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We propose a series expansion similar to that of the Hamiltonian to obtain cluster spectroscopic
factors in the vibron model. The reason for this prescription is given by the link between the vibron
model and the microscopic cluster model in the harmonic-oscillator limit. The ' 0++ and ' C+a
systems are discussed as illustrative examples within the dynamic symmetry approach.

I. INTRODUCTION

The vibron model, ' being an algebraic model of di-
pole collectivity, may be applied both to chemical mole-
cules and to molecular states. Among the nuclear
molecular states we can find many resonances, and in
their theoretical description the calculation of the decay
widths is a natural requirement. The vibron model is a
model of bound states [its group structure is given by the
compact group of U(4)] so it is not obvious how to deal
with resonances in this framework. It seems to be a seri-
ous drawback from the viewpoint of its application to nu-
clear cluster states. In this paper we suggest a simple
way to calculate cluster spectroscopic factor in the vibron
model.

In what follows, in Sec. II we first summarize a few
basic features of this model and its relation to the micro-
scopic cluster model in the harmonic-oscillator limit.
Based on this link we propose a purely phenomenologic
way to obtain spectroscopic factors in Sec. III. Then pa-
rameters corresponding to the harmonic-oscillator limit
of a few core-plus-alpha-particle systems are determined
(Sec. IV). Finally, experimental data of well-known clus-
ter bands of zoNe and i60 are analyzed in Sec. V. All
these calculations are performed within the U(3) dynami-
cal symmetry approach.

II. SOME RELEVANT FEATURES
OF THE VIBRON MODEL

A. Phenomenologic calculations

The vibron model belongs to the family of the interact-
ing boson models. In these models the spectrum of the
collective motion is determined by the interaction of a
finite set of bosons with conserved particle number. A
few single-particle states having a definite angular
momentum and parity (l ) are available for the bosons.
In case of the vibron model, there are four of them, with
l =0+ and 1 . The bosons sitting in these states are
called 0. and m bosons, respectively. The number conser-
vation guarantees a compact algebraic structure, in fact
the dynamic group is U(n), where n is equal to the num-

ber of single-particle states. In the vibron model it is
U(4). The representations of physical importance are the
completely symmetric ones, because of the boson statis-
tics, and their dimensions are determined by the total and
conserved number of bosons. Due to the compactness
these dimensions are always finite.

The basis states for the model calculations are provided
by nested group chains which start with the U(4) dynami-
cal group and end with the O(3) angular momentum
group. The representation labels of the groups appearing
in the chain serve as quantum numbers of the basis states.
In the vibron model the following two group chains are
available with the corresponding subgroups and quantum
numbers:

U(4) DO(4) DO(3)
E, m I. ;

U(4) &U(3) &O(3)
X, n I. .

Here the physical content of the indices is the following.
N, is the total number of bosons, I is the angular
moxnentum, co is related to the vibrational quantum num-
ber, and n is the number of the m bosons. The two
group chains give two sets of basis states which are, in
principle, equally good for calculations. For practical
reasons one of them may be more convenient for a
specific physical system, however, it is worth emphasiz-
ing, that the choice of the basis set does not mean any re-
striction from the viewpoint of the shape of the rotating-
vibrating system.

The physical operators of the vibron model are ob-
tained as series expansions in terms of particle-number-
conserving bilinear products of boson creation and an-
nihilation operators. The expansion usually ends with
second-order, i.e., two-body terms. Since the angular mo-
ment is always a good quantum number of the states un-
der consideration, the boson operators are coupled to
spherical tensors, according to the scalar, vector, or
higher-order tensor character of the physical quantity in
question. Specifically, the energy is obtained as an ex-
pression in terms of O(3) scalars.

The general description of a system in terms of the vib-
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ron model involves the following steps. First, the matrix
elements of the physical quantities are determined be-
tween states of one of the basis sets. The basis can be ei-
ther (la) or (lb). Then, the energy eigenvalue problem is
solved by a numerical diagonalization of the Hamiltonian
matrix. This provides us with wave-function components
too. Knowing the wave function in terms of the basis
states one can calculate the matrix elements of other
physical operators between different states. So, for the
general description of a physical quantity we need to
define only its matrix elements between basis states of any
of the two sets of (1). This point will be recalled in Sec.
III.

In addition to providing us with basis states, the group
chains (la) and (lb) have another important feature.
They de6ne special relations between the expansion
coefficients of the physical operators. When these rela-
tions hold, the eigenvalue problem can be solved analyti-
cally. Then it is said that the system has a dynamical
symmetry. Since the matrix elements can be obtained
analytically, these limiting cases are very convenient for
analyzing the experimental data. In addition, they usual-
ly give a deeper insight into the nature of a rather
abstract algebraic description. In the vibron model the
O(4) dynamical symmetry (la) describes a system with a
permanent dipole deformation in the equilibrium state.
This limit is called the rigid molecule limit and it proved
to be important in chemical applications. The U(3)
dynamical symmetry describes the rotational-vibrational
motion of the system around a spherical equilibrium
shape. It is called the soft molecular limit, and it attract-
ed more attention in nuclear physical applications.

When the simple description in terms of the closed for-
mulas of the dynamical symmetry is not satisfactory, it
means that the system is not close to that dynamical sym-
metry and one should perform the more complicated nu-
merical calculations.

From the viewpoint of its application to nuclear molec-
ular states, the vibron model with U(4) group structure
can be considered as a simple cluster model, which takes
into account the relative motion of two structureless clus-
ters. In this respect it is is similar to another phenomeno-
logic approach based on local potentials. The model
space of the simple vibron model is further discussed in
Sec. IIB, where its relation to the microscopic cluster
model is considered. This relation also gives a physical
reason for the choice between the two possible basis sets
when the model is used in nuclear physics.

The extension of the model space by including other
degrees of freedom, like the collective excitations of one
of the clusters' and unpaired fermions"' are also possi-
ble. In these cases the group structure is more complex.
In what follows, however, we shall concentrate mainly on
the simple vibron model which has the U(4) dynamical
group.

B. Relation to the microscopic cluster
model in the harmonic-oscillator limit

The U(3) dynamical symmetry treatment of the two-
cluster relative motion corresponds to a description based

on an anharmonic potential. ' When we go to the
harmonic-oscillator limit of this dynamical symmetry
then we arrive at the description of the relative motion in
terms of the harmonic-oscillator cluster model. So, in the
harmonic-oscillator limit the vibron model and the mi-
croscopic cluster model are related to each other in a
very simple way: the vibron model description means
that the internal degrees of freedom of the two clusters
are freezed in, only their relative motion is allowed.

Together with the internal degrees of freedom in the
vibron model we also neglect the antisymmetrization.
However, the link between the cluster model and the
shell model in the harmonic-oscillator limit gives a simple
prescription for the exclusion of the Pauli forbidden
states from the model space. In the harmonic-oscillator
limit the Hamiltonians and the wave functions of the
shell model and the microscopic cluster model can be
transformed into each other. ' Since the Hamiltonians of
the two models have the same eigenvalues, and in the
harmonic-oscillator shell-model description the Pauli al-
lowed states carry a certain number of excitation quanta,
the relative motion in the cluster model description has
to carry the same number of excitation quanta, when the
two clusters are in their ground states. So there is a
lower limit for the excitation quanta of the Pauli allowed
states (Q), and it is given by the Wildermuth condition:

k

Q~ g 2n;+1, ,

where k is the number of nucleons of the lighter cluster,
n; and l, are the node number and angular momentum
quantum numbers of the ith nucleon in the harmonic-
oscillator shell-model description. This condition results
in a truncation of the model space from the low-energy
side, by excluding the Pauli forbidden states. In the
harmonic-oscillator approximation the distinction be-
tween the forbidden and allowed states can be done ex-
actly, while in the more realistic anharmonic case it
works only approximately, and the rest of the antisym-
metrization effect is supposed to be taken care of by the
phenomenologic two-cluster interaction. This is so both
in the local potential model, and in the vibron model. '

In the harmonic-oscillator limit of the vibron model the
number of excitation quanta is given by n . The ground
state is a condensate of o. bosons and each m. boson car-
riers one excitation quantum. Consequently, in this alge-
braic description Q of Eq. (2) stands for the lowest al-
lowed value of n . The physical content of the ~ bosons
has an important consequence for the calculation of the
spectroscopic factor, as discussed in Sec. III. On the mi-
croscopic level a w boson is known to be a phonon of the
relative motion of the two clusters, ' and on the micro-
scopic level it is a shell-model excitation quantum (ap-
proximately in the anharmonic case, and exactly in the
harmonic case).

Since the relation of the vibron model to microscopic
nuclear models manifests itself via the U(3) dynamical
symmetry, the basis of (la) means a natural choice in
cluster studies. Due to this fact we shall use this basis in
the considerations of Sec. III, too. However, as men-
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tioned in the previous subsection, this does not mean any
restriction from the viewpoint of the nuclear deforma-
tion.

The relation of the vibron model to the microscopic
models as discussed here, resembles that of the interact-
ing boson model (IBM) and the microscopic description.
In both cases the model space of the phenomenologic
algebraic model is obtained as a truncation of the micro-
scopic model space. For the IBM of the quadrupole col-
lectivity, the truncated space is obtained by keeping the s
and d states of the nucleon pairs in the valence shell, and
neglecting the rest. ' ' For the vibron model of the di-
pole collectivity, the truncated space is obtained by keep-
ing the relative motion degrees of freedom of the two-
cluster systems, and neglecting the rest. Both procedures
result in a one-to-one correspondence between the states
of the phenomenologic model space and those of the
truncated microscopic model space.

In the case of the quadrupole collectivity the relation
between the IBM interaction and the microscopic in-
teraction were established by equating the phenomenolo-
gic and microscopic matrix elements between the corre-
sponding states. ' Having the mapping between the vib-
ron model states and the microscopic cluster model and
shell-model states the same kind of connection can be
built up for the Hamiltonians. This has not been done
yet, and it can be the subject for a separate study. Here
we are interested in the role of the spectroscopic factor in
such a procedure, and in Sec. IV we come back to this
question.

the same manner. In addition, by changing the group
structure, one has a different model, and the question
whether the resonances can be described within the
framework of the vibron model still remains open.

In the following subsections first we propose a simple
phenomenologic way to calculate cluster spectroscopic
factor in the vibron model, then by considering the mi-
croscopic definition of the spectroscopic factor we find
arguments in favor of this prescription.

A. Phenomenologic calculations
in the vibron model

Let us denote by I „z the width of the resonance which
is observed in the emission of the particle x in the Lth
partial wave. Then I & contains two quantities

r.L
——2J'.L y2L

where J'„J is the penetration factor, depending on the re-
action channel, and y z is the reduced width, containing
the information on the nuclear structure. For resonances
the spectroscopic factor is considered to be

where y z ( W) is the Wigner limit:

III. THE CLUSTER SPECTROSCOPIC FACTOR

From the technical point of view there is a strict simi-
larity between the IBM and the vibron model. In the
IBM the particle emission is treated by calculating matrix
element of the boson annihilation operator. Since, how-
ever, in the vibron model the bosons do not correspond to
nucleon pairs, the similarity does not help in this respect,
therefore some other method has to be found.

In the emission process the unitarity is not conserved,
so the possibility of including nonunitary representations
by extending the group structure has been studied for a
one-dimensional model problem. ' It is not clear, howev-
er, how to deal with real three-dimensional problems in

j

Here p is the reduced mass, and a is the channel radius.
The first point which we would like to emphasize is

that since the vibron model is a model of structure, it is
more natural to define a spectroscopic factor than reso-
nance width in this model. Having the spectroscopic fac-
tor, one can obtain the resonance width via Eqs. (3)—(5) if
it is necessary.

Now we recall the general method of the interacting
boson models for the construction of a physical operator,
i.e., the series expansion in terms of number-conserving
boson operators with the proper tensorial character. The
spectroscopic factor is an O(3) scalar, so the expansion is
exactly the same as that of the Hamiltonian. When writ-
ten explicitly up to two-body terms, it reads:

s=a, +a"'[ 'xe],"'+a',"[~'xe],"'+a"'[[~'x~']'"x[ex~]"'],"'
+a' '[[1T X77 ]' 'X[77xrr]' ']' '+a' '[[7l X7r"]' 'X[o XCr]' '+[o XCT ]' 'X[7TX7r]' ']' '

+a' '[[o Xcr ]' 'X[o Xo] ']' +a', '[[vr Xo ]"'X[M Xo] "]' '+ (6)

The matrix elements of this operator can again be calcu-
lated in the same way as it is done in the case of the ener-
gy. For reasons mentioned before, the U(3) basis is more
suitable to be used then the O(4) one. Specifically, when
the U(3) dynamical symmetry holds, some of the
coefficients vanish, and the matrix elements are diagonal
in basis (lb):

S„r=ao+a, n +a~n +P2L(L+1)+

I

where the coefficients a; and P, are some linear combina-
tions of those in Eq. (6). The importance of different
terms in Eq. (6) and in Eq. (7) is selected by the specific
physical systems under study. In general, the coefficients
of these equations should be fitted to experimental data.
The question whether or not they should be treated in-
dependently from the similar coefficients of the energy
expression is discussed in Sec. V.

When the U(3) dynamical symmetry is not a good ap-
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proximation of the cluster system, the spectroscopic fac-
tor of a state which is a linear combination of the U(3)
basis states can be obtained from numerical calculations,
as mentioned in Sec. II, very much in the same way, as,
e.g., the electromagnetic transition rates are calculated.

When one of the clusters is not a closed shell nucleus,
i.e., other degrees of freedom are present in addition to
the relative motion, as in the case of the nuclear vibron
model, ' or the vibron-fermion model, "' additional
terms appear in the spectroscopic factor, due to the cou-
pling. Again, their importance is determined by the
problem under considerations; a general expectation is
that those terms play the main role which contain contri-
bution from the relative motion.

B. Microscopic cluster model
in the harmonic-oscillator approximation

Let us consider the dissociation of nucleus 3 into nu-
cleus 3 ' plus x. Each nucleus has spin zero in this exam-
ple. Let 4&~, 4z. , and N be their wave functions an-
tisymmetrized with respect to the interchange of the
1, . . . , A nucleons for N~, those of 1, . . . , 3 ', for Nz. ,
and 3'+1, . . . , 3'+x for N . By N&~~ we denote an
orthonormal complete set of functions in the relative
coordinates of 3 ' and x, where N, L, and M stand for the
number of radial nodes, the angular momentum, and its z
component, respectively. Since we consider the
harmonic-oscillator cluster model, here @~~M is an oscil-
lator function.

The A&z~ spectroscopic amplitude is defined' ' as

A~~ —Ax~~A . (12)

In the vibron model X&& =1, and there is no antisym-
metrization operator A.

In the microscopic model the antisymmetrization has a
twofold effect. First, it excludes the Pauli forbidden
states, and second, it gives a nonunity value of
ANL(A, A') for the Pauli-allowed states. Therefore in
the phenornenologic treatment, in addition to the basis
truncation, which takes into account the first effect, as
described in Sec. IIB, we have to handle the second
effect, too. This is done by the introduction of the spec-
troscopic factor operator S of Eq. (6). Considering the
content of Eq. (12) and the relation of these two models,
Eq. (6) should be considered as a phenomenologic ap-
proximation to the 3zz operator. Consequently, the
coefficients of S can be obtained not only from a fit to the
experimental data, but also from the microscopic model.
We consider this problem in the next section.

ron model. With respect of Eq. (11) the relation of the
microscopic cluster model and the vibron model in the
harmonic-oscillator limit means the following. The wave
function +&z~ of the relative motion corresponds to the
vibron model wave function, Nz. and N are internal
wave functions of the two clusters. In the simple case of
the structureless clusters they do not appear, while in
case of a deformed core, for instance, N ~ can be an IBM
wave function. What is missing from the phenomenolo-
gic treatment of the vibron model is the operator:

(8)

where A is an antisymmetrizer between nucleons in 3 '

and x, and the integration goes over all the coordinates of
the 2 nucleons. So, the spectroscopic amplitude is an
overlap between two totally antisymmetrized wave func-
tions of the nucleon system 2, one of them (~4~ ))
describing a definite state of nucleus 2, the other one
((4~'@ 4NLM~A) describing its separation into two
parts. The S„~ spectroscopic factor is given by

SL ~L g~NL
X

Different models may give different values for A&z
(and for S„L ) by substituting the model wave functions
into 4~. The microscopic harmonic-oscillator cluster
model wave function is

4& ~
=NNL ( A, A ' )A [N „N 4NLM ],

where N&z is a normalization factor, and A is, again, an
antisymmetrizer between the nucleons in 3' and x. By
combining (8) and (10) we obtain the spectroscopic factor
given by the microscopic harmonic-oscillator cluster
model:

~NL( ~~ ~ ) ~ @A'@x@NLM~~+NL+ ~@A'@x NLM ~

These formulas explain why it is necessary to introduce
the spectroscopic factor operator S of Eq. (6) in the vib-

IV. CORE-PLUS-ALPHA-PARTICLE SYSTEMS
IN HARMONIC-OSCILLATOR APPROXIMATION

The simplest two-cluster systems are those in which
both nuclei have closed-shell structure, like He, ' 0, and
40Ca. In the SU(3) shell model they have (A, ,p)=(0,0)
quantum numbers, so they are also called SU(3) scalars.
When they described within the harmonic-oscillator ap-
proximation, the spectroscopic factors can be calculated
analytically. According to the terminology of the micro-
scopic cluster model they are obtained as eigenvalues of
the norm kernel operator, ' the zero eigenvalue stands for
a forbidden state.

As a first step of the calculation of spectroscopic factor
in the vibron model, it is desirable to consider these ex-
amples, i.e., to determine the parameters of Eq. (7) re-
quired by the harmonic-oscillator spectroscopic factor of
these cluster systems.

As a function of the number of oscillator excitation
quanta (n ) of the relative motion, this microscopic cluster
model spectroscopic factor shows a smooth behavior, and
it is independent of the angular momentum content. (So,
for the sake of simplicity, we can denote the spectroscop-
ic factor by S .) For small n values S =0, correspond-
ing to the forbiddenness of the cluster configuration. For
large values of n S =1, and there is a smooth transition
in between these two straight lines. For the ' 0+a sys-
tem, it is shown by the crosses in Fig. 1. In case of the
two other systems we have considered, i.e., He+a and

Ca+a, S (n) has a fairly similar shape.
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FIG. l. Alpha-particle spectroscopic factors of Ne in the
harmonic-oscillator microscopic cluster model (crosses), and
their approximation in the vibron model.

When determining the parameters of Eq. (7) corre-
sponding to the harmonic-oscillator spectroscopic factors
of these systems we have followed a simple procedure.
For small values of n (called n in the vibron model) the
cluster configuration is forbidden. This fact requires a
spectroscopic factor equal to zero below a threshold in
n, which is obtained from the Wildermuth condition.

As for the parameters in Eq. (7) first we realize that
there is no need for 1.dependence. Then we note that the
harmonic-oscillator limit of the vibron model is
represented by a Hamiltonian containing only zeroth-
and first-order terms in n„. We suppose the same form
for S (n ) and since ao is determined by the exclusion
principle, there is only one parameter to fit, namely, a&.
According to the physical meaning of the spectroscopic
factor, above the n value where it reaches the unity, we
continue with this constant value. (In Fig. 1 the vibron
model spectroscopic factor is shown by the continuous
line. ) Table I contains the parameters obtained for three
systems in this kind of fitting procedure.

Not only the n„ threshold, but the a& parameter, as
well as shows a monotonous dependence on the mass
number of the heavier nucleus.

The number of two-cluster systems consisting of
closed-shell nuclei is rather limited. However, one can
also inquire, whether the values of these parameters ob-
tained for systems with non SU(3) scalar clusters fit into
this trend with respect to the mass number. As an illus-
tration we consider here the ' C+a system.

When describing this system in terms of the vibron
model, there are two possibilities. One can either apply
the simple U(4) model which means that core excitations

((0,4)0;(n, 0)J~i(k, ,p)aJ ) p" (13)

where n is the number of excitation quanta in the relative
motion, (0,4) is the SU(3) shell-model configuration of the
' C, the double bar symbol stands for the SU(3) D O( 3 )

Wigner coefficients, and p"' '"' is the eigenvalue of the
norm kernel operator. The fit to the data with n &20,
J =0+,1,2+,3,4+ gives ao= —0. 373 (n )3.63) and
(x& =0.103 These values are consistent with Table I.

The way that we determined the coefficients of Eq. (7)
from the microscopic model spectroscopic factors here
can be considered as a simple example of the mapping
procedure discussed in Sec. II B. The difference between
this and those usual in the IBM is that instead of equat-
ing the phenomenologic matrix elements to one specific
microscopic matrix element, here by the fitting pro-
cedure, we have taken an average of the microscopic
values. Also, we restricted ourselves to the harmonic-
oscillator interaction. When one considers a more realis-
tic interaction, the mapping includes quadratic terms as
well. According to the present proposition, in that case
too, the mapping should be done not only for the energy,
but for the spectroscopic factor as well.

are not allowed, or one can use the U(6) XU(4) nuclear
vibron model' to take into account some exited states of
the ' C. In this latter case the model space is larger, and
there are more terms in the physical operators due to the
coupling to the internal degrees of freedom. Similarly to
the Hamiltonian, for example, the spectroscopic factor
contains quadratic or even higher-order terms, so we
have to introduce the second-order Casimir operators of
the coupled SU(3) or O(3) groups in the series expansion
of 5 . Obviously, in order to make a comparison with
the systematics suggested by Table I, we should follow
the first procedure.

In the microscopic treatment of the ' C+a problem
the description based on the ' C(g.s.)+a configuration is
called the weak-coupling scheme. [In the strong-coupling
scheme the wave function of a cluster state has contribu-
tion from the ' C(0+,2+,4+)+a configuration. ] The
weak-coupling scheme can be applied to excited rotation-
al bands (above 6.05 MeV) in ' 0; it may not be good for
the ground state of ' O, since the nonorthogonality be-
tween the ' C(0+)+a channel and the ' C(2+,4+)+a
channels. To obtain ao and ai of Eq. (7) we used the
weak-coupling spectroscopic factors. They are obtained
as

S„(J )=S„['O(J )~' C(0+)+a]

System

@+a
16O+a

4'Ca+ a

n„

0.750
0.137
0.086

TABLE I. Parameters of the vibron model spectroscopic fac-
tor corresponding to the harmonic-oscillator description of the
indicated systems.

V. APPLICATION TO EXPERIMENTAL DATA

As a first example we consider three bands of Ne,
which is one of the best known cluster nuclei. It has
been studied in terms of various models, and one of their
joint conclusions is that in several bands of this nucleus
the cluster configurations have a large overlap with the
wave function. The 0&,0 bands as well as the 04 are
known to have a structure close to the core-plus-alpha-
particle configuration, and as an illustrative example we
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take these bands. The energy spectrum of the ' 0+&x
system has been discussed within the vibron model,
too. ' Here we concentrate on the spectroscopic factor,
and on the question whether or not the relative weights
of operators appearing in these two physical quantities
are similar. For this purpose we keep the number of free
parameters as small as possible, and no special attention
is paid here to questions like the strength of the rotation-
vibration coupling, the behavior of other bands, etc.

The experimental data we have used are given in Table

with the quadrupole operator appearing in the Hamil-
tonian and in the electric transition operator T(E2) of
the IBM-1. That parametrization, called consistent-Q
formalism, reduces the number of parameters by one.

Here we can raise a similar question addressed to the
relative weights of the zeroth-, first-, and second-order n

operators in Eq. (14). So, we investigated how good
agreement can be achieved when the number of parame-
ters in (14b) is reduced by two, via imposing the con-
straints

E =/3L(L+ I)+yn +5n +e,
5 =f32L(L+I)+ann +a2n +no .

(14a)

(14b)

In accordance with the Wildermuth condition n„=8, 9,
10, were assigned to the 0&+, 0, 04+, bands, respectively.
The best agreement was obtained with the parameter sets
as follows: P=0. 141 MeV, y=18.99 MeV, 5= —0.874
MeV, e = —94.6 MeV, and f3&

= —0.0054, a
&

= 10.73,
ez= —0.585, up= —48. 1. The result is shown in Fig. 2.
as Th(a) in comparison with the experimental spectrum.

One of the consequences of obtaining the physical
quantities in the interacting boson models by series ex-
pansions is that the number of free parameters can be
large. When the same two or more operators appear in
the expression of two diA'erent quantities, it is possible
and advantageous to use them with the same relative
weights. This question has been discussed in relation

TABLE II. Experimental data for the 0&+, 0, and 04+ bands
in Ne. When no other sources are indicated, are taken from
Ref. 25.

F. (MeV) 02 Comment

Both the energy spectrum and the spectroscopic fac-
tors have been fitted with an expression containing one-
and two-body terms:

Ap

(Xi

The agreement turns out to be still reasonable, the spec-
trum obtained this way is shown in Fig. 2 as Th(b). The
11, y, 5, and e parameters are the same as before, while for
the two independent parameters of S we obtained
f32= —0.0018 and at =2.018.

The anharmonic, i.e., the quadratic, terms in (14) are
not negligible at all; for several states they have the same
order of magnitude as the linear terms. So the
harmonic-oscillator approximation is not realistic.

A similar conclusion can be drawn for the ' C+a sys-
tem as well. In this case we considered the positive- and
negative-parity alpha-cluster bands, sometimes called the
inversion doublets (Table III), and we have applied Eq.
(14) of the simple vibron model without the n terms. To
exclude the partially forbidden shells, the n =8,9 assign-
ment was made to the K =0+, 0 bands, respectively.
The spectrum of Fig. 3 was calculated with the parame-
ters P=0.218 MeV, @=2.67 MeV, e= —15.30 MeV;
P2= —0.0089, a&=0.224, (ao/a&)=(e/y), 5=a2=0.
Here, again the splitting due to the L(L +1) terms is
considerable, and the a, value is larger by a factor of two
than that obtained in the previous section for this system.
(Its comparison to that of Ne does not tell us too much,
because of the presence of the n „term there. )

In addition to the states of Table III, many other reso-

Q+ +

2+
4+
6+
8+

0.0
1.63
4.25
8.78

11.95

0.15
0.11
0.12
0.085
0.01 E (Mev) 02 Comment-

TABLE III. Experimental data for the ' C+a system. The
energies are taken from Ref. 30.

0
3

5.79
7.16

10.26
13.69
17.43

1.03
0.87
0.90
0.84
0.48

Q+ 0+
2+
4+
6+

6.049
6.917

10.356
16.275

0.42
1.10
0.28
0.28

a
b

b,c

Q+ 0+
2+
4+
6+
8+

—8.7
—8.8

10.80
12.58
17.30

0.70
0.95
0.33
0.14
0.12

'Spectroscopic factor from Ref. 26.
Spectroscopic factor from Ref. 27.

'Reference 28. In light of more recent works, the E assign-
ment to these states is uncertain, so we took them with a weight
of 50%.

0 9.585
11.60
14.66
20.857

0.50
0.56
0.39
0.19

'The spectroscopic factors are obtained from the 0 /0 (2+) ra-
tios of Table 16.13 in Ref. 30 and from the 0 (4+ ) value.
0 is calculated with the channel radius parameter ro = 1.4 fm,

and y ( 8') =706.98 keV, following the choice of most of the au-
thors cited in Ref. 31.
'In Ref. 30 the E assignment to this state is uncertain, so we
took it in the fitting procedure with a weight of 50%%uo.
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FIG. 2. Energy spectrum and alpha-particle spectroscopic factors of cluster states in ' Ne. Experimental data for the 0&+, 0, and

04 bands, and vibron model calculation with independent (a) and consistent (b) pararnetrization.
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nances are known to be populated in alpha scattering
with considerable reduced widths. ' ' It turns out that
the alpha-particle strength distribution is consistent with
the picture of the fragmentation of a single underlying
cluster state in the partial waves with L =4, 6, 1, 3, 5, 7,
and the parameters of these simple states can be deter-
mined from the strength distribution. Substituting the
states with these angular momenta in Table III by the
simple states of the strength distribution one obtains
another set of data which can be considered as parame-
ters of two cluster bands. The parameters of Eq. (14) ob-
tained from these data proved to be very close to those
required by the states in Table III.

VI. SUMMARY AND CONCLUSIONS

FIG. 3. Energy spectrum and alpha-particle spectroscopic
factors of cluster states in ' O. Experimental data for the 0+
and 0 bands, and vibron model calculation with consistent pa-
rametrization.

In this paper we have proposed a series expansion simi-
lar to that of the Hamiltonian to obtain cluster spectro-
scopic factor in the vibron model. The explanation for
this prescription is given by the definition of the spectro-
scopic factor in the harmonic-oscillator microscopic clus-
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ter model and the relation between this description and
the limiting case of the vibron model.

In the harmonic-oscillator approximation the interact-
ing boson approach to clusterization and the microscopic
cluster model are related to each other in a simple way:
the vibron model corresponds to a description based on
the truncated model space of the microscopic treatment.
This relation resembles that of the models of quadrupole
collectivity, where the microscopic collective model is
equivalent to the interacting boson approximation in the
harmonic-oscillator limit. '

Due to the facts that the vibron model wave functions
are (i) wave functions of bound states, (ii) which are nor-
malized to unity, and (iii) the effect of the antisymmetri-
zation is accounted for by the basis truncation method
only partly, there is a need for taking into account the ac-
tion of the A~L =A.%~LA ope~~to~ explicitly. So, in a

sense, we can say that similarly to the truncation of the
U(3) basis found previously, ' the necessity of the intro-
duction of the spectroscopic factor as discussed here, can
be considered as a consequence of the Pauli principle.

We have determined the parameters of the vibron
model spectroscopic factor corresponding to the
harmonic-oscillator approximation for a few core-plus-
alpha-particle systems. Within the U(3) dynamical sym-
metry approach we also discussed the spectroscopic fac-
tors of some well-known cluster bands in Ne and ' O.
These examples support the idea of simplifying the pa-
rametrization by applying the polynomials in n with the
same relative coe%cients in S, as they are obtained from
the energy spectrum.
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