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Many-body techniques are used to develop a practical formalism for including an energy-transfer
dependence in the nucleon-nucleon interaction used in nuclear linear response models. An energy-
transfer dependence is naturally expected from the exchange of finite mass, finite velocity mesons.
The formalism is applied in a Tamm-Dancoff approximation model structure calculation for ' O.
The importance of meson retardation effects on the structure calculation is studied as a function of
the magnitude of unperturbed particle-hole energies. The relative importance of ring and ladder
contributions is also investigated. It is found that retardation effects can become qualitatively im-

portant when particle-hole energies are comparable to the mass of the exchanged meson as would be
the case for N* particle-nucleon hole configurations. While ladder kernels exhibit a significant
energy-transfer dependence, the actual results obtained including retardation when solving for the
ladder polarization propagator follow closely the results obtained using an instantaneous ladder ker-
nel. This result suggests a simple procedure for including retardation effects.

I. INTRODUCTION

Historically, most effective nucleon-nucleon interac-
tions used in nuclear structure or reaction studies have ei-
ther been of the type that contain no dependence on the
relative time between virtual meson emission and absorp-
tion [e.g. , V:—V(x, x')] or interactions containing a delta
function in the relative time [e.g. , V:—V( ,xx)$(t —r')].
The Fourier transform of the former interaction allows
for no energy transfer while the latter is independent of
the energy transfer. One expects an energy-transfer
dependence associated with virtual meson exchange that
would be similar to that characteristic of' the Klein-
Gordon propagator, i.e.,

(q —co +m~ —ie)

where m~ is the mass of the meson exchanged. Previous-
ly it has been shown' that, for nuclear matter comprised
of nonrelativistic nucleons coupled to vector and scalar
mesons in one-space and one-time dimension, dynamic
mesons produce small changes in observables compared
to a static potential theory. Apparently systematic stud-
ies in three-space dimensions and one-time dimension for
finite nuclei have not been performed. The purpose of
the present investigation is to outline a formalism that
can be used to study quantitatively the effects of retarded
or finite velocity exchanges on nuclear structure and re-
action predictions in three-space and one-time dimen-
sions for finite nuclei. Such a formalism should be of use
in studying reactions involving large energy transfer and
should naturally be embedded in applications of Dirac
phenomenology or relativistic field theory studies in nu-
clear physics.

Nonrelativistic or static models typically suppress the
energy-transfer term co in the boson propagator. From
examination of the propagator one would expect that re-
tardation effects might not be of qualitative importance

until co=mz. Thus, for example, studies of low-lying
particle-hole excitations ((20 MeV) in the random-phase
(RPA) or Tamm-Dancoff approximations (TDA) that
have relied on instantaneous interactions [Vo-5(t —t')]
are motivated by the fact that the meson energy transfers
expected to be of relevance (-20 MeV) are far below the
mass of the lightest exchanged meson (I —140 MeV).
But to our knowledge the effect of retardation on such
low-lying nuclear structure studies has not been investi-
gated quantitatively. The effect on energy-level spectra
and the nuclear linear response to external probes (such
as the electron) should be investigated as a function of the
unperturbed particle-hole energies of the nuclear excita-
tions of interest. It may prove to be necessary to include
retardation effects when nucleon internal excitation (iso-
bar particle-nucleon-hole state) plays an important role in
the nuclear linear response. In the next section, we use
standard many-body techniques to develop the desired
formal equations for studying particle-hole excitations in-
cluding retarded interactions. The equations obtained
reduce to the usual RPA and TDA equations in the limit
of an instantaneous interaction. In Sec. III we introduce
a simple model Lagrangian and truncated space in which
to apply the formalism summarized in Sec. II. The model
problem allows one to study the effects of retardation in a
TDA calculation leading to nuclear spectra and the lon-
gitudinal electron-scattering response function in ' O.
The strength of the assumed meson-nucleon coupling and
mass of the exchanged boson are taken to be consistent
with a typical phenomenological instantaneous interac-
tion. The magnitude of the unperturbed particle-hole en-
ergies are varied so that the characteristic differences be-
tween retarded and instantaneous results can be studied
as a function of the unperturbed energy spectrum versus
the mass of the boson exchanged. Such a study allows
one to estimate more precisely the error involved in ig-
noring retardation eff'ects in standard low-lying nuclear
excitation models as well as suggesting eff'ects that may
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be present, for example, in isobar-hole studies of
Gamow-Teller strength over a wider excitation enrgy re-
gion. The results obtained in this study are presented and
discussed in Sec. IV. Conclusions and suggested further
applications are summarized in Sec. V.

II. FORMALISM

The methods of many-body quantum field theory will
be employed to calculate the polarization propagator and
thus to study the structure of nuclear excitations. In the
approach we adopt, the structure of nuclear excitations is
characterized by the combination of the nuclear excita-
tion spectrum and "pure" particle-hole excitation admix-
ture coefficients C&"' associated with the nth excited state.
The C&"' are defined via

Cz"'=&qlp~ct (0)c z(0)~%'„&, (2. l)

where ~Vp& is the full interacting many-body Heisenberg
normalized ground state, ~'0„& is the nth full interacting
many-body normalized Heisenberg state with energy
E„(H 'P„& =E„~%'„&), cH&(0) is the Heisenberg represen-
tation of the annihilation operator for a single-nucleon
state P at time t =0, and cH (0) is the Heisenberg repre-
sentation of the creation operator for a single-nucleon
state a at time t =0. The random-phase approximation
or Tamm-DancoA' approximation which iterate the sim-
plest particle-hole interaction to infinite order, will be
used to calculate the polarization propagator.

As a preliminary to discussing the polarization propa-
gator and its relation to nuclear structure, we introduce
the following definition of the four-point function
II& .rs(y, x;x',y'):

ilI& . s(y, x;x',y')—:&O', IT[/ (x)fi ~(y)t/AH&(x')QHs(y')]l+p&

& +p T [PHp(y )P H (x) ] I +p & & +pl T[&HQ(y )4 Hr(x ') ] I +p & (2.2)

where PH (x) is the ath component of the fermion fiel
operator QH(x) in the Heisenberg representation

f H(x) = g fH (x) = g P (x)cH (t) . (2.3)

The symbol a denotes a complete set of single-particle
state labels.

In diagrammatic language,

/ IIp~. rs(y, x;x,y ) =

X

ag
Y

We reduce the four-point function to the usual form for
the polarization propagator II& . s(x, x') via

iII& . s(x, x')= lim iII& .rs(y, x;x',y') .
+~X

(2.4)

jCO(X X ) 'Q
P~;yS ~ (2.5)

(in this paper we use units where fi=c = I). The frequen-
cy space Fourier transform iII(co) can be expanded in
terms of the admixture coefficients C&"' and the energy
E„ofthe nth excited state as

The polarization propagator can be expressed in terms of
single-particle wave functions, P(x), and the polarization
propagator Fourier transform in frequency space iII(cp)
as

co+(E„Ep)—irI—(2.6)

Res[IIp .rs(co=(E„—Ep))]=Cp"'C'rs'* . (2.7)

Thus, a knowledge of the polarization propagator is
equivalent to knowing the excitation spectrum and corre-
sponding admixture coefficients.

So far the discussion of the polarization propagator
and its relationship to nuclear structure is not limited by
assumptions regarding the dynamics or details of the in-
teractions involved. When details of the specific interac-
tion are included, the determination of the polarization
propagator is, in general, a difficult task. Our approach
to this difFiculty is to express, without approximation, the
four-point function as a Bethe-Salpeter equation. Then,
after making approximations in the Bethe-Salpeter equa-
tion, we calculate the polarization propagator. The ap-
proximations to the Bethe-Salpeter equation we consider
are denoted the RPA and TDA for retarded nucleon-
nucleon interactions. We require that they yield the con-
ventional RPA and TDA equations for nuclear structure
in the limit of an instantaneous nucleon-nucleon interac-
tion. '

As defined, the four-point function consists of all con-
nected diagrams with external legs originating (terminat-
ing) at x and x' (y and y') along with the product of two

The form of the right-hand side (rhs) of Eq. (2.6) makes it
apparent that the poles of i II& rs(co) occur a. t the excita-
tion energy (E„Ep), and th—at the residue of iII(co) at
these excitation energies is related to the admixture
coefficients C&"' via
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full propagators running from x (x') to y'(y). A subset of
all the diagrams derived by applying Wick's theorem to
Eq. (2.2) are those which cannot be separated into two or
more disconnected pieces by either deleting the four
external fermion lines or severing two fermion lines, one
of which must be internal. Diagrams in this subset are

l

termed irreducible diagrams. Summing all of the irreduc-
ible diagrams to obtain the Bethe-Salpeter (BS) kernel

K „(z',z, z",z"'),
one has the Bethe-Salpeter equation for the four-point
function i II& s(.y, x;x',y'),

ilIp .~s(y, x;x',y')=iII&'. ~s(y, x;x',y')+ JiII&" (.y, x;z', z)KBs (z', z, z",z"')

XiII . s(z",z"',x', y')d zd z'd z"d z"',
or diagrammatically

(2.8)

X Y

Y

it
y

X

a

8
Y

BS

z'8 Z
aPr

0
/4

X Y

In order to solve Eq. (2.8), we introduce the RPA or TDA. In principle, the kernel E of Eq. (2.8) should include all
irreducible diagrams; however, by summing a subset of the diagrams that compose the full four-point function, one can
obtain a polarization propagator that reduces in the limit of instantaneous interactions to the polarization propagator
derived in the usual RPA or TDA employing instantaneous interactions. Thus, the (nonunique) procedure we adopt for
extending standard linear response calculations (for instantaneous nucleon-nucleon interactions) to include retarded in-
teractions is to use a truncated kernel defined below in the Bethe-Salpeter equation

For fermions at space-time points x and x that interact via

6(x —x')=(g~lx ~x', (2.9)

appropriate (truncated) Bethe-Salpeter kernels for the RPA and TDA are given schematically by

K"„(z',z, z",z'")=r(g )E,"", ~5 (z —z')5 (z"—z"') (g )D,+, ~5 —(z' z")5 (z —z'—")]@pg
and

E, (z', z, z",z"')=I(g )E,"", ~5"(z —z')5 (z"—z"') (g )D,+, ~5 (z—' z")5 (z —z'"—)]0FDg,

where

0~~/ —= [0(v F)0(o F)0(F—p)0(F——p)+0—(p F)0(o F)0(F——v)0(F——p)

(2.10a)

(2.10b)

+0(v F)0(p F)0(F——p)0(F——o )+0(p F)0(p F)0(F—v) 0(F——o. )]—
0Pgg—:[0(v F)0(o F)0(F p, )—0(F——p) ], —

~VPOP-
Zp Z

(2.11a)

(2.11b)

(2.1 lc)

D vp(7p-
Zp Z (2.11d)

We note that the kernels given by Eqs. (2.10a) and (2.10b) are proper irreducible diagrams with theta-function restric-
tions on the fermion states (labeled by greek indices). Calculations using the TDA require the extra truncation of the
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Bethe-Salpeter inhomogeneity i II' ' as
Y X

iII&'. & (y, x;x',y')= —p

y 8

[(8(P F—)8(F —a ) ]

X Y

=ilIp &s(y, x;x',y')B(P F—)8(F —a) (no sum over aP) . (2.12)

Since the kernels given in (2.10a) and (2.10b) are contained in the full Bethe-Salpeter kernel, and Eq. (2.12) for 11(0)TDA

is contained in the full i II' ', the use of K of E in place of EBs along with i'II' ' or i'( ' in the Bethe-
Salpeter equation sums, without redundancy, a subclass of diagrams included in (2.8). It is natural to separate the RpA
or TDA kernel into ladder and ring parts according to [see Eqs. (2.11c) and (2.11d)]

and

2
+ladder

2
+ring =& E

(2.13)

(2.14)

Repeated application of the ladder kernel alone gives rise to diagrams such as

while repeated iterations of the ring kernel alone yields the ring diagrams such as

Cross terms between El,dd„and E„„ that come from iterations of K ' ' give diagrams termed as ring in conjunc-
tion with ladder (RCL) diagrams.

Examples of RCL diagrams are of the form

If all of the interaction lines contributed by the ring kernel are deleted in a ring diagram of RCL diagram, the remain-
ing pieces are all ladder diagrams. This allows the RPA (TDA) Bethe-Salpeter equation to be split into two equations
(of the standard "two-potential" form)

l. IIRPA(TDA) l gladder+ l. IIladder~ RPA(TDA)l. IIRPA(TDA)
ring (2.15)

l II = l H + l II(0)~RPA(TDA)l IIladder
ladder

It is possible to show that Eqs. (2.15) and (2.16) lead to the following set of equations:

(2.16)

IIRPA(TDA)( X i
) q ( )q ( a)qX( ie)qX( i

)
~

11 RPA(TDA)( )e
—ice(x —x '

)

pa;y5 & p a y 5 pa;y5 2m

& II RPA(TDA}(
) & 11 ladder RPA(TDA)( )+ill ladder RPA(TDA)( )I( ring RPA(TDA)(

) 11 RPA(TDA)(
pa; y5 pa; y5 CO l pa. ~p vpcr p CO l ~p. y5 CO

(2.17)

(2.18)

~ II ladder RPA(TDA)(
)

~ yRPA(TDA)(
pa; y5 4'TT'

(2.19)

lyRPA(TDA)( ) y(0)RPA(TDA)( )+ y(0)RPA(TDA)( &)g ladder RPA(TDA) + 0 ~ gRPA(TDA)(l pa. y5 6),a —l pa. y5 l pa ~p vpo p p., y5 4

(2.20)
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iXIi).rs (u, u)=iII&). rs( —,'(u+v), ,'(—U —u)),

iX& ).
~s (u, u) =iII)i ). ~s( —,'(u +U), —,'(U —u))8(P F—)8(F—a),

where

g ring RPA(TDA (03)—f e'ra' ' )& vpl&(z —z') lp(T &d (z —z'

g ladder RPA(TDA)(0i) eiro(z —z'
)& vi3IQ(z z') Icrii &d(z0 z'0)8v(zr~r

~P~P CO 8 Vp Z Z 0 p Z Z Rp (TDA)

and

(2.21)

(2.22)

(2.23a)

(2.23b)

(2.24)

We note that, for an instantaneous interaction, one may write

h(x —x')= i5—(x x'—)V(x —x') . (2.25)

Using the instantaneous nucleon-nucleon interaction in the RPA (TDA) integral equations above reduces the integral
equations to the conventional matrix equations for the RPA (TDA) admixture coefficients and excitation spectrum.

The discussion above generalized the RPA (TDA) equations (which yield the nuclear excitation spectrum and
particle-hole admixture coefficients) to include retarded nucleon-nucleon interactions. We now summarize standard re-
sults that allow one to calculate the nuclear electron-scattering cross sections if the nuclear excitation spectrum and
particle-hole admixture coefficient are known. In the one-photon-exchange approximation (linear response) and ignor-
ing nuclear recoil, one has the following equation:

d o(k~&i '~k~zf) 2Elsin 8/2
=4moM 1+ 5(ro —cog)

2 T

X . (co2 —q q)'
(q q)' J=O

I &fllM J""'(q)ll( & I'

2J +1
2

+ 20+ qq 6)

2 2qq
1&fllT I'(q)ll( & I'

I &fllT I "(q)lli & I'

2J, +1 2J;+1 (2.26)

M JcM"((q)= fjJ(qx)YJM(x)g (x)d x, (2.27a)

where a~ is the Mott cross section, E, is the electron's
initial energy, E2 is the electron's final energy,
co =E ] E2 is the electron enrgy loss, q is the momentum
transferred to the electron, MT is the mass of the target
nucleus, J, is the total angular momentum of the initial
nuclear state Ii &, cog is the excitation energy of the final
nuclear state

If & relative to the initial nuclear state, and
0 is the electron-scattering angle. The Coulomb mul-

C 1tipole operators M '"' and current multipole operatorsT" and 1™gare defined in terms of spherical harmonics
Y( (x), vector spherical harmonics Yzz, (x), spherical
Bessel functions j((x), and the nuclear current operator
j "(x)—:J "(x,x =0) as

d 0 I 2E, sin (8j2)
MT

(
2 2)2

X S (q, cr))
(q q)'

2

+ + tan —ST(q, co), (2.28)
2qq 2

Sl. (q, cd) = g 5(03—03f ) I & +f lj '(q)
I p; & I',

f
sr(q, ~)= g5(~ —~f) g I&+flj(q) ei(q)lq';&I',

f A, =+1

(2.29a)

(2.29b)

where the longitudinal and transverse structure functions
SI (q, co ) and ST(q, co ), respectively, are given by

T JMg(q) —= fjJ(qx)YJJ((x) j(x)d x . (2.27c)

Summing the cross section over all final states gives

T JM(q) —=—f curl[j J(qx)YJJ, (x)] j (r)d x . (2.27b)
q

where the ez(q) are the components of a unit spherical
basis with q=e0(q), and the current density operators
j "(q) are the Fourier transforms of the space-time
current operatorsj "(x),

f e 'q j "(x)d'x =j "(q) . (2.30)

We shall calculate, in a model problem, the longitudinal
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response defined as

dOL l

d0 oM

2E
&
sin 0/2

iVTC2

2 . 2x, s, (q, ~) .
(q.q)

(2.31)

The delta functions including co —co„dictate that the
cross section will have a nonzero value only when the en-
ergy transfer co is consistent with the nuclear excitation
spectrum. Consequently, the excitation spectrum calcu-
lated in the TDA or RPA results in a prediction of the
peaks of the observed electron-scattering cross section as
one varies the energy transferred. While the excitation
spectrum determines the peaks in the cross section, the
admixture coefficients Cp"' are necessary for the calcula-
tion of the reduced matrix elements of the multipole
operator which determine the shape of the cross section
as one varies the momentum transfer. In order to extract
these matrix elements one writes the current density in
terms of nuclear Hilbert space fermion creation operators
c and destruction operators cp as

j "(x)= g g (x)j "(x)g&(x)ctcp,
ap

(2.32)

In similar fashion, the matrix elements of the multipole
operators are given by

where g&(x) is a single-particle wave function corre-
sponding to the state label p. We note j ~(x) is an opera-
tor in the first quantized wave-function space containing,
for example, nucleon derivative or spin operators. The
nuclear matrix element ofj" is given by

&fjl"(x)li&= gg (x)j"(x)p&(x)&flc cali& . (233)
ap

Assuming that the initial state of the nucleus is the
ground state, and the final state has energy Ace„above the
ground state allows

&flj "(q)l~&= f e ""&flj "(x)l~ &d'x

= g f e 'q'"g (x)j"(x)g&(x)d x C'&* .
ap

(2.34)

&f lM JM"'(q)li &
= g fjJ(qx) 1'JM(x)p (x)j (x)pp(x)d'x C'&*,

ap

&flT j~(q)li &= g f P (x—)curl[jJ(qx)YJJ'[(x)] j(x)g,(x)d xC'~*,
& ap

&flT~gP(q)l& &= g f P (x)jJ(qx)Yq»(x) j( x)g&( x) d' xC'&* .
ap

(2.35a)

(2.35b)

(2.35c)

Thus, once a (TDA) RPA calculation yields a nuclear ex-
citation spectrum and the corresponding admixture
coefficients, the electron-scattering cross section can be
calculated from Eqs. (2.26) and (2.35).

III. A MODEL PROBLEM

—P (x)( —Vo+ ,'M~co„,x x)g(x), — (3.2)

T

() —Tcp. 7'y —m cp
2 2

Bt
(3.3)

In order to study the effects of retardation and apply
the formalism developed in the previous section, we now
introduce a model Lagrangian. The model is chosen so
that, as the velocity of meson propagation approaches
infinity, standard instantaneous results are obtained. The
model Lagrangian adopted contains a fermion field P and
a scalar boson field cp and may be written as

X =&&+X~ ' ig: f (x—)y(x )P(x ):, (3.1)

where

ta i a t vq'vq
2 Bt 2 Bt 2M&

2a' 2a &p
—V y+m y= ig: P —(x)g(x): .

at2
(3.4b)

The meson field propagator b,z '(x —x') for the X'
piece of the Lagrangian [Eq. (3.3)] is given by

—ik~(x —x')
d k

(ak ) —k —m„+ie (2~)

The meson propagator AFI
' contains a parameter (a)

which is used to switch ofF' and on retardation in the
fermion-boson system. When a = 1, the scalar meson
propagates at finite speeds, while ex=0 yields the instan-
taneous meson propagator whose space-time Fourier
transform contains a delta function in x —x' times a
Yukawa expression in lx —x'l.

In order to make the connection with standard instan-
taneous results, we adopt values for the meson mass m
and the coupling constant g that lead to a conventional
Yukawa phenomenological N -N potential.

The model nucleon Lagrangian L& is neither Lorentz

For this Lagrangian the field equations for g and y are

i = — +( —Vo+ —,'M~co„,x )P(x)+igy(x)P(x),
Bt 2M~

(3.4a)
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invariant nor translationally invariant. By not using the
Dirac Lagrangian, problems with the negative-energy nu-
cleon state are avoided. One could, of course, use a Dirac
form and simply suppress the negative-energy states. We
note the primary interest here is to investigate the effect
of using retarded interactions on previous nonrelativistic
calculations of nuclear structure.

The assumed harmonic-oscillator potential in
which breaks translational invariance, admits a discrete
spectrum to the noninteracting part of the Hamiltonian,
thus permitting the construction of a localized ¹ ucleon
noninteracting ground state. Furthermore, the
harmonic-oscillator wave functions and propagators have
a convenient closed form. In principle, the oscillator
could be deleted and Hartree states used to create the
finite nucleus ground state and propagators but the
harmonic-oscillator basis is sufficient for the present
model investigation (and has been used often in previous
particle-hole calculations).

The interaction Lagrangian is normal ordered with
respect to the ground state of the noninteracting Hamil-
tonian to more precisely define the model problem. The
normal ordering removes ambiguities resulting from the
fact that the g fields are operators and the order in which
they appear is important.

IV. RESULTS

Using the formalism outlined in Sec. II and the simple
model Lagrangian discussed in Sec. III, we have per-
formed TDA calculations for low-lying ( —

lyrico„,

)

particle-hole states in the mass-16 system. The
particle-hole space was truncated to include 2s(lp)
and ld(lp) ' states. Thus, the states considered would
naturally arise in a study of ' 0 low-lying particle-hole
states in a calculation where spin and isospin degrees of
freedom were suppressed. The inclusion of these discrete
symmetries (spin, isospin) could easily be included in the
model problem but should not be important for determin-
ing the energy dependence and magnitude of the retarda-
tion correction. The particle-hole states considered can
couple to angular momentum L =1,2, or 3.

The form of the scalar meson propagator,
[(qo —m ) —q +ie] ', suggests that differences be-
tween a single finite velocity meson exchange and the as-
sociated instantaneous Yukawa potential (same couplings
and meson mass range, but qo —=0) should be small when
(q /m) «1. Since both the RPA TDA involve multiple
meson-exchange diagrams with an associated integration
over all internal meson energies, the possibility exists for
a non-negligible difference between the nuclear structure
calculated for a retarded meson-exchange nucleon-
nucleon interaction and that for an instantaneous Yu-
kawa nucleon-nucleon potential. In any event, it is useful
to make quantitative estimates of the difference. In the
multiple-meson-exchange diagrams, the contribution of
the nucleon propagators to the integrand is diminished as
the nucleon energy moves away from the particle or hole
energies. Energy conservation at the meson-nucleon ver-
tices, along with this behavior of the nucleon propagator,
suggests that retardation effects may begin to manifest

themselves when the particle-hole energies are on the or-
der of the meson mass. In order to test this conjecture
and the extent to which retardation affects traditional nu-
clear structure predictions, we have performed TDA cal-
culations of the excitation spectrum, admixture
coefficients (residues of the polarization propagator), and
the nuclear longitudinal linear response for various mag-
nitudes of the unperturbed particle-hole energies.

Before discussing the excitation spectrum obtained
from a solution of the coupled integral equations given by
Eqs. (2.17)—(2.20) in the TDA and the model problem
defined above, it is useful to study the TDA ring and
ladder kernels defined by Eqs. (2.23a) and (2.23b), respec-
tively. The ring and ladder kernels (interactions) are
shown as a function of energy co in Figs. 1(a)—1(f) for the
diagonal ld ( lp) ', J= 1,2, 3 matrix elements. Note that,
with the conventions we adopt, one expects both the
TDA ring and ladder kernels to be pure imaginary for an
instantaneous real interaction V(x —x'). When co is less
than the meson mass, the kernels remain pure imaginary
for retarded interactions associated with meson ex-
change. However, as is shown in Figs. 1(a)—1(f), both the
ring and ladder kernels obtain a real part (loss of Hermi-
ticity) when co) m „,„and therefore real meson produc-
tion is possible. Such diagrams are not included in our
model and thus the effect is to have an interaction with a
real and imaginary part (much like a complex optical po-
tential that allows Aux to be lost above the threshold for
reaction channels not included in the model space). For
an instantaneous interaction the meson degree of freedom
is completely suppressed and the effects associated with
real meson production do not appear at any co. We note
from the figures that, for J =2 and 3, the variation of the
ladder kernel with co is greater than the co variation of the
ring kernel. The vanishing of the ring kernel for J =2 in
the model space studied [see Figs. 1(c) and (d)] is due to a
cancellation between Moshinsky brackets and is indepen-
dent of the interaction adopted.

As the energy co of the exchanged meson goes to ~, we
find that the kernels damp to zero. However, in the
range of co shown in the figures (for co) m), oscillatory
and other transient behavior is superimposed on the
damping limit that occurs for very large ~. It is not
surprising that the kernels are damped at large co. This
occurs because, in a given nuclear sheH model, the two
interacting nucleons have a fixed average separation
x —x'. For large ~ the typical meson exchange inter-
grand contained in

K(co)= f e""'(b,(r, x —x'))dr

becomes rapidly oscillating as ~ varies and satisfies
nor) 1. Therefore, contributions to IC(co) from meson
emission and absorption processes separated in time by
more than 1/co are suppressed. Thus, the time separation
of such effective processes decreases as the exchanged
meson becomes more energetic. The range R of effective
meson mediated nucleon-nucleon interactions must there-
fore satisfy
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FIG. 1. The 1d {1p) diagonal ring kernels (solid line) and ladder kernels (thin-dashed line) defined by Eqs. (2.23a) and (2.23b), re-

spectively, as a function of cu, the energy of the exchanged meson. Real and imaginary parts of 1C(co) are shown separately for
J=1,2, 3 as indicated. The wide-dashed vertical line indicates co=m, where I is the mass of the exchanged meson. For an instan-
taneous interaction one obtains a pure imaginary E(m) that is independent of co.

1
R =~~-

CO

As co increases, eventually x —x ' )R and the kernel
damps (because, on the average, the nucleons are not
close enough for the increasingly short-range interaction
to be effective). Note that the different co dependence of

the ring and ladder integrals makes it unwvise, without
further study, to drop the ladder contributions and sim-

ply renormalize the ring kernel.
A summary of the results for the J= 1 and 3 excitation

spectra as a function of unperturbed particle-hole ener-
gies for both retarded and instantaneous nucleon-nucleon
interactions is given in Figs. 2 and 3. In each figure one
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FIG. 1. (Continued).

finds that the retarded calculation prediction for E Ep
di6'ers from the instantaneous prediction by less than
10% when the particle-hole energies are less than ap-
proximately half the meson mass. As the particle-hole
energies become greater than m/2, the excitation spec-
trum for the retarded interaction changes from the in-
stantaneous interaction spectrum for the J=1 and 3
cases. (As noted earlier, the J=2 ring kernel vanishes
identically for the model under consideration. This re-
sults in a prediction for the J=2 energy state which is
essentially independent of whether a retarded or instan-

taneous interaction is used and therefore this case is not
shown. ) Using a retarded interaction, the splitting be-
tween the two J =1 states, as shown by Fig. 3, is about
2.5 times that calculated for the instantaneous interaction
for particle-hole energies in the vicinity of the exchanged
Qlass.

Figures 4(a) —(c) how the residues of the upper energy
J=1 state polarization propagators vary with particle-
hole energy for both the scalar meson nucleon-nucleon
interaction and its instantaneous reduction. The residue
of the polarization propagator that is diagonal in the



1718 MICHAEL A. CRECCA AND G. E. WALKER 43

Imaginary K(~)
J=3

I
I

I
I
I

I
I
I

I
I
I
I
I
I
I

I I I I I I I I I I I I I I I I

(e)

lm(K(~) )
(MeV)

0

—10
0 100

'1

1

I
I

I I I I

I
I

I
I
I

I

I
I

I

I
I
I
I
I
I

I

I
I
I
I
I

I

I
I

I
I

I
I

ll I I I

POO

(MeV)
300

I I I I

400 500

15 I I I I

I

I I I I I I

Real K(u)
J=3

10—

Re(K(~))
(MeV)

100 200
u (MeV)

I I I I I I

300 400 500

FIG. 1. (Continued).

particle-hole labels is the absolute square of the admix-
ture coefficient associated with a given state for that
particle-hole configuration [see Eq. (2.7)]. For off-
diagonal elements of the polarization propagator, the
residue gives the relative phase of the admixture
coefFicients corresponding to the particle-hole labels of
the polarization propagator. In this truncated particle-
hole basis there is only one J =2 and 3 state that arises
from the coupling of the ld ( lp) ' particle-hole
configuration, so the normalized admixture coefficients
for the J =2 and 3 states are simply 1 for every particle-

hole energy and thus are not shown.
Figures 4(a) —(c) show that the residue of the polariza-

tion propagator for the retarded interaction differs only
slightly from the residue for the instantaneous interaction
in the region of particle-hole energies studied. Thus,
quantities that depend on the coherent sum of absolute
squares of admixture coefficients are fairly insensitive to
retardation effects. Moreover, even quantities sensitive to
off-diagonal products of admixture coefficients in this
model should be only negligibly altered by retardation
effects when particle-hole energies are less than 80%%uo of
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FIG. 2. (a) Comparison of the two J = 1 excitation energy predictions for particle-hole (p-h) states as a function of the unperturbed
p-h energies (E~ z ). The solid (thin-dashed) lines result from a calculation using a retarded (instantaneous) nucleon-nucleon interac-
tion. The vertical wide-dashed line indicates the energy where E~ I,

= m {the exchanged meson mass). (b) Same as (a) except the sin-

gle J=3 particle-hole state comparison is shown.

the meson mass.
If the admixture coeKcients and excitation spectrum

are known, the calculation of the linear response cross
section for electron scattering is straightforward using

the equations summarized in Sec. II. The component of
the electron-scattering cross section that depends on the
Coulomb multipole Q ~'"'(q), divided by the Mott cross
section, is designated the longitudinal response and
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shown in Figs. 5(a)—(c). The peaks in the longitudinal
response, as the energy transferred to the nucleus co is
varied, correspon o ed t the excitation energies of excited
nuclear states. e sTh hape of the longitudinal response as

one varies the momentum transfer q while keeping the
energy transferred to the nucleus fixed is governed by the
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FIG. 4. (Continued).

particle-hole basis at various particle-hole energies with
both instantaneous and retarded nucleon-nucleon interac-
tions. The higher energy J=1 responses in the figures
have been diminished by a factor of 10. Figure 5 shows
that, for typical particle-hole energies ( —15 MeV), the
J= 1 response of a nucleus whose nucleons interact via a

finite velocity scalar meson exchange is virtually identical
to that of a nucleus whose nucleons interact via the in-
stantaneous limit of a scalar meson exchange (in the mod-
el problem under consideration). As the particle-hole en-
ergy increases, the retarded response separates from the
instantaneous response. In general, the shape of the
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FIG. 5. The longitudinal response defined by Eq. (2.31) plotted as a function of the nuclear excitation energy cu and three-
momentum transfer q. The solid (dashed) lines result from a model using a retarded (instantaneous) interaction.

response remains the same in the retarded case and in-
stantaneous case. This is a reAection of the fact that the
admixture coe%cients do not change dramatically from
the incorporation of retardation as the particle-hole ener-

gy approaches the meson mass. However, as the
particle-hole energies approach the meson mass, the in-
stantaneous response separates from the retarded
response due to the change in the nuclear excitation spec-
trum.

The model calculation discussed herein is more difficult
to perform than standard calculations using instantane-
ous interactions. The main complicating feature is the in-
tegral equation for iterating the ladder kernel, Eq. (2.20),
and obtaining the ladder polarization propagator Eq.
(2.19). Thus, it would be useful to find an accurate but
simpler way to obtain the ladder polarization propagator
for use in retarded interaction calculations. Moreover,
because the ladder terms are sometimes deleted (or in-
cluded by renormalizing the ring kernel) in RPA calcula-
tions, it is of interest to determine the major contribu-

tions (ring, ladder) in the predictions for the excitation
spectrum.

It was noted earlier that the ladder interaction often
shows more variation with energy co than the ring in-
teraction. However, an important result is that the im-
pact of this variation of the ladder kernel with energy on
the nuclear excitation spectrum is decreased by the fact
that the ladder polarization propagator is derived from
an integral over the ladder kernel. This integration tends
to smooth out the variations in the contribution of the
ladder kernel to the ladder polarization propagator as
one varies the particle-hole energies. In fact, calculations
of the nuclear excitation spectrum and admixture
coefBcients in which only the ladder diagrams are kept
show that the nuclear excitation spectrum and admixture
coeScients are essentially identical for instantaneous and
retarded meson-exchange nucleon-nucleon interactions at
all particle-hole energies up to 10% greater than the
meson mass. This results because the analytic structure
of the integral in Eq. (2.20) is such that for terms that
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contribute to the integral, one can effectively replace

K "dd"(
—,'(a —u)) by K" "(0). Indeed, the II" "result-

ing from this approximation is only negligibly different
from that obtained using the retarded ladder kernel.

The numerical result obtained above may be under-
stood from the following considerations. First we note

[from Eqs. (2.19) and (2.20)]

iXp s'(co, u) =4Dp Dyshp (co, v)Tp s.(co, u)

(no sum over /3a, y5), (4.1)

where

s(co, v)—:op g sDp D s+ K p
"' ' h (co, a)T s(co. , a) (no sum over pa;y6) (4.2)

and where

8(/3 F)8(F——a ), TDA,
D

8(/3 F)8(F——a )+8(a F)8(F——P),

The explicit form for hp is found from the expression for X (co, u). We obtain

(4.3)

hp (co, u)= 8(/3 —F) + 8(F —/3)

u (2c—op co)—+i g u —(2cop co) —iq—
8(a F)—+ 8(F —a)

u —(2co +co)+iri v 2(co +—co) iq— (4.4)

Equation (2.19) now becomes

ilIqdd;g~o"'(co)= J hp (co, u)Tp s(co, v).

ergies co that are on the order of the particle-hole energies
(to within —10 MeV). That is,

(no sum over /3a) . (4.5)

Assuming that Tp s(co, u) has . no poles close to the real
axis, and given the form of hp (co, u), one can conjecture
that the major contribution to the ladder polarization
propagator comes from those values of T(co, u), where v is
in the neighborhood of the poles of h (co, u), i.e., when

v =267~+co

/3&F &, a&F .

In the following we specialize in the TDA model adopted
herein. The TDA ladder kernel (2.23b) restricts the state
labels (/3, o) to particle state labels and (a,p) to hole state
labels so that

or
and

In the integral equation for T(co, u), the singular nature of
h (co, a) enhances the contribution of the ladder kernel
when

Q —2' +co
P

or

Thus, the values of the ladder kernel K "dd"(x) that have
the major role in the calculation of the ladder polariza-
tion propagator occur when the kernel's argument x has
the values

(4.6)

[note K " "(x)=K ' "(—x)]. We are interested in en-

(x,p&F .

Consequently, for the truncated Hilbert spaces kept in
traditional nuclear structure TDA calculations, the
values of the argument of the TDA ladder kernel that
enter most prominently in the calculation of the ladder
polarization propagator [see Eq. (4.6)], are 5 30 MeV. In
fact, from Figs. 1(a)—(f), one can see that, for x 530
MeV, the value of the ladder kernel is essentially the
same as K" "(0). Thus, it is to be expected that the
ladder polarization propagator in the TDA [for the ener-

gy region of interest (roughly that of the particle-hole en-

ergy)] is very nearly the same whether retarded or instan-
taneous residual particle-hole interactions are used. Our
TDA numerical results for the ladder polarization propa-
gator (for co-co~ I, ) are essentially identical whether a re-
tarded or instantaneous residual interaction is adopted.
This conclusion holds for conventional particle-hole ener-
gies (co~ z

~ 30 MeV) as well as particle-hole energies up
to the order of the meson mass.

The result discussed above allows a great simplification
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This allows (suppressing subscripts)

iH (co)= f iX(co, a) da
4m

EX co, Q
c4
4m

+f GQ GU iX' '(co a)K" "(0)iX(co,U)
4~ 4~

= ilIo(~)+ t'110(~)E "dd"(0)t'II '(~),
(4.7)

(4.8)

which reduces the integral equation to the familiar alge-
braic equation that would be present for an instantaneous
interaction. This results in a simple form for the ladder
polarization propagator which is then to be inserted in
the ring kernel algebraic equation (2.18). This allows the
set of equation (2.18)—(2.20) to be written in the form of
an algebraic equation with a modified kernel

g ladder(0) +g ring(

We find that use of this approximation, in the model
problem considered, results in predictions that are essen-
tially identical to those obtained using the full retarded
ladder kernel in the region e~ h mm„, „.

We note that the results we have obtained imply that
one cannot ignore the ladder kernel and that it is impor-
tant to conclude retardation effects in the ring kernel.
We have also found that the effects of retardation can be
suppressed in the ladder kernel appearing in the associat-
ed ladder polarization propagator integral equation. This
reduces the ladder integral equation to a much simpler
algebraic equation.

V. CONCI. USIONS AND DISCUSSION

as can be seen by combining Eqs. (2.19) and (2.20) and us-
ing

g ladder g ladder(0)

finite velocity intermediate mesons in the nucleon-
nucleon interaction adopted for studies of the nuclear
linear response in the RPA of TDA. The principal equa-
tions involved [(2.18)—(2.20)] first require the solution of
an integral equation (2.20) involving the ladder kernel.
This provides input into an algebraic equation (2.18) in-
volving the ring kernel. A model problem, using a re-
tarded interaction with strength and range similar to
standard instantaneous interactions, was studied using
the coupled equations discussed above. It was found that
the difference (instantaneous versus retarded) between
predicted energy-level spectra and form factors was negli-
gible until the particle-hole energies involved were on the
order of the mass of the meson exchanged between nu-
cleans in the model. The differences obtained suggest
that retardation will not be important for standard low-
excitation nuclear structure studies. The predicted nu-
clear response for isobar particle-nucleon-hole states may
be appreciably affected by the introduction of retardation
interactions and we intend to investigate this possibility
in a model problem.

The fact that the solution of the integral equation
(2.20) is integrated over one of the energy variables in Eq.
(2.19) [and another in (2.20)] results in the fact that, al-
though

g ladder(~ i (U a))2

can be strongly dependent on E, nevertheless, the
II" "(co) obtained using E" "(E=0) is nearly identi-
cal to that obtained using the retarded K" "". As dis-
cussed in the preceding section, this reduces a set of cou-
pled integral equations to a much simpler algebraic ma-
trix equation. While this result was obtained in a particu-
lar model problem with a specific choice of retarded in-
teraction, since the analytic structure of the assumed in-
teraction is typical of more realistic 2V-X interactions, the
approximation may be generally useful. Because of the
usefulness of the approximation, further investigation of
the domain of validity seems warranted.

Using many-body techniques, we have developed a set
of coupled equations that allow the practical inclusion of
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