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The structure and properties of the superdeformed giant dipole resonances (SDGDR) in rotating
l6-152yy 132-136Nd, and ®~34Sr even nuclei are studied based on the linear-response theory with
self-consistently determined superdeformed mean field. The effect of ¥ deformation as well as the
triaxial superdeformation on the SDGDR is also investigated. The obtained common features may
serve as the criterion for the observation of the SDGDR. The features are understood at a micro-
scopic level by analyzing the distributions of the unperturbed p-h pairs connected with E1 opera-

tors.

I. INTRODUCTION

The giant dipole resonances (GDR) in the y-ray spec-
tra following heavy-ion fusion reaction (HI,xn) provides
an exciting opportunity to study the properties of hot ro-
tating nuclei, particularly nuclear shapes varying with in-
creasing temperature and spin as well as thermal shape
fluctuation. The first measurement of GDR structured
on nuclear high spin states was made at LBL.! The first
clear evidence that deformation plays an important role
in determining the GDR shape in highly rotating nuclei
came from the Neils Bohr Institute (NBI) experiment? on
the decay of the compound nucleus Sn*. A recent
series of experiments at Seattle® apply the systematic of
the GDR at T=1-2 MeV and I =(0-25)%, in a wide
variety of excited nuclei from A4=46 to 166. All these
are for normally deformed nuclei. The first superde-
formed (SD) rotational band was found in *’Dy at Dares-
bury;* the ratio between the long and short axes of nu-
cleus is about 2:1. Since then more and more superde-
formed nuclei were discovered at high spins in 4=130,
150, and 190 regions; for example, see Ref. 5 and refer-
ences therein. It is very interesting to search for the
GDR built on the SD states (SDGDR). It is not only the
subject of discovering a new kind of the GDR but also
the subject related with the question of whether the SD
states are populated by means of the decay of the
SDGDR in the heavy-ion fusion reactions. A very recent
experiment® on the decay of the GDR in *’Dy* reported
no convincing evidence for the SDGDR in the residual
nucleus ’?Dy which was found to be superdeformed in
the yrast spectroscopy study. This indicates the very
difficulties of such observations, for the SD intensity is
very weak, generally less than 1% of the total y-ray in-
tensity in the rare-earth nuclei. Thus more quantitative
and detailed theoretical studies are necessary and helpful
for such observations of the SDGDR in a sense. The
GDR in normally deformed hot rotating nuclei has been
studied theoretically in detail; however, only very limited
work has been carried out concerning the GDR built on
superdeformed states. This article presents the theoreti-
cal results of the SDGDR in 146~152Dy, 132-136N(d, and
80-845r even nuclei, calculated by the linear-response
theory based on the cranking mean field. The model is
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described briefly in Sec. II. The results and discussions
are given in Sec. III. The summary is in Sec. I'V.

II. THE MODEL

The present SDGDR calculations are based on the
thermal linear-response theory, which is equivalent to
thermal RPA and has been tentatively used as a powerful
technique to study the GDR in hot rotating nuclei; for
example, see Refs. 7-10. The calculations include the
following procedure: (1) to calculate nuclear shapes at
each angular momentum self-consistently with respect to
€, and y deformations by the cranking-shell-model calcu-
lation of Sturtinsky type;!! (2) to calculate the intrinsic
photon absorption cross sections for the E1 dipole excita-
tion modes associated with the equilibrium superde-
formed field which is obtained in step (1), by solving the
equation of deformed dipole response function at a finite
temperature and without pairing; (3) to make transforma-
tions for the cross sections from the intrinsic into the lab-
oratory frame.

The shape of the GDR is mainly determined by the de-
formation of nuclear states on which the GDR is struc-
tured. The temperature and rotational motion have only
a small effect on both the centroid energy and the width
of the GDR for a fixed deformation, but they may in-
directly have a strong effect, namely, through inducing
the deformation changes and thermal shape fluctuation.
Therefore, it is necessary to calculate nuclear shapes self-
consistently in a completed GDR study. The validity of
neglecting pairing in the random-phase-approximation
(RPA) calculation is found from the fact that the yrast
SD states are formed at very high spins, where the pair-
ing, at least the static pairing, is collapsed or strongly
weakened. And besides, the pairing plays a negligible
role in determining the shape of the GDR once the defor-
mation is fixed. In fact, to include the pairing in the cal-
culation of nuclear shape is more meaningful than in the
RPA calculation. The thermal effect is also not con-
sidered in the self-consistent calculations of nuclear
shapes, because the SD minimum is found to be not sensi-
tive to a finite temperature 7. We have checked and
found by the thermal cranking model calculation of the
total free energy surface that the SD minimum at very
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high spins is flat and cannot persist at higher tempera-
ture, and is basically washed out at 77> 0.5 MeV in con-
sidered nuclei. Thus it is expected that the SDGDR may
be only observable in a cold nucleus. Therefore, it may
be more instructive to present the calculated results of
zero temperature, while the effect of a finite temperature
on the SDGDR is discussed in spite of the doubt about
the existence of SDGDR at higher temperature. The re-
sults presented in the present article are for zero tempera-
ture, otherwise it must be stated. The thermal effect is in-
cluded in the calculations of photon absorption cross sec-
tions by taking into account the thermal occupation
numbers n,(T), and the thermal shape fluctuation which
makes the width of the GDR broadening® is not con-
sidered in the present study.

With the above physical considerations, the Hamiltoni-
an of a deformed system with a dipole-dipole separable
effective interaction may be written as

H=h(d)—-wm,j1+2x#D:Du, (1)
1

where the first two terms describe the single-particle
motion in a superdeformed potential rotating around an
intrinsic axis 1 with a rotational frequency w,,,, and j, is
the projection of single-particle angular momentum along
the axis 1. The deformation parameters ¢,, €4, and y are
abbreviated to “d”. The third term in (1) is the dipole-
dipole residual interaction. The coupling strength pa-
rameters X, U= 1,2,3, differ from each other along
different axis u for a deformed nucleus.

We assume that the deformed rotating mean field in (1)
is of reflection symmetry. Thus only the dipole-dipole in-
teraction term in (1) contributes to the thermal RPA
equation since the GDR is formed by the excitation of
negative parity. This allows us to determine the superde-
formed mean field, namely, the deformation parameters
d, in advance by an appropriate way, and afterwards to
solve the RPA equation just as an individual problem.
By solving the eigenequation of the first two terms in (1)
one obtains the single-particle energies e’ and the corre-
sponding wave functions |a). According to the cranking
model, the total angular momentum of the nucleus may
be calculated as the expectation value of j, operator
I=I,=3{alj,|la), where the summation runs over all
levels occupied by nucleons. The resulting single-particle
states are employed as the basis in which the thermal
RPA equation of Hamiltonian (1) is solved in the frame-
work of linear-response theory.

The response function R (E), describing the response
of the system to an external dipole radiation field with en-
ergy E, is given by the linear-response equation'?

R =R°+R%R , )

where Y is a diagonal matrix whose elements are

X=X O R° is the response matrix without residual

interaction ( X#:O)’ whose elements are given by
(alD,|B)*(alD,|B)ng(T)—ny(D)]

R, (E)= ,
® 5, E—el+eg+il/2

(3)

where the thermal occupation factor n, (T)=1/{1
+expl[e? —A/T]} gives the probability for thermally ex-
citing a particle. In general, " in (3) is an operator
describing the very complicated couplings which are im-
possible to treat exactly in practice. Here we introduce a
phenomenological width representing the coupling to
more complicated configurations, the decay width, and
the continuum, the escape width. =1 MeV is taken in
the present calculations as a reasonable value.

The reflection symmetry of a deformed system leads to
the response matrix R (E) reducing into a 1X1 deter-
minant containing the R;; and a 2X2 determinant con-
taining the rest. The matrix equation (2) can be easily
solved by inverting the matrix. We chose the laboratory
frame such that the laboratory frame is oriented by the
Euler angles (0,7/2,7/2) with respect to the intrinsic
frame. The spherical tensor dipole operators in the labo-
ratory frame are

D, 0 —1/v2 —i1/Vv2] D
Dy |= 1 0 0 D, | . 4)
p_| lo 1~wv2 —i1/v2]|p,

Here the phase convention has been chosen so that under
the time-reverse transformation 7D #T‘IZ —-D,,
u=123. D, Dy, and D _ give rise to the E1 transitions
of I to I+1, I, and I —1, respectively, in the laboratory
frame. Transforming the dipole operators, as (4), and the
E1 transition energy from the intrinsic to the laboratory
frame one finds the following expression for the photon
absorption cross section in the laboratory frame:

o(E)=0op (E)top (E—fio)top (E+fiog), (5)
op (E)=—4m(e*/fic)E Im[R), 5 (E)] . ©6)

The response matrix element R, ;, may be calculated
from the elements of R by

Rp,p, 7 0 iz | |Rp+Ry;

Rpp |=|0 1 0 R, (7)
1 — 1

Rp »p 7 0 T3[Ry —Ry

III. THE RESULTS OF CALCULATIONS

The Modified Harmonic Oscillator (MHO) potential is
used in the RPA calculation. The Nilsson potential pa-
rameters k and u employed in the present calculations are
listed in Table I. We have checked that the GDR results
are not sensitive to k and u in the range of reasonable
values. The coupling strength Y, can be calculated as
(Ref. 13) x,=x (34 /NZ)M o), 1=1,2,3, where wq(u)
is the oscillator frequency which is inversely proportional
to the extension of the nucleus along the axis u. The as-
sumption of the volume conservation requires
#lwg( Dewg(2)wy(3)]'*=414 713 MeV. For a deformed
heavy nucleus, the dimensionless quantity x < 1, usually x
is adjusted to the main peak of the experimentally ob-
served GDR based on the ground state. Since such data
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TABLE 1. The Nilsson potential parameters used in the cal-
culations of the GDR and the shapes of Dy nuclei.

Protons Neutrons

N K n K n

0 0.120 0.00 0.120 0.00
1 0.120 0.00 0.120 0.00
2 0.105 0.00 0.105 0.00
3 0.085 0.34 0.095 0.28
4 0.064 0.60 0.070 0.40
5 0.060 0.58 0.067 0.42
6 0.058 0.56 0.065 0.42
7 0.056 0.54 0.062 0.38
8 0.054 0.54 0.062 0.34

are not available in considered nuclei, we chose an empir-
ical value x=0.75, 0.65, and 0.5 for Dy, Nd, and Sr nu-
clei, respectively. With these values of parameter x, the
present model calculation yields a reasonable mass A
dependence of the resonance energies, which coincides
with the systematic of the GDR energies for normally de-
formed nuclei, as given in Ref. 3. The single-particle
space for the GDR calculation includes nearly three ma-
jor shells of (proton N =3-7 and neutron N =4-8) in Dy
nuclei, of (proton N =2-6 and neutron N =3-7) in Nd
nuclei, and of (proton N =2-6 and neutron N =2-6) in
Sr nuclei, respectively.

The present shape calculations are carried out with
Nilsson potential and without pairing (A=0) for Dy nu-
clei, while with a more realistic Woods-Saxon potential
and with a phenomenological rotational frequency
w-dependent pairing for both Nd and Sr nuclei. We
take A(w)=Al[1—0.5(w/w.)?*] for w<w, and Alw)
=0.5A0(0w/0,)* for ©>w,. o, is taken to be 0.7 MeV
for both Nd and Sr nuclei in the calculation; for the de-
tails refer to Ref. 14 and references therein. Both
methods are good enough in determining SD nuclear
shapes at very high spins for the purpose of the study.
The hexadecapole deformation g, is fixed and the self-
consistent calculation is carried out with respect to €, and
v deformations.

A. Superdeformation

The deformation parameter ¢, is set to zero for the cal-
culations of the SD shapes of Dy nuclei and is taken as

TABLE II. The calculated superdeformation parameters and
the angular momentum 7/ ;, where the SD state becomes yrast.

Nucleus €, Y €4 I iy ()
146Dy 0.45 6 0.00 62
4py 0.48 4 0.00 64
10Dy 0.55 5° 0.00 68
132Dy 0.56 3° 0.00 64
132Nd 0.32 3° 0.011 32
134Nd 0.34 3° 0.020 32
136Nd 0.32 3° 0.025 34

80gyr 0.43 7 0.014 44
829r 0.47 5° 0.017 44
84Qr 0.41 48° 0.009 48

the liquid-drop value in the calculations of SD shapes of
both Nd and Sr nuclei for simplicity. The shape calcula-
tions result in nearly prolate superdeformed shapes for
the yrast states in ¢~ 152Dy even nuclei at the angular
momenta from 607 to 707, and for the yrast states in
132-136Nd even nuclei at the angular momentum around
327 and the yrast states in %°732Sr nuclei at the angular
momenta round 44%. However, the yrast state of 3*Sr is
found to have a superdeformed triaxial shape at the angu-
lar momentum I =48#. The corresponding values of €,
and y together with the angular momenta I, where the
SD states become yrast are listed in Table II.

B. Photon absorption cross section

In the phenomenological two fluid hydrodynamic mod-
el,’> the GDR is a collective oscillation of proton and
neutron fluids within the fixed boundaries of a rigid de-
formed shape. The peak energies are inversely propor-
tional to the extension of the nucleus along each axis.
For the superdeformed prolate shape, one expects two
components of the GDR far apart in energy. This
feature is revealed in the calculated total photon absorp-
tion cross sections presented in Fig. 1. The relative frac-
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FIG. 1. Total photon absorption cross section in the labora-
tory frame associated with the SDGDR: (a) for Dy at
1=62% (solid) and '"?Dy at I =644# (dashed); (b) for '*>Nd at
1 =324 (solid) and '*°Nd at I =344 (dashed); (c) for *°Sr (solid)
and %2Sr (dashed) at 7 =447 .
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tion of the energy-weighted sum rule (EWSR) presented
in the low-energy component is about 32% in *¢~ 152Dy,
being the value characteristic of a prolate shape. The full
width at half maximum (FWHM) of the absorption cross
section is about 2.5 MeV for the low-energy component
and 2 MeV for the high-energy component. It is seen
from Fig. 1(a) that the splitting is about 1.5 MeV larger
for '’Dy than for *®Dy. Obviously, this is because of
the deformation €, in 32Dy being larger than that in
46Dy, The SDGDR in 2Dy was previously studied in
Ref. 9, and the present result, Fig. 1(a), is actually very
similar to Fig. 8(D) of Ref. 9. The shape of the calculated
total photon absorption cross section for *Dy (and
159Dy) is almost the same as that for *°Dy (and *?Dy),
respectively, and thus not plotted in Fig. 1(a) for a better
view. This can be easily understood from the fact that
the calculated deformations of Dy (and '°°Dy) are very
close to those of '¢D (and '’*Dy), respectively, as seen in
Table II. The superdeformations for either 327 13Nd or
80—82gr are close to each other; therefore, the SDGDR in
either 1*2713°Nd or ®~82Sr have almost the same shape,
as seen in Figs. 1(b) and 1(c). The relative fraction of the
EWSR presented in the low-energy component is about
26% and 31% for Nd and Sr nuclei, respectively. The
calculated FWHM of the low-energy peak is always
larger than that of the high-energy peak in a SDGDR.
The difference in the FWHM between the low- and high-
energy components originates mainly from the difference
of their fragmentation widths caused by rotational
motion.

Figure 2 shows the total photon absorption cross sec-
tions for the SDGDR in "°Dy, 3*Nd, and 8gr, plotted
together with the decomposed three resonance shapes for
the transition modes I to I and I+1. One observes in
Fig. 2 that the low-energy component of the SDGDR al-
most only consists of transition modes I to I+1 since it is
far apart in energy from the resonance of mode I to I,
which contributes only to the high-energy component.
Consequently, the low-energy component presents basi-
cally pure stretched E1 transitions, while the high-energy
component is a mixture of all three modes and formed
with a large fraction of nonstretched transitions.

The calculation shows that the temperature effects a
little change in the shape of SDGDR for a fixed nuclear
shape. The high-energy peak shifts down in energy about
0.5 MeV, but has almost no change in its strength and
width when temperature increases from O to 1.0 MeV in
39Dy, The low-energy component of SDGDR presents
even a high persistency at higher temperature: The cen-
troid energy, the strength, and width have only a negligi-
ble change when temperature increases up to 1.5 MeV.

C. Anisotropy of the angular distribution

The present model is based on the assumption that the
hot rotating nucleus following the (HI,xn) reaction can
be described statistically by introducing the picture of a
finite temperature. The angular distribution of y rays
emitted from such a statistic system presents isotropic as
a result of averaging over the final-state spin. For E1 di-
pole transitions in a system with 7 >>M and I >>1, here

M is the projection of I along the beam axis, the angular
distribution of the emitted y rays relative to the beam
axis is W(8)«1+a,P,(cos(f)) with a,=—0.25 for
Al ==+1 modes and 0.5 for the A7=0 mode approximate-
ly. Thus the a, may be calculated as a,
=0.75(0D0/0)—0.25.

The anisotropy of angular distribution could occur for
given I and E due to the deformation. The dipole vibra-
tion along the axis 1, the rotational axis, does not change
angular momentum in the cranking limit 7 =1, and thus
corresponds to the A/=0 transition, while vibrations
along the other two principal axes correspond to the
AI ==1 transitions in each case. Therefore, the energy
splitting caused by the deformation will displace the
AI=0 and the Al ==1 transition energies and leads to
the anisotropy. For a similar reason, rotation itself also
leads to an anisotropy, but the effect is very small. How-
ever, we should keep in mind that a rotation as well as a
finite temperature may give rise to the change of the an-
isotropy through a large deformation change when rota-
tion and temperature are provided for a nucleus. The
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FIG. 2. Total photon absorption cross section in the labora-
tory frame associated with the SDGDR: (a) For Dy at
1 =068%; (b) For '3*Nd at I =32#; (c) for **Sr at 44#. The decom-
posed three resonance shapes for transition modes I to I (dot-
ted), I to I+1 (dashed), and I to I — 1 (dot-dashed) are present-
ed.
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calculated anisotropy W (90°)/W(145°) for the superde-
formed nucleus "°Dy at I =68% is shown in Fig. 3(a).
The large anisotropy around 9 MeV, the value closing to
the limit of pure stretched transitions, indicates that the
low-energy component of the SDGDR is basically
formed from the E1 decay of AI ==+1 modes. This con-
clusion will hold even if more realistic resonance width is
considered in the calculation. This may serve as a signal
of the observation of the SDGDR in an experiment of a
new type like that reported in Ref. 6. The large anisotro-
py (<1) is also found around 16.5 MeV where the high-
energy component of the GDR gets the maximum. It
reaches at a half of the nonstretched limit of anisotropy,
about 0.6, as see in Fig. 3. Generally, the feature at high
energy holds for the case of the normally deformed sys-
tem. However, it is expected that the isotropic point, as
an intersection point of the anisotropy curve and the iso-
tropic line W(90°)/W (145°)=1, is displaced at higher
energy for the superdeformation case than for the normal
deformation case in the same nucleus as the resonance of
AI=0 is displaced much higher in energy for the former
case. It is noted that the isotropic point may be shifted

Stretched limit

° 1.2 ;
el i
s
N (b)
20
: \/
% 0.8 i B4Nd 1=32
N
_ _ _ _Stretched limit
1.2
(c)
1.0
0.81 82gr 1=44 \/
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FIG. 3. The calculated anisotropy W (90°)/W (145°) in the
angular distribution of y rays from the decay of the SDGDR:
(a) for "°Dy at T =68#; (b) for '*Nd at T =32#; (c) for *Sr at
I =444,

downward when the complex doorway coupling is includ-
ed in the response function. But it is likely that the sub-
stantial upward shift of the isotropic point for the
SDGDR may be a sign of superdeformation, because the
isotropic point in the normal deformed GDR is hard to
shift up to such a high energy due to the coupling to
more complex configurations.

The calculated anisotropies W (90°)/W (145°) for
134Nd at 1 =324% and %’Sr at I =444 are shown in Figs.
3(b) and 3(c), respectively. The overall structure of the
anisotropy for either '3*Nd or ®Sr is similar to that for
150Dy, However, the large anisotropy around low-peak
energies maintains up to higher energy as going from
15ODy, 134N4, to %%Sr, coinciding with their peak energies.

D. The p-h pair distribution

The large €, deformation in SD states leads to very
strong j mixture in the single-particle wave functions and
consequently the AN=1 p-h pair spherical configurations
in higher N shell may contribute to the GDR more
significantly in contrast to the normal deformation case.
The exotic deformation together with rotation and tem-
perature will lead to the tremendous number of the p-h
pairs which have nonvanishing matrix elements of the E1
dipole operators. The patterns of the p-h pair distribu-
tions for [{D,)|, |{D,)|, and |{D;)| each larger than
zero are very similar to each other. However, this does
not mean that the intrinsic photon absorption cross sec-
tions, which describe the vibrations along the principal
axes 1, 2, and 3, respectively, will have similar structures.
We must bear in mind that we are working in a limited
p-h space and we should only look at the important p-h
pairs which have the matrix elements of the E1 operators
large enough so that they contribute to the GDR
significantly. One can see from Fig. 4 that the most im-
portant p-h pairs which have large D; matrix elements
are distributed as a narrow peak around the p-h excita-
tion energy of about 5 MeV, as shown by the
|[{D;)|>0.4 curve in Fig. 4(c). These p-h configurations
applied the unperturbed main microscopic structural
bases of the lower-energy component of the SDGDR in
150Dy, The important p-h pairs which have large D, and
D, matrix elements are distributed as broad peaks
around the p-h excitation energy of ~9 MeV as shown by
the |{D,)|>0.4 and the |{D, )| > 0.4 curves in Figs. 4(a)
and 4(b), respectively. They provide the unperturbed
main microscopic structural bases for the high-energy
component of the SDGDR in *°Dy.

From the calculations for **Nd and *?Sr one finds that
the most important p-h pairs which have large D; matrix
elements are distributed as a narrow peak around the p-h
excitation energy of about 6 MeV. The important p-h
pairs which have large D; and D, matrix elements are
distributed as broad peaks around the p-h excitation en-
ergies of ~8 (1**Nd) and ~ 11 (3?Sr) MeV.

Microscopically these important p-h pairs are present-
ed with large amplitudes in the collective p-h doorway
resonance which is a coherent superposition of p-h pair
configurations. Including the repulsive interaction be-
tween particles and holes shifts the resonance energy up
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FIG. 4. The number of the p-h pairs, per MeV, which have
large matrix elements of (a) D,, (b) D,, and (c) D;, plotted
versus the p-h excitation energy for [{D, )| > 0.2 (dashed), >0.4
(solid), and >1.0 (dotted) in the superdeformed '**Dy at
I =68%.

to observed values by a factor ~1.8. The large splitting
of two peaks in the SDGDR may be estimated by the
splitting of two peaks in the important p-h pair distribu-
tion with an enlargement factor of ~1.8.

E. Effect of y deformation

The break of the axial symmetry, namely, the y defor-
mation, brings the K mixture into the wave functions of
single-particle states and therefore leads to numbers of
p-h pairs which have nonzero matrix elements of the E1l
dipole operators and thus occasionally changes the distri-
butions of the p-h pairs. The present calculation shows
that even a small ¥ deformation will have a considerable
effect on the high-energy component, but not on the low-
energy component of the SDGDR. Figure 5 presents the
total photon absorption cross sections for '**Dy at 1=0,
calculated with three sets of deformation parameters,
namely, same &€,=0.55, but different y values of 0°, 5°,
and 10°. One finds that the low-energy component
remains almost unchanged in both the peak strength,
defined as the height of the resonance peak, and width,
while considerable changes are observed in the peak
strength and width of the high-energy component. The
full width at half maximum of the high-energy com-
ponent for ¥y =0° 5°, and 10°is 1.1, 1.5, and 2.3 MeV, re-
spectively. In contrast, the calculated increment of the

150
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FIG. 5. Total photon cross sections calculated with the de-
formation parameters g£,=0.55 and y =0° (dot-dashed), y=5°
(solid), and ¥ = 10° (dashed) for '**DY at I=0.

FWHM of the high-energy component as a result of in-
creasing I from O to 607 is about 0.4 MeV. The incre-
ment of the fragmentation width which is caused by in-
creasing the y deformation just accounts for the incre-
ment of the calculated width since thermal shape fluctua-
tion effect on the width is not included and the fragmen-
tation of the GDR strength is treated microscopically in
the model. The calculated width of the low-energy com-
ponent is 1.4 MeV for all the three sets of deformation
parameters. With increasing y deformation, the peak
strength of the high-energy component decreases while
the peak strength of the low-energy component remains
almost unchanged. Consequently, the calculated high-
energy to low-energy peak strength ratio is 2.2:1 and
1.2:1 for ¥ =0° and 10°, respectively. It should be noticed
that the integrated strength, namely, the energy-weighted
sum rule, does not vary much as ¥ deformation increases
from 0° to 10°% the calculated high-energy to low-energy
EWSR ratio is ~1.9 for ¥y =10° still being the charac-
teristic of the prolate shape. The effect remains when the
rotation is included; the calculated FWHM of the high-
energy component for ¥y =0° and y=10" is 1.6 and 2.7
MeV, respectively, in '*°Dy at I =64%. The peak split-
ting of two resonances in the high-energy component for
vy =10° as shown in Fig. 5 is even enhanced, but their
peak strength differs more from each other due to the fast
rotation. It should be noticed that the effect of such a
small ¥ deformation may be washed out by including the
more complex doorway couplings which are mostly asso-
ciated with the broadening of the resonance. Neverthe-
less, the above results indicate that a small ¥ deformation
leads to a considerable change in the shape of the reso-
nance and thus a self-consistent calculation with respect
to y deformation is necessary in a detailed theoretical
study of the SDGDR although the SD shape is expected
to be near prolate at the considered region of angular mo-
menta. The effect of the ¥ deformation can be under-
stood microscopically by examining the distribution of
important p-h pairs in their excitation energies similar to
those presented in Fig. 4. For an axial symmetry case,
the distribution of the p-h pairs connected by D, is the
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same as that of the p-h pairs connected by D,. However,
a small y deformation breaks the axial symmetry so that
the distributions of important p-h pairs for D, and D,
are no longer the same as each other. The calculation in-
dicates that the p-h pairs connected by D, are distributed
around lower excitation energies than for the p-h pairs
connected by D;. After the perturbation, this leads to
the strength fragmentation in the high-energy component
of SDGDR. In contrast, the distribution of the p-h pairs
connected by D; presents almost no change and thus the
low-energy component remains almost unchanged when
the y deformation varies from 0° to 10°.

The effect of the y deformation on the high-energy
component of the SDGDR may be also understood by
simply examining the fragmentation of the oscillations
along the axes 1 and 2. The difference of the oscillator
frequencies is proportional to e, deformation, Afw,
=tiwy(1)—#w(2)=2/V 3e,sin(y (414 /> MeV). For
a small y deformation the Afiwy, and therefore its result-
ing strength fragmentation, is small for the sin(y) factor
and its small g, in the normal GDR, but becomes much
more effective in the SDGDR for its very large €, and the
fact that the coupling strength is proportional to the
square of wg(u).

It is expected for a superdeformed triaxial shape that
the SDGDR has a completely different structure from
that for a nearly prolate superdeformed shape. As an ex-
ample, the present shape calculation results in a superde-
formed triaxial shape for the yrast state of 3Sr at I =484,
as listed in Table II. The calculated photon absorption
cross section for 8Sr at I =48# is shown in Fig. 6(a). The
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FIG. 6. (a) The total photon absorption cross section with
three decomposed resonances for the transitions 7 to I (dotted),
I to I+1 (dashed), and I to I —1 (dot-dashed), and (b) the an-
isotropy of the angular distribution for the triaxial SDGDR in
8Sr at I =484

decomposed three components for the transition modes
AI=0,£1 are plotted together in the same figure. As the
characteristic of the superdeformation, again the
SDGDR in 3/Sr has a large energy splitting between the
low- and high-energy components. However, by compar-
ing Figs. 2(c) and 6(a), one finds that the SDGDR in %Sr
is so different from the SDGDR in ¥Sr in both their reso-
nance energies and the widths. Moreover, considerable
strength of the SDGDR in #S8r is distributed to bridge
the valley between the low- and high-energy peaks, as
demonstrated in Fig. 6(a). This is the characteristic of su-
perdeformed triaxial shape. In fact, the extensions of a
superdeformed triaxial nucleus along the three principle
axes are so different that the corresponding dipole vibra-
tions along the axes have well separated frequencies, and
consequently the SDGDR has three components. The
bridge is actually formed mainly from the y rays emitted
from deexcitation of the E1 vibrational motion along the
axis 2. Both the low-energy component and the bridge
are formed from AJI =1 transition y rays, while the
high-energy component is structured by very pure AI=0
transition y rays. It is expected that the anisotropy of
angular distribution W (90°)/W (145°) reaches to the lim-
it of pure stretched transition in a large range of the ener-
gy E, say, up to 16 MeV, and reaches to the limit of the
nonstretched transition, about 0.6, at higher energy,
around 19 MeV. Indeed, these features are revealed in
the calculated anisotropy for the SDGDR in 3Sr at
I =484#, as shown in Fig. 6(b).

IV. SUMMARY

The structure and properties of the SDGDR in
146 152Dy, 1327136 g, and 0~ %Sr even nuclei are studied
by means of the linear-response theory with a rotating su-
perdeformed mean field which is obtained by self-
consistent calculation. The obtained superdeformed
shapes are nearly prolate for all these nuclei except 3*Sr
which has a triaxial shape instead. The basic features of
the SDGDR are that the splitting of the SDGDR is very
large. The low-energy components carry about 32%,
26%, and 31% of the EWSR for Dy, Nd, and Sr nuclei,
respectively, and are formed from very pure stretched
transition y rays. The calculated FWHM of the low-
energy peak is larger than that for the high-energy peak
in a SDGDR for all cases of Dy, Nd, and Sr, because an
additional fragmentation width is caused by the rotation-
al motion in the low-energy component. The anisotropy
of the angular distribution gets the maximum, closing to
the limit of the stretched transition, around the centroid
energy of the low-energy peak. The isotropic points are
much larger than those for the case of normally deformed
shape in corresponding nuclei. These common features
may serve as the criterion of the observation of SDGDR
experimentally. The calculation indicates that a small y
deformation has a considerable effect, much stronger
than that for the normally deformed case, on the width
and the peak strength of the high-energy component, and
thus the self-consistent treatment with respect to y defor-
mation is necessary to study the fine structure of
SDGDR although the SD states are often found to be
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nearly prolate shape. The above common features also
hold for a superdeformed triaxial shape, but a dis-
tinguished new feature is that the large fraction of the to-
tal intensity is distributed to bridge the valley between
the low- and high-energy peaks, and consequently the an-
isotropy of angular distribution reaches to the stretched

limit in a large range of the energy and to the non-
stretched limit around high resonance energy, for exam-
ple, as seen in the SDGDR for #Sr.
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