
PHYSICAL REVIE% C VOLUME 43, NUMBER 4 APRIL 1991

Relativistic kinetic equations with mesonic degrees of freedom

John E. Davis and Robert J. Perry
Department ofPhyst'cs, The Ohio State University, Columbus, Ohio 432lo

(Received 5 April 1990)

We extend the same techniques found to be successful in condensed matter physics for deriving
Boltzmann transport equations to the relativistic domain to facilitate the study of nonequilibrium

phenomena where relativistic effects are important. Although the ensuing equations are discussed
in the context of the relativistic heavy-ion system, the discussion is sufficiently general to cover oth-
er important physical situations such as those of astrophysical origin. Starting from an arbitrary lo-
cal quantum field theory, we show how one may construct a Boltzmann transport equation and
what the necessary assumptions that go into its construction are. To illustrate these techniques we

derive a set of coupled Boltzmann equations with medium-dependent collision terms for relativistic
fermions and spin-zero bosons interacting via a Yukawa coupling. We find that the dynamics may
be described in terms of the fermion distribution function alone only under the very restrictive con-
dition that the boson fields remain in local equilibrium throughout the collision process. Moreover,
we find that one must go beyond the mass-shell constraint to find a physically reasonable boson pro-
duction mechanism.

I. INTRODUCTION

In recent years, nonrelativistic Boltzmann-Uehling-
Uhlenbeck (BUU) equations have been employed in the
study of heavy-ion collisions with some success. ' As one
goes to increasingly higher energies, relativistic kinemat-
ics become necessary. To meet this need, relativistic
Vlasov equations have been developed. In addition,
these equations have been extended through the ad hoc
addition of collision terms using free-space nucleon-
nucleon cross sections. However, with few excep-
tions, ' little work has been done to justify this naive ex-
tension of the collisionless Boltzmann equation. It is the
purpose of this work to investigate whether or not such a
picture is justified through the systematic construction of
collision terms with medium dependence. It is also our
aim to show how relativistic kinetic equations may be ob-
tained from the underlying structure of relativistic quan-
tum field theory (QFT). In our construction of collision
terms, we utilize the same methods found to be successful
in the nonrelativistic theory, ' namely, the gradient ex-
pansion and the Kadanoff-Baym Ansatz.

Phenomenological hadronic field theories' provide a
framework for incorporating the needs of special relativi-
ty and quantum mechanics. In addition, because they are
based on quantum field theory, they allow a discussion of
the creation and annihilation processes. As a starting
point, we have adopted a quantum field theory consisting
of spin-half fermions (nucleons) interacting with spin-zero
scalar bosons (o mesons) via a Yukawa coupling. Al-
though this model cannot be taken seriously in describing
nuclear systems, it does saturate and allows for a descrip-
tion of creation and annihilation of dynamical mesons,
thus providing a reasonable starting point for the investi-
gation of a relativistic quantum transport theory. This
model has also been studied by Li et al'. However, in

addition to ignoring retardation effects, their description
does not allow for a discussion of boson creation and an-
nihilation processes. Botermans and MalAiet" have in-
vestigated a similar model using a Dirac-Brueckner T-
matrix approach but also failed to include retardation
effects. This work goes beyond their investigations by in-
cluding retardation effects and deriving a kinetic equation
describing meson production. We want to emphasize
that, in this work, we propose to study what elements of a
complete relativistic transport theory may be important,
and leave the more ambitious goal of using a "realistic"
theory for later. At this point it is not even clear how
one should calculate ground-state properties of nuclei
with a realistic hadronic theory. '

The outline of the paper is as follows. In Sec. II we re-
view the basic ideas upon which this work is founded. In
particular, we review the nonequilibrium quantum field
theory within the Schwinger-Keldysh closed-time-path
framework' ' because, in addition to being essential to
this work, we feel that the nonequilibrium theory is
sufficiently unfamiliar to warrant such a review. We then
show how the Schwinger-Dyson equations on the closed-
time path may be used to easily obtain a "generalized"
Boltzmann equation, also known as the "Kadanoff-Baym
equation, " and we show that, with an appropriate An-
satz, this equation may be reduced to the familiar form of
a Boltzmann equation. Discussion of the validity of this
"Kadanoff-Baym" Ansatz will conclude Sec. II. In Sec.
III of this paper, we apply the general recipe for con-
structing the quantum kinetic equations outlined in Sec.
II to the simple Yukawa model. In doing so, we are able
to derive a set of coupled Boltzmann equations complete
with collision terms for the interacting fermion-boson
system. We show that under the very restrictive condi-
tion of local equilibrium, the boson distribution function
may be eliminated leaving a single Boltzmann equation
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for the fermion distribution function, thus making con-
tact with other approaches. Finally, in the last section
we conclude.

Note: For the most part, we follow the conventions of
Bjorken and Drell' setting g„,=diag(1, —1, —1, —1)
and px—:p.x =p„x~. Also, unless explicitly indicated,
we work with natural units A=c = 1.

II. BASIC FORMALISM

In this section we review the essential ideas central to
this work. We will keep the discussion sufficiently gen-
eral that the ideas expressed here may be applied to any
quantum field theory.

A. Nonequilibrium quantum field theory

We choose to work within the Sch winger-Keldysh
framework' ' rather than that of the more complex
thermofield dynamics' because we feel that the closed-
time-path method is more closely related to the methods
of ordinary QFT. To illustrate the salient features of the
formalism, we will concentrate on a QFT with a scalar
bosonic field N. The generalization to more complex field
theories is reasonably straightforward.

The basic problem of quantum field theory is to solve
the Heisenberg equations of motion

dt
Q(t)=i [H —j(t) C(t), Q(t)] (2.1)

(Q(t)) =Tr[p(t, )Q(t)] . (2.2)

To facilitate the construction of G-reen functions, it is

for a Heisenberg operator Q. For later convenience the
Heisenberg field operator N has been coupled to an exter-
nal space-time-dependent c-number source j(t) with com-
pact support. Furthermore, the Hamiltonian H is as-
sumed to be time independent. Here, and in most of this
section, we have adopted the convention of suppressing
the spatial dependence of N and we use the shorthand no-
tation j(t).4(t) for

f d x j(t, x)4&(t, x),
suppressing spatial integrations.

In the Heisenberg picture, observables are calculated
by taking expectation values of the appropriate operators
with respect to the initial state of the system. In general,
the initial state is a mixed state and must be described by
a density matrix p(tp) tp being the initial time. The ex-
pectation value of a Heisenberg operator Q (t) is given by

where the unitary operator

t')

7 exp i f dt j(t) @'(t)

for ti ~ t2,

7 exp i f dt j(t) 4&'(t)

for t, &t2

(2.4)

satisfies the usual group property U(t„t3)U(t3 t2)= U(t„tz). Here 7 is the usual time ordering operator
while T is an antitime ordering operator and N' is the
field operator in the sourceless representation. It is im-
portant to note that, for t ) to,

describes backward time evolution from t to to. The
sourceless representation should not be confused with the
more familiar interaction picture representation which is
commonly used for deriving Feynman rules. As will be
illustrated in Sec. III, the sourceless representation is
ideally suited for deriving Schwinger-Dyson equations;
these are nonpertuvbative equations satisfied by the
Careen's functions, whereas the Feynman rules are used in
connection with perturbation theory.

The transformed operator Q'(t) satisfies the sourceless
field equation

(2.5)

where the transformed Hamiltonian H' = U ( t,
tp)HU (t, tp) is time independent by virtue of
[H', H'] =0.

The correlation function (4(t& )4(t ))2may be ex-
pressed in the sourceless representation as

or by functional differentiation

5 U t, t I5U(,Ot~ )

)
(+(t, )@(t,)) =

i5j (t, ) i5j(t~)

Using a trick originally due to Schwinger, ' we write

(2.6)

(2.7)

convenient to work in a sourceless representation defined
by

(2.3)

r

7 exp i f "j+e'
0

(2.8)

where we have introduced two sources, j+ and —j, al-
lowing the functional derivatives to be pulled out of the
expectation value. We have explicitly indicated here that
the sources j+ and j are to be identified with the physi-

cal source j after functional differentiation. This expres-
sion may be further simplified by introducing a time con-
tour 8 which runs from t =to to +~ and back to
t = to. ' ' This contour, shown in Fig. 1, is known in the
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cal Dyson equation is of the form

b, @(x,y)= b, z(x,y)

+ J dz J dz'b, p(x, z)II~(z, z')b, @(z',y) .

FIG. 1. The closed-time-path contour. The contour starts at
t = to and extends to t = ~ and then comes back to t = to.

literature as the closed time path. ' In addition, we
define a contour source j@ which takes on the value j+ (t)
or —j (t) for r on the forward or backward branch of C,
respectively. Ordering along the contour will be denoted
by 5'&. With these definitions we may write

1 6(C(r, )@(r,)) =—, Z[j~],
&J —(r i @2+( r2

where

zfjel=I'Teexp ij j+0'
C

(2.9)

(2.10)

1 1 $2
Z[J' ],Z [J'e ] 5Jc (x )5Je(y)

(2.11)

with higher-order Green's functions defined analogously.
Here, functional differentiation has been extended to the
contour by writing

(2.12)

where the contour delta function is a delta distribution on
the contour.

We mention that it is possible to write a path-integral
representation of the contour generating functional.
Indeed, Calzetta and Hu' have formulated a closed-
time-path QFT in this manner and derived a Boltzmann
equation from a two-loop approximation to the path in-
tegral. Of course, collision terms do not occur at the
one-loop level, so one is forced to go to at least two loops
to see collisions. However, there is no justification for the
use of the loop expansion in strongly coupled theories, '

so we do not take this approach here.
Given the field equations for N, we can derive a Dyson

equation for the contour Green's function 6 using func-
tional techniques which are made particularly simple in
the sourceless representation. Since such manipulations
are standard, ' they will be omitted here. The only new
feature present in the contour Dyson equations is, as the
reader may have guessed, that time integrations have
been replaced by contour integrations. Thus, a prototypi-

is a contour generating functional allowing for the con-
struction of contour Green's functions. Contour Green's
functions are defined as expectation values of contouI"-
ordered products of the field operators which may be ob-
tained through functional differentiation of the generat-
ing functional, e.g. ,

i b z(x,y ) = ( 'Tz@(x)@(y))

= (O~ U( —,) ~0) (0~ U(, r), (2.14)

where we have introduced a complete set of states ~n )
and exploited the group property of the evolution opera-
tor U. The second equality follows because the adiabatic
theorem guarantees that only the vacuum state ~0) con-
tributes to the sum since an adiabatic perturbation
cannot induce transitions between different states. In
addition, the adiabatic theorem implies that
(0~ U( —~, ~ ) ~0) is just a phase and so by complex con-
jugation we can write

( i )
(0 U(~, t)

&01U(, — )lo)
(2.15)

In this form, we see that the backward Bowing part of the
contour manifests itself in the vacuum theory by cancel-
ing disconnected vacuum to vacuum graphs.

At this point the reader should be convinced that the
structure of the nonequilibrium quantum field theory is
formally identical to the ordinary vacuum theory. This
concludes our discussion of closed-time-path quantum
field theory.

B. Generalized Boltzmann equation

Although contour functions are particularly suited for
forrnal manipulations, they are not convenient for practi-
cal calculations. Instead, we find it useful to use a matrix
representation of the contour functions. Contour Green's
functions have a natural matrix representation defined by

1 5
[inc(x~y)]~, b= .z &. Z[Jc],

a, b H I +, —
] . (2.16)

With the definitions

id'�(x,

y) = ( V'C&(x)@(y)),
i b,~(x,y) = ( "T@(x)N(y)),

(2.17)

(2.18)

(2.13)

Before leaving this section we show what role the back-
ward Aowing part of the contour plays in the ordinary
vacuum theory. The vacuum theory results when we
take the density matrix to be p(to)= ~0)(0~. Here, ~0) is
the exact vacuum of the system at time to and we will

take to = —~. Furthermore, in accordance with the usu-
al postulates of ordinary QFT, we make the assumptions
that the vacuum ~0) is nondegenerate and the source
j(x) is adiabatically switched on and off' in the past and
future, respectively. With these two assumptions, the
conditions for the quantum-mechanical adiabatic
theorem are fulfilled. Concentrating on the backward
time piece, we may write

(0~ U( —m, t) =g (0~ U( —~, ~ )In ) & nlU( ~, r)
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i b. '(x,y) = (@(x)+(y)),
i b, '(x,y)—:(C (y)@(x)),

we can write

(2.19)

(2.20)

Dz „(x,y)= Jdz Az „(x,z)8~ „(z,y) . (2.28)

These are the first two Langreth-Wilkins rules. The other
two rules are useful for reducing antiparallel products of
contour functions

b, c(x,y) = b~(x,y) 5 (x,y)

(x,y) b~(x,y)
(2.21)

iD@(x,y) =iA @(x,y)E'8@(y, x) .

Indeed, as the reader can readily show,

(2.29)

Since any contour two-point function A will have a ma-
trix representation, we define a canonical form for A @ as

and

iD (x,y)=i A (x,y)iB ~ ~(y, x)

A &(x,y) =

T

AF(x, y) A (x,y)

A (xy) AF(xy)
(2.22)

DR z (x,y) = Az z (x,y)iB (y, x)+i A (x,y )8& z (y, x) .

(2.31)

A~(x,y)=0(xo —yo)[A (x,y) —A (x,y)] (2.23)

A „(x,y) —= —0(yo —xo)[ A '(x,y) —A '(x,y)] (2.24)

respectively. It is important to note that the definitions
of A~ and A„, Eqs. (2.23) and (2.24), hold for fermions
as well as bosons. We also assume that the Feynman
functions AF F have the decomposition

It is important to realize that, in the matrix representa-
tion, the matrix elements of the contour functions are
defined on the real axis and not the contour.

%'e also find it convenient to define retarded and ad-
vanced two-point functions as

~ 'a'~=II'~S +II Z'~0 R

R, 3 ~R„A +~R, 3 +R, 3 ~R, A
0 0

(2.32)

(2.33)

The antiparallel Langreth-Wilkins rules are particularly
useful for continuing contour self-energies to the real
axis. Here we mention that these rules are valid only in
the limit as t0 goes to infinity. This limit corresponds to
the neglect of initial correlations. However, we do not
consider this a serious limitation since neglecting initial
correlations is tantamount to the assumption of molecu-
lar chaos and we believe that this assumption is an in-
tegral part of the whole Boltzmann transport philosophy.

Using Eqs. (2.27) and (2.28) for continuing the contrac-
tion of contour functions to the real axis, the contour
Dyson equation (2.13) may be expressed as

A —(x y) = A ' (x y)e(xo yp )

+ A (x,y)8(yo —xo), (2.25)

Here we have used the fact that the greater and lesser
components of the contour delta function 6 are zero,
i.e., 5 ' (x —y)=0. Subtracting Eq. (2.32) and its ad-
joint, we obtain the generalized Boltzmann equation

and

+ A~(x, z)8 ' (z,y)] (2.27)

indicating that the elements of A ~, Eq. (2.22), are not in-
dependent. Although the two-point Green's functions
can always be decomposed in this way, the self-energy
cannot if it includes a mean-Geld contribution, since the
mean-field contributes a piece proportional to 5(x —y).
Such a contribution only has support for x0 =y0, whereas
Eq. (2.25) is undefined at xo=yo. Thus, we will always
separate out the mean Geld from the self-energy by ab-
sorbing it into the free propagator. This will be illustrat-
ed in more detail later. For an alternative procedure, the
reader is referred to Ref. 8.

By considering the contraction D of two contour
functions, A and B, i.e.,

D&(x,y)= I dz A@(x,z)8&(z,y), (2.26)
C

we can derive a convenient set of rules, the so-called
Langreth-8ilkins rules, for continuing from the con-
tour to the real time axis. Using the canonical matrix
form for contour two-point functions, Eq. (2.22), we find
in the limit t0 —+ —oo,

D ' (x,y)= Jdz[ A ' (x,z)8„(z,y)

[S',S —,'(11,+11„)]+tlI,—,'(a, +a„)]
=

—,'III', b. ]
—

—,
' III', b, '] . (2.34)

%'e shall see that, upon using a semiclassical expansion
of the generalized Boltzmann equation, the first term on
the left-hand side corresponds to the familiar drift term
of a classical Boltzmann equation while the second term
is a quantum-mechanical correction to the drift. The
drift term contains contributions from other particles in
the medium through the self-consistent Hartree-Pock po-
tential set up by the particles in the background. The
right-hand side corresponds to the collision term —the
first term provides scattering into a phase-space element
and the second term provides scattering out. However,
this interpretation is valid only in a semiclassical limit.
Furthermore, the generalized Boltzmann equation above
does not have the single-time structure that one expects a
Boltzmann equation to have. In the next section, we de-
scribe an Ansatz, due to KadanofI' and Baym, which re-
lates the double-time function 6 (x,y) to a single-time
function that has the interpretation of a phase-space den-
sity in a sem. iclassical approximation.

In this section, we have derived the generalized
Boltzmann equation directly from the contour Dyson
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equation, Eq. (2.13). Continuation from the contour to
the real axis was facilitated through the use of the
Langreth-Wilkins rules. We emphasize that these rules,
as written here, are independent of the statistics of the
fields.

C. Wigner transform, gradient expansion,
and the Kadanoft'-Baym Ansatz

In ordinary vacuum quantum field theory, Green's
functions are translationally invariant and calculations
are simplified when working in a Fourier-transform rep-
resentation. However, for the general nonequilibrium sit-
uation, the Green's functions depend on r =x —y as well
as R =

—,'(x +y). The Wigner transform is a generaliza-
tion of the Fourier transform and is realized by Fourier
transforming over the difference coordinate r. Hence, we
define the Wigner transform of a two-point function
h(x, y) as

b,(R,p)= I dr e'~"~"b, R + —,R ——
QO

2' 2
(2.35)

C(x,y)= Jdz A(x, z)B(z,y),
then

(2.36)

C(R,p) =exp (8" 8„—B" t) ) A (R,p)B (R,p) .A 8 A B

Obviously, the Wigner transform reduces to the Fourier
transform for translationally invariant systems.

If the variation with respect to the sum coordinate R is
small on a scale set by the variations of the relative coor-
dinate r, then it is permissible to perform a gradient ex-
pansion in derivatives with respect to R. It is straightfor-
ward to show that, if

(x, y, xo —
yo

—iP) =b, (x, y, xo —yo), (2.40)

which follows trivially from the cyclic property of the
trace. Here, we have analytically continued b, ' (x,y)
into the complex-time plane. In the Wigner transform
representation, the KMS condition is expressed in the
form

e 'b, (R,p) = b, (R,p), (2.41)

where we note that, in equilibrium, the Wigner-
transformed Green's functions are time independent since
only the difference xo —

yo enters. Using the identity
, which follows from the definitions

for b, tt „,Eqs. (2.23) and (2.24), together with the KMS
condition, Eq. (2.41), we find

~'(R p)=fBE(po)[~z«p) ~~«p)]
where

(2.42)

fBE(po) = (2.43)

is the Bose-Einstein (BE) distribution function. Thus, in
equilibrium, b, (R,p) is related to the particle distribu-
tion function.

Kadanoff' and Baym assumed Eq. (2.42) to hold locally
for the nonequilibrium case, i.e.,

um. For this case, the density matrix is given by

p( to ) =exp( —l3H) /Tr exp( 13—H) .

In equilibrium, the Green's functions 6 ' (x,y) defined
in Eqs. (2.19) and (2.20) are related through the well-
known Kubo-Martin-Schwinger (KMS) boundary con-
dition. For bosons, this is expressed by the statement

(R,p) =f (R,p) [b z (R,p) b„(R,p) ],— (2.44)
(2.37)

Upon expansion and neglecting derivatives of higher or-
der than the first, we find

C(R,p)= A(R,p)B(R,p)

where f (R,p) plays the role of a nonequilibrium quasi-
particle distribution function. Note that, unlike the equi-
librium case, it depends upon R and p as well as po.

The spectral function ht, —6„has the formal solution

+ [A (R,p), B(R,p)]pB+O(iri ), (2.38)
2

where the generalized Poisson bracket (PB) is defined

2t' ImII

(6o ' —ReII~ ) +(ImIIt, )
(2.45)

[A,B]„=—a, A a,B —a, A a,B . (2.39)

It is also obvious that the gradient expansion is, in some
sense, an expansion in powers of A. This is because the
gradient expansion is valid if AR Ap &&A, where hR is on
the order of the scale set by a typical variation with
respect to R and hp -A/hr sets the scale at which the
function varies with p. For this reason, it is also a semi-
classical expansion. Hence, one expects such an approxi-
mation to hold only for systems which are close to equi-
librium. For a discussion of this point in the context of
heavy-ion collisions, the reader is referred to the last sec-
tion of the present paper.

To motivate the Kadanoff-Baym Ansatz, ' we consid-
er the case in which the quantum fields are in equilibri-

b, ~(R,p)=2if (R,p, E&)1mb'(R, p), (2.46)

replacing po in the argument of the distribution function

f by E . Thus, b, can be eliminated from the

which follows from a gradient expansion and Wigner
transform of the Dyson equations (2.33) and from the fact
that b + (R,p) =b, *„(R,p). In the limit of weak scattering,
ImH~ is small and the spectral function is sharply
peaked about some value of po=E (R). If the width of
the peak is sufficiently narrow, the excitations of the sys-
tem may be described in terms of quasiparticles and the
distribution function becomes a distribution function for
the quasiparticles. In the limit of the vanishing width,
the spectral function has a delta-function-like behavior
and we may write
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Boltzmann equation in favor of the time-dependent dis-
tribution function f (R,p, E~ ) defined on the phase space
( R, p ). This is the essence of the Kadanoff-Baym A n
satz. We want to emphasize that this is an Ansatz and
not an approximation; it is strictly valid only for equilib-
rium. As such, it can only be justified a posteriori.
Throughout this paper, we use "Ansatz" in this fashion.

To summarize, under certain conditions, the general-
ized Boltzmann equation can be reduced to a Boltzmann
equation for a quasiparticle distribution function. The
essential ingredients for this interpretation are (i) validity
of the gradient expansion, (ii) long-lived quasiparticle ex-
citations, and (iii) validity of the Kadanoff-Baym Ansatz.
We emphasize that the three assumptions are not in-
dependent of each other. Indeed, in motivating the An-
satz, the gradient expansion was used and the quasiparti-
cle pole was assumed to dominate.

Finally, we would like to mention that the Kadanoff-
Baym Ansatz is not the only Ansatz on the market.
Lipavski et al. have constructed an Ansatz which over-
comes some of the limitations of the Kadanoff-Baym An-
satz. Namely, the Kadanoff-Baym Ansatz violates causal-
ity and, in addition, it is not clear how to improve it.
The Ansatz of Lipavski et a/. is causal and one can derive
correction terms for it. Moreover, unlike the Kadanoff-
Baym Ansatz, it is not limited to the gradient expansion.
However, unlike the Kadanoff-Baym Ansatz, it leads to a
non-Markovian Boltzmann equation. Since the principle
goal of this work is to derive a Markovian Boltzmann
equation, the non-Markovian Ansatz of Lipavski et al.
will not be discussed here. For more details, the reader is
referred to their paper. For a discussion of the Markovi-
an Ansatz that we employ here as it pertains to heavy-ion
collisions, the reader is referred to the conclusion of this
paper.

This section completes the formal part of this paper.
The procedure for the construction of a transport equa-
tion has been outlined. Up to this point, we have not in-
troduced a specific model and it is to this that we now
turn.

Then we go on to use the Kadanoff-Baym Ansatz to
derive Boltzmann equations for this system.

A. The Yukawa model

+gV(x)N(x)%(x)+ j (x)4(x)

+g(x)%(x)+%(x)g(x) . (3.1)

In anticipation of transforming to the sourceless repre-
sentation, we have coupled the fields to the external
sources j(x), g(x), and g(x). Here j(x) is an ordinary c-
number function while g(x) and g(x) are Grassmann
functions. The field equations follow from the Lagrang-
ian, Eq. (3.1), in the usual way. The Euler-Lagrange
equations yield

( +m, )N(x) —g%(x)V(x)= j(x)
for the boson field and

(3.2)

(iy„B"—m)%(x)+g@(x)%(x)= —g(x) (3.3)

for the fermion field. There is an analogous equation for
the adjoint field %(x). Quantization is achieved by re-
quiring that the field equations, Eqs. (3.2) and (3.3), be
consistent with the corresponding Heisenberg equations
of motion —namely, Eq. (2.1) suitably generalized to in-
clude fermion fields. This consistency requirement leads
to the usual equal time (anti--)commutation relations,

and

[4 (t, x), %&(t, y)I =y P (x—y) (3.4)

4(t, x), 4&(t, y) = i5 (x—y), — (3.5)

The model we will concentrate on is a QFT composed
of spin-half Dirac fermions interacting with a massive
scalar boson field via a Yukawa coupling. The Lagrang-
ian density for this system is

X(x)= iII(x)(i y„B" m—)%(x)——,'4&(x)( +m, )4(x)

III. APPLICATION TO THE YUKAWA MODEL

In this section, we apply the preceding ideas to a Yu-
kawa model. We derive the contour Dyson equations for
this model and discuss the energy-momentum tensor.

with all other equal-time (anti-)commutators vanishing.
We now proceed to derive a set of contour Dyson equa-
tions. After taking expectation values of the field equa-
tions (3.2) and (3.3) and extending them to the contour,
we arrive at a set of functional differential equations on
the closed-time path, i.e.,

(iy„B"—m)@— +g— +pc(x) Z[j@,gc, gc, ]=01 5 1 6
i 5g&(x) i 5j &(x)5$&(x)

(3.6)

1 5 1 5(CI+m )&
— —g—~ j&(x) Z [J'p, g—c,ge]=0 .
i 5jc x i 5$@(x)5$c(x)

(3.7)
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In obtaining Eqs. (3.6) and (3.7), we have extended the
di6'erential operators +m, and iy„B"—m to the con-
tour as indicated by the subscript C. The contour-
generating functional is defined as

X@(x,y) —=g f dz dz'G&(x, z)I &(z,y;z')b. @(z',x) (3.15)

for the fermion field and a contour polarization insertion

Zc ——Z [J'c,gc, gc ]

Texp i j@4'+%" @+ (3.8)
11&(x,y)—= —g f dz dz'trG@(x, z)I @(z,z', y)Gc, (z', x)

C

(3.16)
with +', 4', and 4' are the field operators expressed in
the sourceless representation described in Sec. II A of this
paper.

We define the two-point contour fermion Green's func-
tion as

iG@(x,y) = ("T—@4(x)%(y)) = Z& . (3.9)
1 5

Ze 5$(x)g'(y)

5G& '(x,y)
I c(x,y;z) =i—

Z
(3.17)

for the boson field. Here the three-point contour vertex
function is defined as

Similarly, we define the boson Green's function as

i b«(x, y)—:( 'T&@(x)C&(y) )

=id&(x,y)+P(x)P(y)

6Z@
i'Z~ 5jc(x)5jc(y) '

explicitly indicating the presence of the mean field

P(x)—= (4(x)) = . Z& .1 6
EZ@ 5Jp x

(3.10)

(3.11)

(~'y &"—m +gp)cGc (x,y) —f dz Xc,(x,z)Gc. (z,y)

=5c(x —y), (3.18)

( +m,i)b.&(x,y)+ f dz II&(x,z)b, &(z,y) = —5&(x —y),

where the inuerse Green's function G& (x,y) is regarded
as a functional of the background field P. In terms of
these functions, we may write the functional equations
(3.13) and (3.14) as

In addition, due to complications introduced by the back-
ground field P, we have introduced a connected contour
Green's function 6 for which the Dyson equations sim-
plify. Also, we should emphasize that all contour
Green's functions defined up to this point depend on the
external sources, although this fact has not been explicit-
ly indicated.

By rewriting Eq. (3.7) using the definitions (3.9) and
(3.11)we obtain

(0+m, )P&(x)+ ig trG&(x, x) =0 (3.12)

for the fermion Green's function and

5G&(x,x)
( + m, )c b, c(x,y) ig tr . = ——5&(x —y) (3.14)

5jc (y)

for the connected boson Green's function. We note that,
in obtaining these equations, we have set the external
sources to zero after functional differentiation and as-
sume that (V(x)) =0 in their absence. These equations
may be put in a more familiar form by defining a contour
self-energy

for the mean field P in the absence of an external source.
Upon functional differentiation of Eqs. (3.6) and (3.7)
with respect to g&(y) and j&(y), respectively, and using
definitions (3.9)—(3.11),we obtain

5Gc (x,y)
(iy 8"—m +gg)@G@(x,y) ig —=5c(x —y)

5Jp x

(3.13)

(3.19)

I c(x,y;z)=ig5@(x —y)5@(x —z)+O(g ) . (3.20)

It should be emphasized that there is no justification for
such an approximation, particularly in a strongly in-
teracting field theory. Any reasonable discussion of this
point would lead us far astray.

We now turn to a discussion of the stress-energy ten-
sor. We will use the symmetric stress-energy tensor as
opposed to the canonical one which, in general, is not
symmetric. The canonical tensor is derived by assum-
ing that under a Lorentz transformation, x„~x„+5x„,
the fields transform as Lorentz scalars. Clearly, this is in-
correct for fields with nonzero spin. For higher spin
fields, the transformation properties of the fields them-
selves under the Lorentz transformation must be properly
taken into account. When this is done, one ends up
with a symmetric stress-energy tensor. For the Lagrang-

which are a set of coupled Dyson equations for the con-
tour Green's functions. A schematic representation of
these equations is shown in Fig. 2. Although it looks as
though we have a closed set of equations for the Green's
functions, we do not because the vertex function hides all
of our ignorance. The vertex function can be found in
perturbation theory from its definition Eq. (3.17). We
shall approximate the vertex by the bare vertex —the
lowest-order term in the perturbation expansion. We find
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and (3.3). It is easy to see why the stress-energy tensor
must be symmetric. For example, physically, the kth
component of momentum gives rise to an energy Aux in
the kth direction; this is expressed by the statement
Tok=Tko. Finally, we mention that when scalar fields
are involved, one should use the so-called "improved"
stress tensor of Callan, Coleman, and Jackiw. This ten-
sor is obtained from the one above by the substitution

(3.24)

II
I t

I I

I I

I I

I I

II
I I

II
I I

I I

I I

I

I

I

I

I

I

I

ll
II
II
II
II
II

B. Distribution function for the scalar field

In this section, we construct a quasiparticle distribu-
tion function for the scalar field. The analogous con-
struction for the fermions is more difficult due to the
Dirac matrix structure. We postpone this problem until
the next section.

The equation for the connected contour boson propa-
gator, Eq. (3.19), can be put in the form

(ao, )-'a, =1+II,S, ,

where

(3.25)

It seems that, without the modification, the stress tensor
is not finite even when counter-term contributions are in-
cluded. With the addition of the extra term, it can be
shown that the counter-terms necessary to make the
Green's functions finite will also guarantee finiteness of
the "improved" stress tensor.

(b, &) '(x,y)= —( +m, )6@(x —y) (3.26)

FIG. 2. The Schwinger-Dyson equation for the fermion
Green's function is represented in (a). The equation for the bo-
son propagator is shown in (b). The single full line represents
the bare fermion Green's function which includes the mean-field
contribution. The double full line represents the dressed fer-
mion Green s function. Similarly, the double dashed line is the
dressed boson propagator while the bare boson Green's function
is given by the single dashed line. Also shown is the vertex
function labeled by I . In this work we replace the vertex func-
tion by the bare vertex. Integrations are over the contour
shown in Fig. 1 ~

ian, Eq. (3.1), it is straightforward, though tedious, to
show that

B
Tp Tp +T

with integration over the contour implied. The general-
ized Boltzmann equation, Eq. (2.34), becomes, upon
Wigner transformation and gradient expansion,

ifi[b, ',p m, R—eIIg—]pB(R p)+l'iri[II ' Rekg ]pii

=[6, II —b, II ](R p)+O(iii ), (3 27)

where we have used the properties of the Wigner trans-
form listed in the Appendix. We also keep the A from the
gradient expansion for bookkeeping purposes.

In accordance with the general recipe outlined in pre-
vious sections, we now implement the Kadanoff-Baym
ansatz. To this end we find, from Wigner transforming
and gradient expanding, Eq. (3.27) for the retarded func-
tion A~,

[p —m, —II (R,p)]b (R,p)

where
=1—iA'[p —m, —II~, Aii ]pB(R,p)+0 (A' ) . (3.28)

T„=—'II(y„B +y B„)qj (3.22)
In addition, one can show that the retarded function
Az(R, p) satisfies the dispersion relation

is the fermion contribution and

T„'.=a„ea,C —
—,'g, „(a,ea'e —m,'e') (3.23)

Imam(R p qo)
b.R(R,p) = —— dqo

po —qo+ic
(3.29)

is the boson piece. Here we are using the notation

~ay =~ a a —a ~.a
P P

and, in addition, we have used the field equations (3.2)

In fact, such a relation holds for any retarded function
defined analogously. Here we have assumed that
Imb, z (R,p) vanishes sufficiently rapidly as po goes to ao.
In the general case of a polynomial growth for large po,
one must use a subtracted dispersion relation and we
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leave it as a simple exercise for the reader to show that
the argument still goes through. Using the Poisson
bracket property, [ A,f ( A)]pB=O for A = A (R,p), we
can write the solution to Eq. (3.28) as

a Rell, (p,po)
ZB (p po)= &po

Bp0

with the property

(3.35)

b~=
2

+O(fi ) .
1

p —m, —ReII+ —i ImII~
(3.30)

z —p —m, —II&(p, z) =0, (3.31)

where, for clarity, we have not explicitly indicated the R
dependence. Using the property

Since Az is a retarded function, it must be analytic in the
upper-half complex plane of po, so poles must occur in
the lower-half plane. Suppose

z =co (R)—i y p(R)

for y & 0 is a pole in the lower-half plane ofpo. Then

ZB(P Po)= ZB( P Po) . (3.36)

Z~(p, cop) Z~(p, —co p)6„(R,p)= +
po cop+ l pp po+ co p+ l g p

(3.37)

where, for clarity, the R dependence has been omitted on
the right-hand side of the equation. The spectral func-
tion may be found by taking the imaginary part of Eq.
(3.37). In the limit of vanishing width, we can write

Imb, ~ (R,p)

Assuming there are only two poles and neglecting off-
pole contributions, we can write the retarded function
Eq. (3.30) as

(R,p)=b. (R, —p) = —
m sgn [Z~ (p,po ) ]5(p —m, —Relly ), (3.38)

and the identity 6 —6 =A& —A~ together with the
dispersion relation Eq. (3.29), it is easily verified that

b~(R, p, z)=[6~(R, —p, —z")]* (3.32)

for every complex z. Then, as the reader can readily
show if zp is a pole, then —z is also a pole. This
method of constructing one pole from the other cannot
return the same pole since, for a noninteracting system
this would imply co = —co p

which is incorrect. Hence,
we conclude that the poles are distinct. Assuming y+p
are small, an approximate solution to Eq. (3.31) is given
by

(R,p) =2iN ' (R,p)1mhz(R, p)
= —2mi sgn[Z~(p, po)]N ' (R,p)

X5(p —m, —Relly ),
where

(3.39)

(3.40)

where for meaningful results, aH distributions are con-
sidered to be regulated as in the finite-temperature
QFT

Finally, we define distribution functions N ' (R,p)
through

y+ = —Zz(p, p )~ „ ImII (+co ), (3.33) N (R,p) =N (R,p)+ 1, (3.41)

with m+p satisfying the transcendental equation

co~+ —
p

—m, —ReII~(p, +co+p) =0 .

The residue Zz is defined by

(3.34)

completing the implementation of the Kadanoff-Baym
Ansatz.

Inserting the Ansatz, Eq. (3.40), into the Boltzmann
equation, Eq. (3.27), we can write

sgn[Z~(p, po)]5(po —cop)[N ' (R,p),p —m, —Rell~ ]pB

= —i sgn[Z&(p, po)]5(po cop)[N (R,p)I—I (R,p) N(R, p)II (R—,p)],
(3.42)

a
sgn

Bpp
5(f)[N(R,p),f (R,p)]pa

Bn„Bn„Bco,
BT Bp BR

where, by construction, the delta function commutes with
the Poisson bracket. In writing this expression, we note
that the correction to the drift, the term involving Reh in
Eq. (3.27), does not contribute in the pole approxima-
tion. ' Using the easily derived identity

where

f (R,p, to„)=0,
n„(R,p) =N(R, p, co„),

and all roots co„are summed over, we can write Eq. (3.42)
in the form

scop Q Bop
~ + 0 n (p)aT aR ap ap 5R

=iZ~(p, co )[[1+n(p)]II (p, co ) n(p)II (p, c—o )[ .

(3.43)
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Here we have introduced a boson quasiparticle distribu-
tion function

momentum stress tensor Eq. (3.23) in terms of n (R,p).
To this end, we introduce the two-point symmetric tensor

n (p)=N (p, cop)=N (p, co ) —1, (3.44) T„,(x,y)
and exploited the fact that b, (R,p) =b, (R, —p) to
write

N (p, cop)= —N ( —p, —cop) . (3.45) (3.46)

Before construction of the distribution function for the
fermions, we discuss the physical interpretation of the bo-
son function n(R, p) by expressing the energy-

which, upon setting x =y, becomes the stress tensor Eq.
(3.23). By Wigner transforming this expression and in-
tegrating over all p, we can write a local auerage

d4pT~„(R)—= f ~ T„(R,p)
(2vr )'

d p= cj $(R)c),p(R) —,'g„[d —p(R)B(t(R) —m, p (R)]+—,'(B„B,——,'g ) 2Z (p, co )(n + —,')

(3.47)

In deriving this expression, we have used the "lesser"
component 6' (x,y) of the contour Green's function
b.( (x,y), Eq. (3.10), to rewrite (Cl(y)41(x) ) and we have
employed the ansatz for b, (R,p), Eq. (3.40), together
with Eq. (3.44) for n(p). Finally, we have exploited the
symmetry of Zs(p), Eq. (3.36).

Each of these terms has a straightforward interpreta-
tion. The first term provides the familiar mean-field ener-

gy and momentum. The remaining terms are easily un-
derstood by realizing that [d p/(2') ]2Zs(p, co~) is the
Lorentz-invariant momentum-space volume element at
R, while n is the boson number density at space-time
point R. The second term gives the energy momentum
associated with space-time inhomogeneities of the boson
number density, while the third term corresponds to en-
ergy momentum of the quasiparticles at R.

Note that, in the vacuum limit, the energy-momentum
tensor does not vanish due to the additional sums of —,

' in
the integrands of Eq. (3.47) which are the familiar zero-
point vacuum fluctuation contributions. In ordinary vac-
uum quantum field theory these terms are made to vanish
by normal ordering with respect to the vacuum. Howev-
er, in more general situations, as the ones we consider
here, such terms must persist. The best one can do is to
subtract the vacuum expectation value of T and then,
with the appropriate counter terms, T„can be made
finite. We emphasize that this is not the same as simply
ignoring the extra terms of —,

' in the integrands of Eq.
(3.47); only by properly dealing with the vacuum and
through proper renormalization of the theory can the
energy-momentum tensor be made finite.

Finally, we make the remark that the local averaging
procedure employed above for a composite operator is
equivalent to the point-splitting technique of Schwinger.
To see this, it is sufficient to consider the composite
operator Cl (x) in one dimension with an obvious general-
ization to higher dimensions. The point-splitting tech-

nique consists of defining

(Cl (x))—:lim (4(x —E)4(x+E)) . (3.48)

We will prove that the right-hand side of this equation is
equivalent to

f b. '(R,p), (3.49)

where b. '(R,p) is the Wigner transform of

~'(x,y)=(+(y)@(x)) . (3.50)

Indeed, from the inverse Wigner transform we find

f fdre'r @ R ——4 R+ —
)

dp r r
2' 2 2

r

1(m f dry, (r( dr R ——dr R + —),g~o 2 2
(3.51)

where we have regularized the delta function according
to the prescription

5 r)='
0 otherwise . (3.52)

Using the mean-value theorem of integral calculus, we
can write the right-hand side of Eq. (3.51) as

1(re (2el ' 2e(C' R—
a~0

r

R +, (3.53)
2 2

where the mean value theorem guarantees that this ex-
pression holds for at least one g, E[—e, E]. From this,
the result follows trivially.
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C. Fermion distribution function

In this section we extend the KadanofF-'Baym Ansatz to
the Dirac field. Because of the matrix structure of the
Green s functions, this is not as straightforward as in the
boson case. In the latter case, upon Wigner transforma-
tion and gradient expansion, commutators were replaced
by Poisson brackets with ordinary products replacing an-
ticommutators. In this case, due to lack of commutivity,
this prescription fails. For simplicity, in the following we
adopt the spin-symmetric ansatz of Bezzerides and Du-
bois. This ansatz consists of decomposing fermion
Green's functions as

Green's function 6& satisfies the anticommutation rela-
tion

—,
'

I GO
' —X„,GR ) (x,y) =5(x —y) . (3.55)

—[m —gg(R)+o „(R,p))Q„(R,P), (3.56)

0= [p" oi~( —R,p)]Q ti( R,p)

Upon Wigner transformation and gradient expansion,
this equation decomposes as

1= [p" oI~—(R,P)]Q~„(R,P)

G (R,p) = Q(R,P)+ Q„(R,P)y", (3.54) —[m gg(R—)+o R (R,p) ]Qi~ (R,p), (3.57)
neglecting tensor, pseudoscalar, and pseudovector contri-
butions. It is obvious from Eq. (2.33) that the retarded which may be solved immediately to yield

m —gg(R)+o z (R,p)
Q~ (R,p) =

[p" rrR«p))[p„rrR„(»p)) [m gN(R)+oR(R p))
(3.58)

p"—~%(R p)K (R,p)=
[p —o (R,p)][p, cr (—R,p)] —[m gg(R)+—cr„(R,P)]

(3.59)

Here, Xz has the form The value of the residue at the pole ZF is given by

Xz(R,p)=o~(R, p)+y„o."„(R,p) . (3.60) ZF '(p, po)= (p"—m") .
clp p

(3.65)

To find the dispersion relation for the quasiparticles,
we must look for poles in the retarded propagator. We
assume there are only two poles at po E'p lI

p and

polyp or, more concisely, at po=+e+p —i I +p,
where I +—)0. Note that, in the boson case, the two poles
are related. This is due to the charge-conjugation sym-
metry of the scalar field. Here, this is not the case and we
must introduce two distribution functions —one for par-
ticles and one for antiparticles.

For small I +p we find

I + = —2ZF(p, +e+ )

X [p„*(p,+e+„)Imcr"(p, +e+ )

Hence, neglecting off-pole contributions, we can write the
imaginary part of the retarded function as

ImG~ (R,p)
= —vr sgnZF(R, p)(p„' y"+m ' )l(p ' —m * ),

where we have taken the width I + to be vanishingly
small. We point out that, when taking complex conju-
gates, it is understood that Dirac gamma matrices are not
conjugated, e.g. ,

ImG„=ImQti+y„ImQ~z .

+m *(p,+e+&)Imo (p, +e+ )],
where +e+p satisfies the mass-shell condition

p* (p, +e+&)—m* (p, +e+ )=0 .

Here we have introduced the momentum variable

p„'(R,p,po) =p„—Reo„(R,p,po),
and the eQectiue mass

m *(R,p,po) =m gg(R )+Reo (R,p,p—o) .

(3.61)

(3.62)

(3.63)

(3.64)

In accordance with the Kadanoff-Baym Ansatz, Eq.
(2.44), we define quasiparticle distribution functions
+F ' (R,p) through

G ' (R,p) =+2iF (R,p)ImGti (R,p)

=+2rriF ' (R p)

X sgnZF (R,p) [p„*y"+m *]5(p* —m '~)

(3.67)
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Since G —G =G~ —G~ =2i ImG~, it is easy to see
that

i [0 ', —m*]pB(R,p)+i [Q„',p*"]pB(R,p)

=(cr 9 +cr„Q ")(R,p) —(o. 0 +c»„Q ")(R,p) .

F (R,p)+F (R,p)=1 . (3.68) (3.69)

After Wigner transformation, gradient expansion, and
standard manipulations with the Dirac algebra, we can
write the scalar piece of the generalized Boltzmann equa-
tion, Eq. (2.34), in the form

Upon substituting the Ansatz, Eq. (3.67), into the previ-
ous equation and after making the observation that
ImGz commutes with the Poisson bracket, we find

sgnZF(R, p)5(p" —m* )[+F ' (R,p),p —m* ]pB= sgnZi;(R, p)5(p* —m* )

X [ (o. m*+o„p"")F (R,p)

+(o. m*+o.„'p*")F'(R,p)] . (3.70)

Using the identity, Eq. (3.43), we see that the particle distribution function f (p) defined by

f(R, p)=F (R,p, e& ) (3.71)

satisfies

'. ' + ' f(p)= —2iZ (p")[[1—f(p)][o (pe, )m*(p &)+o. p"'p
BT BR Bp Bp BR

+f (p)[cr (p, e+)m "(p,e+)+o„(p,ep )p*"(p,e~ )]] .

Similarly, the antiparticle distribution function f(p) gjyen by

f(R, —p) =F'(R, p, —e )

satisfies the equation

Be g Be
+ f(p)= 2iZF( ——p, —e )

(3.72)

(3.73)

X I [1—f(p)][o (
—p, —e )m*( —p, —e )+o„(—p, e)p*"(—p, ——e )]

+f(p)[o '( —p, —e )m*( —p, —
e~ )+o.„(—p, —

e~ )p*"(—p, —
e~ )]] .

(3.74)

We can get some insight into the meaning of the distribution functions f (p) and f(p) by writing the fermion contri-
bution to the energy-momentum stress tensor, Eq. (3.22). We proceed as in the boson case by defining the two-point
function

T„(x,y ) = —(c)„—c)» )%(y)y %(x )+—(c)"—B»)4(y)y„'l(x)

=
—,'(8„'—c)» )try G (x,y)+ —,'(c)' —B»)try„G (x,y), (3.75)

which reduces to the ordinary stress tensor upon setting x =y. Upon Wigner transforming with the help of Eq. (3.67)
for G (R,p) along with the distribution functions, Eqs. (3.71) and (3.73), we find

d4p FT„.(R)=f P, T,'.(R,p)(2' )'

d p
3 2ZF p, ep ppp~ p, ep +p p p, ep + P

3

+y 2ZF —p, —e p„p * —p, —e +p p „* —p, —e +vacuum contribution, (3.76)
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where we have not explicitly written down the divergent
zero-point vacuum fluctuation contribution. As in the
boson case, some caution has to be exercised here because
the vacuum contribution cannot be eliminated by normal
ordering the field operators. Also, y, the isospin degen-
eracy parameter arising from the trace operation, takes
on a value of n for a system with n Aavors of fermions.
So, for nuclear matter with only neutrons and protons,
p =2.

To provide a more transparent interpretation of the
distribution functions we consider the energy-momentum
tensor in the mean-field or collisionless approximation.
This approximation is realized by the substitutions
p„" ~p„and m*~m —gP. We find

d3 )M v

TM'F =21'j, , (f,+f,» (3.77)
(2~) E*(p)

D. Boltzmann equations

and

X&(x,y)=ig G&(x,y)b&(y, x)

II~(x,y) = —ig'trGc (x,y)G p(y, x) .

(3.79)

(3.80)

Using the Langreth-Wilkins rule for antiparallel prod-
ucts, Eq. (2.30), we find

Now that we have constructed distribution functions
for the particles, we can complete the task of finding
Boltzmann equations for the interacting fermion-boson
system. As previously mentioned, we approximate the
self-energies by using the bare vertex, Eq. (3.20). In this
lowest-order approximation, the contour self-energies,
Eqs. (3.15) and (3.16), are given by

where

E'(p ) =+ [p + (m —gP)~]'~2 . (3.78)
X ' (x,y)=ig G ' (x,y)b, ' (y, x) (3.81)

We see that, at least in the mean-field approximation, f
and f~ represent the number of fermions and antifer-
mions, respectively, with momentum p. We emphasize
that f and f also depend upon the space-time point R but
this dependence has been suppressed for clarity.

II (x,y) = —ig'trG ' '(x,y)G ' (y, x) . (3.82)

Upon Wigner transforming with the help of Eq. (A5) in
the Appendix and inserting Eqs. (3.40) and (3.67), we ob-
tain, after tedious algebra,

d d k
X (p)= (2') ig—j 3 3 [y"p„*(q,ez+)+m*(q, Ez )]ZF(q, e'+)Zii(k, cubi, )

(2~) (2~)

X [ ni, (1 f„)5(po—e++—cok)5(p —q+k)+(1+nk)(1 f )5(po ——e+ —cok)5(p —q —k)]

(2') ig— [y"p*(—q, —e )+m*( —q, —e )]ZF( —q, —e )Zii(k, cok)
dq dk

(2~) (2~)

X[n„f~5(p, +~~ +~„)5(p+q+k)+(I+n„)f~5(p, +~~ —~„)5(p+q—k)],
d d k

X (p)=(2~) ig I 3 3 [1'"p*(q,e+)™(q,e )]ZF(q, eq+)Zii(k, coi, )(2~)' (2')
X [nj,f 5(po —

e~
—cok)5(p —q

—k)+(I+ni, )f~5(po —
ez +coi, )5(p —q+k)]

+(2m) ig [y"p*(—q, —e )+m*( —q, —e )]ZF( —q, —e )Zii(k, cok)
dq dk

(2~) (2~)

X [nk(1 f~)5(po+e~ —
cubi,

)5—(p+q —k)+(1+nk)(1 fz)5(po+ez +coi, )5—(p+q+k)],

(3.83)

11 (p)=11 (
—Z)

4ig y(2~) —
[ 0( —q, —e, —k, —ei, )ZF( —k, —el, )ZF( —q, —e )

~ 2 4 dq dk
(2 )' (2 )'

Xf~(1 fi, )5(p+q —k)5—(po+ez —ei, )

+ 0( —q, —e,k, el+, )ZF(k, ei, )ZF( —q, —
e~ )(1 f~)—

X(1 f„) 5(p +q+k) 5(p
—0+a +e„+)

+ O(q, e, —k, —ei, )ZF( —k, —ei, )Z~(q, e+)

Xf f„5(p—q —k)5(po —e+ —e„)
+ 8(q, e~, k, ei, )ZF(k, @i+, )ZF(q, e~ )

Xf~(1 f„)5(p—q+ k)5(po——
e~ +e„+ )], (3.85)



1906 JOHN E. DAVIS AND ROBERT J. PERRY

where, for convenience, we have defined the function

O(popo q eo)=S'Pp Sob *"(q eo)™(popo)m"(q,Vo) . (3.86)

Inserting expressions (3.83) and (3.84) into Eq. (3.72) for the particle distribution function yields the Boltzmann equa-
tion

+ f (p)=2g' O(q, e+,p, e+)ZF(p, e~+)ZF(q, e+)Zs(k, co„)BT BR Bp Bp BR

X [[nzfq(1 f~)—(2m ) 5(p —
q —k)5(Ep Eq coq)

+(I+nz)(1 f~)fq(—2m) 5(p —q+k)5(e„+ E—q+ —coq)]

—[ nI,f (1 fq)(2~—) 5(p —q+k)5(e~ —
eq +co&)

+(1+nz)f (1 fq)(2~) 5(p q k)5(ez e'q+ coq)]]

+antiparticle terms . (3.87)

Similarly, upon substitution of Eq. (3.85) for the polarization insertion into Eq. (3.43) for the boson distribution function
n, we find

Bco Q 8co& d d k+ n(p)=4g y I 3 30(q, eq, k, e„+)Z~(k, el+, )Z~(q, eq )Z~(p, co~)BR Bp Bp BR (2~)3 (2~)3

X [ [( I+n )f (1 fI, ) —n f&—(1 f )]—
X(2~) 5(p —q+k)5(co —e++e& )+antiparticle termsI . (3.88)

g —1g) (
R (3.89)

or, upon Wigner transformation and gradient expansion,

For simplicity, in deriving Eqs. (3.87) and (3.88) we
neglect any coupling to antiparticle states. It is easy to
include them formally, but it is not clear what to do with
them due to the nonperturbative nature of the equations.
Such an inclusion would imply renormalization, but, at
this point, an adequate nonperturbative renormalization
scheme does not exist. Moreover, since the theory is not
asymptotically free, it is questionable whether their in-
clusion makes any sense. ' This omission is also con-
sistent with our view of the phenomenaIogical nature of
hadronic field theories.

Equations (3.87) and (3.88) are coupled Boltzmann
equations for the fermion distribution function f (R,p)
and the boson distribution function n (R,p), respectively.
The left-hand sides have the familiar form of a drift term
while the right-hand sides represent collision terms. The
collision terms, illustrated in Fig. 3, include Pauli block-
ing as is evident from the presence of the 1 —f factors; in
addition, they contain the familiar terms proportional to
1+n indicating stimulated emission of bosons.

While the coupled Boltzmann equations, (3.87) and
(3.88), present a formidable numerical challenge, it is pos-
sible, under certain conditions, to "integrate" out the bo-
son distribution function n (R,p), reducing the task to
that of solving a single Boltzmann equation. To see this,
note that Eq. (2.32) for the boson function b, (x,y) may
be put in the form

(a) (b)

(d)

FIG. 3. Collision terms. In (a), a fermion with four-
momentum q absorbs a boson of momentum k and scatters into
a state of momentum p. In (b), a fermion scatters into a state p
through the emission of a boson with four-momentum k. (c)
and (d) represent processes in which a fermion scatters out of
state p into a state q. All these processes take place "on shell"
and the radiated mesons are produced by a process analogous to
Cherenkov radiation. These diagrams should not be confused
with Feynman diagrams.
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(R,p)=hz(R, p)II (R,p)b, „(rp)+O($) . (3.90) of Eq. (3.27) and neglecting terms of O(i') yields

The O(A) term may be neglected if the meson distribu-
tion functions vary slowly enough that local equilibrium
is maintained. It is easy to see that the approximation,
Eq. (3.90), guarantees that the collision terms of the bo-
son Boltzmann equation, Eq. (3.27), vanish provided one
neglects terms of O(A). This defines local equilibrium
Indeed, inserting Eq. (3.90) into the right-hand side (rhs)

0= II (R,p)h (R,p)II (R,p)5„(R,p)
—II (R,p)b, (R,p)II (R,p)6 (R,p) . (3.91)

The right-hand side of this equation vanishes and, hence,
the Boltzrnann equation for the boson field is trivially
satisfied in this limit. With the approximation, Eq. (3.90),
we can write

and

dq dq' dp 2X (R,p) = 4i —yg f ~bz(q —p) ~ O(q, q')ZF(p')ZF(q')ZF(q)
(2~)' (2~)' (2~)'

x[y"p*(p')+m'(p')]f (1 fp )(1—f„)(2—~) & (p+q —p' —q') (3.92)

g d g d pX (R,p) =4i yg f

~ha�

(p' p) ~
O(q—, q')ZF(p')ZF(q')ZF(q)

(2~)' (2m. ) (2m )'

X I:y"p*(p')+m*(p')]f, f, (1—f, )(2~)'(p+q p"' q')— — (3.93)

where we have neglected antiparticle contributions. Furthermore, it is understood that all four-momenta are on shell,
i.e., po =e+(p). Substitution into Eq. (3.72) yields the single Boltzmann equation

BT BR Bp Bp BR (2~) (2~)3 (2~)

XO(q, q')O(p, p')ZF(p)ZF(p')ZF(q)ZF(q')

x (f,,f,, (1—f, )(1—f, ) —f,f,(1—f,, )(1—f,, ) ]

x(2m) 5 (p+q —p' —q') . (3.94)

This equation has an easy interpretation. The left-hand
side is the drift or streaming term. This term describes
the measure-preserving evolution of a particle with
momentum p and velocity Bs+/Bp "drifting" through
phase space under the influence of a "force" —Bs+/BR.
This "force" is due to the direct and exchange contribu-
tions of the self-consistent Hartree-Fock potential gen-
erated by the other particles in the medium. In the ab-
sence of collisions, the right-hand side is zero and we re-
cover the classical Liouville equation. The terms in
square brackets on the right-hand side describe collisions
in and out of a phase-space element with Pauli blocking,
the delta function ensures that energy-momentum conser-
vation is maintained. The ZF(p) factors or, more precise-
ly 2poZF(p), are renormalizations for the outgoing fer-
mion lines due to the momentum dependence of the self-
energy; this feature was absent in previous investiga-
tions. '" The remaining factors represent the effective
cross section for the collisions which include dynamical
screening effects due to medium modifications. We em-
phasize that no matter how physically intuitive and ap-
pealing Eq. (3.94) is, it is only valid when the boson fields
are in local equilibrium —an unlikely scenario in an ener-
getic heavy-ion collision.

IV. DISCUSSION AND CONCLUSION

In the previous section, we present two sets of
Boltzmann equations. The first set consists of two cou-
pled equations, (3.87) and (3.88), describing the self-
consistent transport of mutually interacting fermions and
bosons. These two equations are derived under the as-
sumption that the pole value of the propagators dominate
the dynamics (Kadanoff-Baym Ansatz), thus leading to
the on-shell propagation of particles. Hence, the collision
terms reAect this on-shell constraint through the presence
of energy-momentum conserving delta functions and, as a
result, the bosons are created on shell. Such production
processes cannot take place in the vacuum because ener-
gy and momentum cannot be simultaneously conserved.
Creation via this process can only take place in the pres-
ence of a medium through the modification of effective
masses, etc. For this reason, the production process that
we describe here is analogous to Cherenkov radiation.
Although it is easy to produce photons via Cherenkov ra-
diation, it may be very difficult to produce mesons in this
manner since the mesons are quite massive. Because the
mesons are so massive, the only way for them to be pro-
duced by this process is for the medium to significantly
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modify the masses of the particles in such a way as to
maintain energy-momentum conservation. Clearly, this
could be a problem for the heavy mesons, and the utility
of these equations is problematic.

The second consists of a single equation, Eq. (3.94), for
the fermion distribution function. It was derived under
the assumption that the mesons remain in equilibrium
during transport. Stated in another way, the mesons in-
teracting with the nucleons are virtual particles. This
picture is expected to be valid at low energies below or
just above pion production threshold.

Clearly, the most physical scenario lies somewhere be-
tween the two extreme pictures described above. In a
reasonable picture, it should be possible to describe the
creation and destruction of real as well as virtual parti-
cles and not just one or the other. In this picture, the
production mechanism for mesons is bremsstrahlung,
where two nucleons exchange virtual mesons with space-
like momenta producing an off-shell nucleon which then
decays to an on-shell nucleon and an on-shell meson (Fig.
4). This mechanism is more physically appealing and
much more likely for meson production than the Cheren-
kov process described above. It must be emphasized that
any transport theory which employs a mass-shell con-
straint will inevitably lead to meson production via a
Cherenkov-like process. For this reason, it is necessary
to go beyond the quasiparticle approximation if a con-
sistent transport theory is to be constructed.

In this work, through a series of approximations and
A nsa tze, we derive semiclassical transport equations
from the underlying quantum field theory. Now one
must ask whether or not these approximations or Ansi' tze
are valid and, if so, under what conditions.

In an attempt to describe the dynamics classically, we
make the assumption that the gradient expansion is a use-
ful expansion. The validity of this expansion hinges upon
the assumption that the space-time inhomogeneities of
the system vary much slower than the average space-time
distance between successive collisions. Equivalently, the

"Off Shell"

FIG. 4. A possible meson production process which is out-
side the domain of the Kadanoff-Baym Ansatz (see main text).
A virtual (off-shell) meson is exchanged between two nucleons
producing and off-shell nucleon which subsequently decays into
a nucleon and a meson.

average distance between collisions is assumed to be
much larger than the distance scale set by the collision
time. In a typical XX collision, the mean free path be-
tween collisions, A, , is on the order of A, -(per) ' —1 —2
fm ' for energies around 1 GeV/nucleon. However, the
nuclear force is of approximately the same range, hence,
quantum effects are expected to be important. The argu-
ment presented here is for an individual nucleon-nucleon
collision. However, in a heavy-ion collision, many such
collisions take place and it is hoped that the quantum in-
terference effects will tend to cancel out. Perhaps this is
the reason for the success of semiclassical kinetic equa-
tions in the description of heavy-ion collisions; however,
it has yet to be demonstrated.

The most crucial Ansatz which dictates a Markovian
behavior of the resulting transport equations is the
Kadanoff-Baym Ansatz. This Ansatz is equivalent to put-
ting the particles on mass shell between collisions. How-
ever, from the energy-time uncertainty principle, nu-
cleons are expected to be off shell on the order of
fi/~-100 MeV or more where r=(pou) '-2 fm/c is
the time between collisions. Since this is a substantial
fraction of the nucleon mass, it is not clear whether the
assumption of putting the nucleons on their mass shell
between collisions is valid. This point was first em-
phasized by Danielewicz. Moreover, as eluded to ear-
lier, putting the mesons on mass shell results in the pro-
duction of mesons via Cherenkov radiation. Any other
production mechanism is outside the domain of the pole
approximation.

In this paper an attempt is made to present a systemat-
ic program for constructing relativistic Boltzmann equa-
tions from first principles by generalizing the same tech-
niques that have been successful in nonrelativistic trans-
port theory. We present the closed-time-path method of
Schwinger using a contour-functional approach which
parallels the approach used in the ordinary vacuum
theory. Using the Langreth-Wilkins rules to continue
from the contour to the real-time axis, we derive the gen-
eralized Boltzmann equation from the contour Dyson
equation, showing that the generalized Boltzmann equa-
tion is nothing more than a restatement of the Dyson
equation. At this point it is necessary to introduce an
Ansatz to relate the "off-time-diagonal components" of
the Green's function G (t, r') to its "time-diagonal"
components G ( t, t) since the generalized Boltzmann
equation has a two-time structure while a Boltzmann
equation only depends upon a single time. The Ansatz
fulfilling these needs used here is the Kadanoff-Baym An-
satz. This Ansatz consists of describing the system in
terms of weakly interacting quasiparticles with a "delta-
function-like" width for the energy spread. This is found
to be equivalent to the so-called "mass-shell" constraint
used by other authors. ' '"

To illustrate these ideas we work with a relativistic sys-
tem of spin-half particles interacting with spin-zero quan-
ta via a Yukawa coupling. Although the program out-
lined above is straightforward to implement for the bo-
sons, we find it convenient to use the spin-symmetric An-
satz, Eq. (3.54), of Bezzerides and Dubois to deal with the
matrix structure of the fermion Careen's functions. Hav-
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ing dealt with the discrete variables, we are then able to
derive a set of coupled transport equations for the quasi-
particle distribution functions. Finally, assuming local
equilibrium for the boson quasiparticles, we eliminate the
boson function in favor of one Boltzmann equation for
the fermion distribution function. We have demonstrated
that above meson production threshold, one cannot de-
scribe the dynamics of a system in terms of the ferrnion
distribution function alone, ignoring the dynamics of the
meson fields, regardless of whether or not medium-
dependent cross sections are used, if the boson fields are
not in equilibrium. This condition should be violated in
heavy-ion collisions of sufficiently high energy, invalidat-
ing any attempt which ignores dynamical mesons, relativ-
istic or nonrelativistic. This claim should be intuitively
obvious. At high energies, mesons must carry a
significant fraction of the energy and momentum after a
collision. This means any description of the equilibration
process should refer to the self-consistent transport in
this sector. In other words, one should be forced to con-
sider coupled Boltzmann equations for the particle distri-
bution functions. It is possible that an energy regime ex-
ists within which only pions need to be explicitly treated.

In this work, although the Lagrangian used is renor-
malizable, we neglect vacuum effects such as creation and
annihilation of antiparticles. Even if one were dealing
with a fundamental rather than an effective theory, the
nonperturbative approximations we employ would re-
quire nonperturbative renormalizations. Thus, the con-
sideration of vacuum effects is premature at this time.
Moreover, this work is aimed at phenomenological ha-
dronic field theories in which one usually ignores the vac-
uum anyway. We feel that a more immediate problem is
the choice of the parameters, e.g. , meson masses and cou-
pling constants. Unlike quantum electrodynamics
(QED), in which the renormalized parameters are mea-
sured experimentally, hadronic field theories such as the
Walecka model' have the peculiarity that parameters are
adjusted to fit the bulk properties of nuclei; hence, the
masses and coupling constants are chosen differently at
each level of approximation. The Boltzmanri equations
derived in this paper come from a "self-consistent
Hartree-Fock plus RPA" (random phase) approximation
to the Dyson equation —an approximation that goes far
beyond what has been done for the ground state in the
Walecka model. So, before attempting a numerical solu-

tion of the Boltzmann equations presented here, one

needs to study the ground state at this same level of so-

phistication (neglecting Dirac sea effects).
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A (R,p) —= f d r e'i'"~" A R +—,R —— (A 1)

with the inverse Wigner transform

A(x, y)= f e 'i'"~ A(R, p) .d4p

(2vrA')
(A2)

Here R =
—,'(x+y) and r =x —y.

From the definition of the Wigner transform it follows
that

A (x,y)~ A (R,p),

f d z A (x,z)B (z,y)

(A3)

~exp (az" az —a~.a&) A (R,p)B(R,p),
2

(A4)

A (x,y)B (y, x)—+ A (R,q)B (R, q
—p),d g

(2m %')
(A5)

where we use a right arrow to indicate a Wigner transfor-
mation has been performed. For the special case where
the two-point functions have no discrete indices (i.e. , no
matrix structure), we find, from Eq. (A4), the useful result

f d z [ A (x,z)B (z,y) B(x,z) A (z—,y)]

ir [a, A.a, B —a, A.a, B](R,p)+ o (e'),
or, in a more compact form,

[ A, B](x,y) ~iR[ A, B]pii(R,p)+0 (irt ),

(A6)

(A7)

which defines the generalized Poisson bracket. Similarly,
when discrete indices are absent we have

[ A, B](x,y) —+2A (R,p)B (R,p)+O(iii ) .

In addition, one can show that

f d x d yA (x,y)B(y, x)

(A8)

d4Zd4p
R,p B E.,p, A9

(2~A')

which is useful for calculating ensemble averages.
Finally, we list a few useful transforms that are fre-

quently encountered:

APPENDIX

In this appendix we gather together a number of useful
formulas involving the Wigner transform. The proof of
these formulas is left to the reader. The Wigner trans-
form of a two-point function A (x,y) (this should not be
confused with a contour two-point function) is defined
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