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A broken pair approach is developed to describe the high-spin band structures in rotating nu-

clei. The alignment processes are tacitly considered by including the higher angular momentum
broken pairs.

I. INTRODUCTION

The backbending phenomena observed in rotating
nuclei is now well established to arise from the crossing
of the paired ground-state band with the aligned config-
uration in which a pair of particles (or quasiparticles) is
decoupled from the paired state with the angular momen-
tum aligned along the rotational axis. The properties of
the nuclei in the high-spin regime such as this backbend-
ing phenomena have invariably been described in terms of
the cranked-shell-model (CSM) approacli. In this CSM
theory the influence of the strong pairing force between
the identical nucleons is taken into account through the
quasiparticle transformation. It is the system of nonin-
teracting quasiparticles which is cranked around an axis
perpendicular to the symmetry axis of the deformed nu-

cleus to describe the intrinsic structures in a rotating
coordinate system. While the CSM approach has been
successful in providing a qualitative understanding of the
backbending and predicts the bandcrossing frequencies
fairly well, ~ it has also exhibited serious drawbacks. For
example, the level interaction (repulsion) between the
ground-state band and the two-particle aligned config-
uration (the AB interaction) is underpredicted. Also a
fully self-consistent CSM approach predicts a vanishing
of the pair gap immediately after the first (AB) cross-
ing. This in any situation is unrealistic. It has been
suggested that these deficiencies in CSM are related to
the fact that the particle number is conserved only on the
average in the model. Thy number fluctuation becomes
exceedingly large at a band crossing. The improvement
upon the conventional CSM can be achieved through the
explicit particle-number projection,

Recently, at tempts have been made to develop
a cranked-deformed-shell-model (CDSM) approach in
which the particle number is built in the theory. In this
model a system of interacting particles in a deformed
mean field is cranked around an axis perpendicular to
the symmetry axis of the mean field. The eigenstates of
a, system are determined by an exact diagonalization of
the Hamiltonian. So far these investigations have been
restricted only for the case of the valence particles in a
single high-j intruder orbitial. Even in this simpler prob-
lem the dimensionality of the configuration space is quite

large, and this is expected to grow rapidly in a realistic
multi-j shell configuration space. To retain the advan-
tages of the method with a definite particle number, one
needs to truncate the basis in such a manner that the
low-lying states of the deformed system are reproduced
faithfully. The feasibility of the truncation scheme has
been investigated in a single- j shell with j =

2 where
the first few low-lying states of the system were very accu-
rately reproduced with a basis which represented a severe
truncation of the full space. Here we try to generalize the
truncation scheme in a multi-j shell configuration space
in the context of the broken pair approach (BPA).

The usefulness of the BPA is now well established in
the domain of low-spin spectroscopy. The BPA re-
duces the intractable matrices in the shell-model config-
uration space to a manageable form and at the same time
retaining all the basic features of the shell model. In its
application to spherical nuclei the BPA ground state is a
polynominal of collective bifermion excitations, all cou-
pled to angular momentum (J) equal to zero. The de-
gree of the polynominal is equal to the number of fermion
pairs (p). In this sense the particle-number conservation
is intrinsic in the formalism.

In its application to deformed nuclei the collective
bifermion excitations with angular momentum greatei.
than zero also need to be considered. For example, in the
case of quadrupole deformatiou the collective bifermion
excitations with J=Q, 2, and 4 need to be considered.

In order to describe the high-spin spectroscopy the in-
clusion of only low angular momentum collective excita-
tions is inadequate. This is clearly indicated by a model
study. It is seen that before the AB crossing J=o, 2,
and 4 are suFicient to reproduce the yrast configuration.
But above this band crossing the yrast band is mainly
composed of states with maximum alignment along the
rotational axis. The AB band crossing is interpreted as
due to the alignment of two particles. Thus in order to
describe this band crossing a pair of particles is to be
broken from the ground-state condensate. This broken
pair should be allowed to carry all the possible angular
momenta. The remaining (p —I) pairs are still in the con-
densed state of the collective bifermion excitations with
angular momentum coupled to J=O, 2, and 4. In order
to describe the higher-order band crossings more pairs
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need to be broken from the ground-state condensate.
The purpose of the present investigation is to present

the broken pair formalism in a very general form. A
generalized BPA subspace is discussed in Sec. II. The
Hamiltonian is presented in antinormal-ordered form (all
the creation operators on the left) in Sec. III. The general
overlap integral between the BPA basis is derived in Sec.
IV. In Sec. V, the expressions for matrix elements needed
are expressed in terms of the overlap integral. Finally, the
summary and the conclusions are presented in Sec. VI.

the new expansion coefficient ZJM(ab). In this way
t, he Racah recoupling algebra is bypassed which be-
comes quite involved for more than a one-broken pair
configuration. io In the following all the algebraic expres-
sions are therefore worked out in the rn-scheme repre-
sentation. The expansion coeffjcients are constrained to
satisfy the following orthogonality relations:

) XJM(ab)Xz M (ab) = 24J bMM,

II. BROKEN PAIR SUBSPACE

We start with a most general intrinsic state for p pairs
of identical valence nucleons

with

—) YJM QgM
JM

(2)

Qt~M = —) XgM(ab)At~~(ab),

The operators Ct (Cp) are the fermion creation (annhila-
tion) operators satisfying the following anticommutation
relations:

[C,Cp]+ ——[C,Cp]+ ——0, [C, Cp]+ ——b p.

The quantum numbers n, P, . . . denote the single-particle
shell-model states nl jm. The quantum numbers a, b, . . .
denote the same states but without the projection rn.
The square brackets in Eq.(4) denote a Clebsch-Gordan
coeKcient. The coefFicients YJM are the weight fac-
tors for various angular momenta and the coefFicients
XJM(ab) are the collective coefficients defining the cor-
related fermion pairs QgM. In other words, the coeffi-
cients YJM reflect the importance of the various angular
momenta and XJM(ab) refiect the collective features of
the system under consideration. We reexpress Eq.(2) in
terms of the single-particle operators

with the following phase relationship:

XJM(ab) = ( 1)(—1)&—+~'+ XJM(ba)

It is to be pointed out that in the present work we are
mainly interested in the various J truncations to Eq. (2)
as explained in the following.

In the case of spherical nuclei it is b elie ved that the
ground state is to a good approximation a generalized
seniority zero state, thus implying that for spherical
nuclei only J=O is sufficient in Eq.(2). In the case of de-
formed nuclei, the higher angular momentum states also
need to be included in Eq. (2). For example, in the case of
nuclei with quadrupole deformation J=O, 2, and 4 terms
need to be considered in Eq.(2) to reproduce i the
low-lying excitation spectrum. For high-spin states, as
mentioned in the Introduction, J=0,2,4 are inadequate.
As an illustration, in a simple case of a Hamiltonian with
monopole pairing (no deformation) and Coriolis forces, i7

the yrast line before the AB crossing is essentially a
seniority (v) zero state. But above this band crossing the
yrast band is composed of states with maximum align-
ment along the rotational axis. The AB interaction in
this model case is due to the crossing of v = 0, J = 0
state [or zero broken state in the spherical limit of Eq.(l)]
with v = 2, J = M = (2j —1) state (or one broken pair
state), where j is the intruder orbital under consider-
ation. Therefore, in order to describe the yrast band
above the AB crossing, the state M = J = (2j —1) also
needs to be included in the ground-state condensate for
the model Hamiltonian. In a realistic situation where
t, he Hamiltonian also contains a deformation force, the
ground state can be represented by

~Cp) = Np ) yzM(ab)AJM(ab)(1 t)" '~0).

(6)

with

ZJM (np) =
M XJM (ab)Y~Mm mpM

In Eq.(6) we have decoupled a two-particle state and
the resulting Clebsch-Gordan coefficient is coupled with
the expansion coefficients XgM(ab) and YJM to define

In the above equation a pair has been broken from the
condensate Eq.(l). The broken-pair angular momentum
J in Eq.(ll) is allowed to carry all the possible values.
In contrast, the pairs in the condensate (I't)" are re-
stricted to carry only J=0, 2, and 4 angular momenta.
In order to describe the higher-order band crossings more
pairs need to be broken from Eq.(1). Finally, if all the
pairs are broken, one spans a space equivalent to the com-
plete shell-model space and consequently one may obtain
the exact ground state (as well as all the other states) by
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diagonalization of the Hamiltonian in that space.
A general b-broken pair state can be written as

IC'(~i~2 ~~b))

(@ol&l@o)
(C'ol@o)

which can be rewritten in the following form:

(@oIC'o) (@ol~ lb@o) —(C'o lb'C'o) (@olif l@o) = o (14)

= N(oio2 nlrb)

2b The above variation leads to a set of nonlinear coupled
equations that determine the ground-state parameters.
The variation of I@o) is given by

where N(ninz nlrb) is the orthogonalization coeffi-
cient. It is to be noted that 6-broken pair state has to
be orthogonal to all states with less broken pairs. The
spectrum is obtained by diagonalizing the Hamiltonian
in the BPA basis Eq.(12) .

The ground-state parameters X and Y' in Eq. (12) are
obtained by minimizing the energy of the ground state

lbC'o) = No (I')"Io)
XgM ab

all d

lbC'o) = No (I'tPIO)
~l+J M

The differential of (I' t)& is given by

(I' t)" I0) =
I

— ) p, Yg M Xg M {a'b')C, Cp, I0),

or

(I' t)" Io) = » A' ( b)(1't)" 'Io)

H = Hg+02,

where the orthogonality relation of the X's has been em-
played, i.e.,

( b)
J'M'(a )

H = ) c,bCtCp
aP

+- ) g(l + 6 b)(l+ b,d) J(ablv lcd)g
a,bcd J

x [At&(ab) x A J(cd)]oo,

= 4z'4&M'[ban'4b' ( 1) bab'bba'] ~ (19)

We also have

with

A&M(ab) = ( 1) [AJ—M(ab)]
= (—1) Ag M(ab). (22)

= —) p XgM( b)CtCpt(I t)" 'IO).

(20)

It is evident from Eqs. (18) and (20) that the variation
of IC'o) is essentially a one-broken pair state. Therefore,
the overlap integral (4I64) is an overlap between a zero-
broken pair state and a one-broken state. In the next
section the Hamiltonian is expressed in the antinormal-
ordered form. This is quite useful as all the matrix ele-
ments can be expressed in terms of the overlaps between
the BPA states.

The first, term of the Hamiltonian Eq.(21) cont, ains the
single-particle energies e~b obtained from a choosen av-

erage potential. The second term of Eq. (21) contains
the coefficients (ablvlcd)g, denoting the anti-symmetric
normalized two-particle matrix elements of the assumed
residual nucleon-nucleon interaction. We rewrite the two-
body int, eraction as

Hz ——) JGq(abed)[A&(ab) x AJ(cd)]oo,
abed J

where Gg(abed) are still antisymmetric but now un-
normalized matrix elements given by

GJ(abed) = (ablvlcd)qg(l+ b~b)(1 +6,q). (24)

III. HAMILTONIAN

The general Hamiltonian containing one- and two-
body terms is written as

We now rewrite the Hamiltonian Eq. (21) in such a way
that, all the annihilation operators occur on the right. It
is quite useful since all the matrix elements can be ex-
pressed in terms of the overlaps between the BPA states.
The antinormal-ordered Hamiltonian is given by
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H =) . p(b.p
—CpCt)+ — )

aP '-P.bJM-
x Gq (abed) [P(oP)b„~bpq —P(nP)P(pb) bp~C~C~ + CqC~Ct Cpt j, (25)

where

P(nP) = 1 —n ~ P. (26)

IV. GENERAL OVERLAP INTEGRAL

The matrix elements of the Hamiltonian Eq. (25) between the BPA basis states Eq.(12) can be expressed in terms
with P," i Cp, Q" i C . sandwiched between the pair condensate. In order to evaluate this matrix element it, has to
be brought to the normal-ordered form. We start with n=1,

Cp, Ct, = S,p, —Ct, Cp, ,

and for n=2

(27)

Cp q Cp q Clt q C~2
= P (&i o'2 )ba q p q ba q p q

—P (P1P2 )P (o' i a 2 )bn q p q Clt q Cp l + C~ l Clt 2 Cp q Cp q (28)

where P(nP) is defined in Eq. (26). For n=j we have

Cpl CP2CPSCn, Cn, Cn, = (~» ~2~s)( P(~2~s) [b~lp3S~2p2b~apl P(~il ~~~s)b~l pab~2p2Cn, Cpl I

-P(Pi, P2Ps)b, p, Ct Ct Cp, Cp, ) —Ct Ct Ct Cp, Cp, Cp, ,

with

P(n, Pp) = 1 —n &-+ P —n ~ y. (30)

In a general case

(
c'p, c't .

(i= i ) kg =1 )

(
P o,„oj~ b~ p

j=i+1 i=1

n —1

+P ~, ~, )(1)"
j=2 p=l

P(n, , ~~)
j=i+1

("
Cp,

)

where

ls 4 ~

i=1
P n;, nj ——P

j=i+1
P, n2,

n

P(~~-i, ~~)
)

(32)

P n;, = 1 —) n; ~ n~.
2

In order to evaluate a general overlap integral between the BPA states we reexpress (I' t)" as
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) Zz, M, (nro2)Ct Ct, —
a j a2JyMg

) Zg, M, (nsn4) C,C,
a3n4 J3M3

ZJ„,M„,(a„—r, n )C
Jn-iMn-X

or in a compact form,

a=1
odd

Zg. (n;, n;+r) Ct . .

Using the above expression and Eq. (31) the general overlap integral between the BPA states is given by

(m' ) (m
O„(n, , . ;p p, ".p, ) = (ol(r)

'
C&), , Ct (rt)&l0)

i=1 i=1

(g) -(u+»')
&m+ 1 ) &re+2 &

- ~ ~
& n

with

P o,;,
j=i+1

1 ~ la

'+
odd

Zg, (n;, o.;+r)

n = 2p+m = 2p'+m', (37)

and m ( m since in deriving Eq.(36) the variables (P +r, P +2, . . . , P„)have been summed over. Equation (36)
is a general overlap integral between the BPA states and is central to all the numerical calculations. Obviously an
optimum algorithm is needed for the computation of this overlap integral. For instance, it is to be realized that most
of the terms on the right-hand side of Eq. (36) when summed over the variables (n ~r, n +2, . . . , n„)vanish since
the terms with summation over any two repeated indices is not permitted by the Pauli principle. In the computer
code the summation in Eq.(36) should therefore be restricted only to the antisyrnmetric combinations of the summed
variables. For a fast processing of these antisymmetric configurations the bit manipulation technique as used in the
Glasgow shell-madel code may need to be employed.

V. MATRIX ELEMENTS

In this section the various required matrix elements are expressed in terms of the overlap integral derived in the
last section.

The overlap between the BPA ground state with n particles is given by

(C'olc'o) = N 0 (0, 0).

The overlap between the variational state lbC&p) and the ground state leap) is given by

(@pl x, , lC'o) = &o 2&~M ). ' ' I O~(o'ro'2, 0)
XJ~(&r&2) n2a1 m&2

(@oI y leap) —Np ) XJM (el& ay)On(o!r ng, 0).
JM
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Finally, we express the Hamiltonian matrix element

(~'(p pi)IHIC'(~i " ~ ))

= N(oi . . o. )N(Pi . P )

x ) ~~ +, i +, [b~„„+,p +, O„(ni n~;Pi . P~~) —0~+i(oi n~n~+i. , Pi . P~~P~~+i)]
k ct' m. + 1 P rn + 1

ap +, ip +,
rnp, rnp, M4 rn~~ra+1

p~+x p~+~ &M

~+i ~+& ~+i ~+2)l. ( ~+iP~+i)~~ +ip +&~n +gp +gOn( oi' o'm|Pi ' Pm')
—I'(m+i, o'~+2)I'(pm+ip +p)& „+,p +,0 +i(ai . . n +i, pi . p p +,)]

+O~+&(i ' ' ~m~m+l~na+2i pl ' ' ' pmpm+1pm+2)

VI. SUMMARY AND CONCLUSIONS

In the present work a broken pair approach has been
developed to describe the high-spin band structures in
rotating nuclei. This BPA space is a subspace of the full
shell-model configuration space.

It is observed that the yrast configuration before the
AB crossing is a fully paired state. For moderate de-
formations the dominant components in the paired state
are the pairs coupled to angular momentum J=O, 2, and
possibly 4. However, above the band crossings the yrast
configuration is composed of the states with broken pairs.
For example, in order to describe the AB crossing a pair
is to be broken from the paired state. To take account
of these facts a general broken pair state has been de-
fined in Sec. II. The general overlap integral between the
BPA basis states has been derived in Sec. IV, and the
required matrix elements have been expressed in terms
of this overlap in Sec. V.

To conclude we note that the present approach is an
alternative shell-model formalism for studying the high-
spin states in rotating nuclei. The present approach com-
pletely works in the real particle shell-model configura-
tion space and therefore the particle number is intrinsic
in the model.

It is to be added here that the general broken pair
state defined in Eq.(12) does not have a definite angular
momentum. The explicit angular momentum projection
can be avoided by employing the cranking approxima-

tion. This is done simply by including a one-body term
—~J~ in the Hamiltonian. The problem of large angu-
lar momentum fluctuation at the band crossings in the
cranking approximation can be partially remedied in an
angular momentum constrained cranking model. This
is achieved by using the cranking frequency u as a La-
grangian multiplier in the Hamiltonian and varying it
self-consistently with the constraint (J ) = QI(I + 1).
The finer details, for example, the repulsion between the
bands may be sensitive to the approximation made for
the angular momentum projection. Nevertheless, the an-
gular momentum projection can be explicitly performed
as in the MONSTER approach. 22 In the practical appli-
cations, however, the MONSTER basis is restricted to a
condensate of pairs with axial symmetry, of which then
only one or sometimes two pairs are broken. In con-
trast, in the present formalism no axial symmetry is as-
sumed and hence explicit three-dimensional projection
is needed. Moreover, the number of broken pairs is not
formally limited in the present approach. Of course, the
possibility as to how many broken pairs are feasible in a
particular problem is to be borne out of the calculations.

The exp licit numerical calculations b ased on the
present formulation are in progress and will be reported
in the future.

The author wishes to acknowledge P. Ring, S. Pit-
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manuscript.
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