear structure uncertain-
ties, but the respective cross sections may display few
nontrivial features for the heavier targets of interest here
Lone need only compare the measured inclusive (7r+, m )
cross sections for He and ' 0 or CaJ.

In the first class of reactions we would include longitu-
dinal excitations of low-lying states, inclusive inelastic
scattering, and coherent ~ photoproduction, i.e., pro-
cesses dominated by the in-medium collision of the elasti-
cally distorted pion with one target nucleon via the spin-
independent part of the m-N interaction. We have al-
ready referred to the calculation of the 3 (3.74) and
5 (4.49) excitations. There are also nice photoproduc-
tion data which are in need of theoretical support (there
may be, for instance, an interesting inhuence of the focus-
ing effect we saw at low energies on the position of the
minimum in the diff'erential cross section). A calculation
of the coherent photoproduction process is immediately
possible.

In the second class there belong exclusive inelastic re-
actions, such as most excitations of bound nuclear states,
coincident nucleon knockout, and charge exchange, sin-
gle or double. We have already alluded in the Introduc-
tion to the problems with some longitudinal excitations
and the attempts to solve them by explicit incorporation
of ~NN dynamics. In Ref. 8 serious problems were en-

countered in describing the excitation of the longitudinal
3 and 5 states by pions 100 MeV above resonance. In
view also of the discussion in Sec. IV concerning elastic
scattering at 292.5 MeV, we regard the situation at this
energy as highly unsatisfactory. Although at lower ener-
gies the inelastic cross section to the above final nuclear
states can be understood, a truly complete calculation
will have to be of the type undertaken in Refs. 4 and 5.
Eventually a simultaneous understanding of these excita-
tions with the low-lying ' C excitations will be necessary.

So far the in-medium ~-N t matrix employed in the cal-
culation of charge-exchange amplitudes was the one de-
rived from elastic and inelastic scattering. ' ' This is not
obviously correct (in fact, ~Nb, vertex corrections appear
to cancel the effect of the 6 self-energy). The calculated
' C(n+, vr )' N(g. s.) and ' N(vr, vr )' O(g.s.) cross sec-
tions at resonance agree better with experiment when the
spreading potential is set equal to zero (to simulate the
above-mentioned cancellation). Our present poor under-
standing of single-charge-exchange reactions is partly due
to the fact that only a limited number of cases have been
theoretically or experimentally studied. Our calculation
of the K(rr+, ir ) Ca(g.s.) process (see Fig. 2 in Ref. 38)
stands against a very limited database, and a measure-
ment at resonance would be highly welcome. Finally, the
situation with double charge exchange (DCX) is already
very unclear with the lighter targets and, before embark-
ing on the tedious calculation for heavier targets, one had
better make sure that the outcome will be rewarding. Al-
though essentially elastic in character, DCX, being to
lowest order a double-scattering process, shows a high
sensitivity to nuclear structure, and this will predictably
persist for heavier targets. Besides, this nuclear structure
dependence shows no simple pattern and a full micro-
scopic calculation seems unavoidable. Calcium is, how-
ever, exceptional, in that it is the lightest nucleus with a
large number of stable isotopes. The sensitivity to angu-
lar momentum correlations (i.e., spatial NN correlations
arising from coupling two or more nucleons to given an-
gular momentum and not "short-range correlations" as
one often reads in current DCX literature), already estab-
lished for lighter targets, makes calculation of the DCX
process on the Ca isotopes highly attractive. We repeat
that a correct treatment of the dynamics in the sequential
DCX amplitude (for an explanation of the nomenclature
see Ref. 7) is imperative for a meaningful discrimination
between higher-order (e.g.„7rNN) dynamical eFeets and
nuclear structure questions (e.g., configuration mixing).
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APPENDIX

We present here the main steps in the derivation of (2.15a). With the definitions of Eq. (2.13b) the vertex function in
momentum space is given by

+~~-i,~M(q)= g (
—1) (j~(M+m~)j~ m~—j~~j~LM)

. fXi
3 11|&~M+

~

K'+ q U-(q )(q —bK') Sg& (K') .
m (2~)' (A 1)

The wave functions gz and 1ij~ describe the motion of the delta or nucleon relative to the residual nucleus. For an
N

independent-particle model with a H.O. potential, gz and g~ would be H.O. wave functions with the modified os-
N

cillator parameter a,'„=[( A —1)/A ]a„,. We obtain our gz and fz by applying this transformation to the H.O.
N

oscillator basis wave functions after diagonalizing our single-particle Hamiltonian (see Sec. III). In this case a», has
the value quoted in Table I. Since we use a Woods —Saxon potential, the resulting wave functions describe only approx-
imately the relative single-particle motion.

Writing P~ (P)= Jd R e' g~ (R) and integrating over K', we transform the second line in Eq. (Al) to

U (q ) f d R gz~~+ ~(R)(Vze'q ) Sgz (R)— b f d R e'q P&~M+ ~(R)S Vzgz (R)

(A2)

where the wave functions P~ and P~ are obtained by replacing a,'„by a,"„=[A/(A —1)] a'„, in the expansion of
and g~ in terms of H.O. wave functions. Given the definition of a,'„above, Pz and f~ are obtained

N

directly from the shell-model wave functions by means of the transformation a„,~a,"„=[ A /( A —1)]a „.
The Fourier transform f [d q/(2m) ]e ' ' of (A2) reads

e
—a

I
R—r

I

a (q ) f pat, M+ &( ) z
~

'|1'~ ( )

e
—alR —rI

&fd R 4a(M+ (A3)

With the partial-wave expansion

—aIR —rI

~

=ia gj &(iar& )h&'+'(iar )Y& (Q~ ) Y&* (Q„) (A4)

we obtain two types of angular integrals that have to be performed:

(i) i f dQ~Q~ (R)S V~[j)(iaR)Y'( (Q~)]g~ (R)

(ii) i f d Q~ p~ (R)g, (iaR ) Y, (Q„)S.V R g~ (R) .

Here the spherical coordinates R—= (R, Qz ) and r:—(r, Q„) are understood, j ~
is a spherical Bessel function of the first

kind" and h&'+'=—ih&'", where h&'" is a spherical Bessel function of the third kind. The evaluation of the above in-
tegrals is tedious but straightforward. Using the gradient formula (Ref. 41, Sec. 5.7), the Wigner —Eckart theorem and
its generalization to products of tensor operators [Ref. 41, Eqs. (5.4.1) and (7.1.5)—(7.1.7)], the values of the reduced ma-
trix elements (1'~~Y&~~l ) [Ref. 41, Eq. (5.4.5)] and ( 3

~~S~P) =2, and the recurrence relations of the spherical Bessel
functions [Ref. 40, Eqs. (10.1.19) and (10.1.20)], we obtain
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1/2
l + l~ +j~ + m~ (2l&+ 1)(2j&+1)(2l~+ 1)(2j&+1)

i =2a( —1) ' ' "j ts(M+m~j)~ m—tt j tsj~LM
4rr(2L + 1)

l~ l+ ) l~
X &(i+1)(2l+3)

O 0 0
~ la —,

' ja Qa{R)jl+,(iaR )~~(R)
l+1 1 l

t, l —il
+&l(2l —1)

l —1

J, w, (R j), ,(iaR )x„(R ) (A.5a)

j. /2
t+t&+j& —m& (2la+ 1)(2j t, + 1)(2j~+ 1)

(it) =2i( —1) (j ts(M+m~)I~ —mtt ~gt J~LM )
4m

l~+1 1

r

l~ l l~+1 l~ —,
' Jg

X Q(ltt+ 1)(2l~+ 3)
Jx w+

XÃt, (R )jl(iaR )D+ Nz(R )+Ql~(2l~ —1)

l t —i l~ 2 j~ (l„)X
Q 0 () L l 1 3 l I 1

.Aa(R)jt(iaR )D " A~(R)Jx
(1~)

where%a(A&) is the radial part of p&(g&), D+ =d/dR —1&/R, and D =d/dR+(l&+1)/R.
Substituting (A. l) in (2. lob) and taking into account (A.3)-(A 6a), we obtain immediately (2 15a)

(A.5b)
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