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Charge-independence breaking in the three-nucleon system
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Charge-independence breaking is investigated theoretically and numerically in the three-nucleon

(3N) system. Illustrations for the 3N bound states and for cross sections and spin observables in

elastic nucleon-deuteron scattering and breakup processes are given, using exact solutions of the
Faddeev equations with meson-theoretical 2%interactions.

I. INTRODUCTION

Charge-independence breaking (CIB) in the two-
nucleon (2N) system is well established in the state 'So.
The scattering lengths are —23.75+0.01, —17.3+0.8,
and —18.5+0.3 fm (Ref. 1) for the np, pp (with the
Coulomb force extracted), and nn systems, respectively.
Though the numbers for pp and nn may still have some
small uncertainty, their significant difference to the np
value is out of the question. That difference in scattering
lengths carries over into a well-established difference of
'Sp phase shifts for the np and pp systems. Recent
phase-shift analysis ' also find significant CIB in the
Pp Pi and P2- Fz states. In this work we want to

study how strongly CIB affects 3N observables and how it
has to be treated. Two possibilities exist: neutrons and
protons are assumed either to be distinguishable or iden-
tical particles; in the latter case the space of states has to
be enlarged by the isospin space. Assuming the neutrons
and protons to be distinguishable, the three Faddeev
equations for distinguishable particles reduce to two for
the nd or pd systems; in the other case, the isospin violat-
ing 2% forces admix a state of total isospin T= —', to the
dominant state T= —,'. To the best of our knowledge a de-

tailed description of the transition between the two for-
malulations in the Faddeev formalism (and thereby the
verification of their full equivalence) has not appeared in
the literature. Therefore, we would like to lay out the
two formulations and their equivalence in some detail in
Sec. II. This will be carried through with modified Alt,
Grassberger, and Sandhas (AGS) equations, which we
use so far in our numerical treatment of 3% scattering.
In Ref. 7 we have already regarded the question of incor-
porating CIB into our formalism, which led to the simple
rule that the effective two-body t matrix in the state of
isospin 1 and total 3' isospin T= —,

' is

eff 3 nn(pp)+ 3 np

That prescription has also been used in Ref. 8 for triton
calculations and in a slightly more approximate manner
in Ref. 9, where the

3 3
mixture was applied on the level

of 2N potentials (not t matrices).
The effects of CIB in the 3X system are of great in-

terest. In triton they are clearly visible in the triton bind-
ing energy. ' ' We illustrate that again in Sec. III for
different meson-theoretical 2% interactions and 34 chan-
nel calculations. CIB is also visible in 3N scattering ob-
servables. A clear cut and important example is the re-
gion of 2N final-state interactions (FSI) in the 3N breakup
process. Here the correct treatment of the different in-
teractions in the 'So nn (pp) and np systems are very im-

portant. We study various breakup configurations in Sec.
IV with respect to their sensitivity or nonsensitivity to
CIB in the 'Sp 2X force. We also clarify whether an ap-
proximate treatment of these effects in the form of the —', -

rule under the neglect of the T= —,
' states is thereby

sufBcient or whether the full complexity including the
T= —,

' admixture is unavoidable.
In Ref. 10 we introduced a CIB of P 2X interactions,

which explained the persistent discrepancy between
theory and experiment for the 3X analyzing power at low
energies. Its effect on various breakup processes will also
be investigated in Sec. IV.

Section V deals with elastic Nd scattering with the in-
clusion of many spin observables. Their sensitivity to
CIB in the states 'Sp and P will be discussed. An impor-
tant observable thereby is the analyzing power 2 . Our
results are summarized in Sec. VI.

II. TREATMENT
OF CHARGE-INDEPENDENCE BREAKING

IN THE ISOSPIN FORMALISM
FOR THREE NUCLEONS

If the neutron-neutron (or proton-proton) and
neutron-proton interactions in the same orbital and spin
angular-momentum states are different, one speaks of
CIB. This is well established in the state 'Sp. There are
also indications for CIB in the P states. ' Therefore,
the correct treatment of the 3X system should consider
neutrons and protons to be distinguishable, with the
consequence of having two Faddeev equations for the nd
or pd systems instead of one equation for identical parti-
cles. An alternative and fully equivalent formulation is
based on the generalized Pauli principle. There the nu-
cleons get additional isospin degrees of freedom and can
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then be considered to be identical. As a consequence,
their wave functions have to be antisymmetric under the
exchange of any pair. In this section we want to explicit-
ly lay out that isospin formulation and will show how the
inclusion of the T=—', states in the nd and pd systems re-
store the dynamical difference between neutron-neutron
(proton-proton) and neutron-proton pairs in the case of
CIB. As will be shown in the next sections, for quite a
few 3N observables, the neglection of the T= —,

' states is
justified, though CIB effects are noticeable. In that case,
the effective two-body t matrix (1.1) has to be used in the
state T= —,

' with two-body isospin t =1, as will be shown
below.

We begin our discussion by considering neutrons and
protons to be distinguishable. For our notation we refer
to Ref. 11. Let us regard the nd system as an example
and let us enumerate the neutrons by one and two and
the proton by three. Neutron-deuteron (nd) scattering is
initiated by one of two channel states:

IC') &
=

Iq d(23) & Iqo(1) &,

I+, )=le (31)& qo(2)&,
(2.1)

which are composed of a deuteron and a free neutron
with relative momentum qo. The physical antisym-
metrized 3X scattering state is

(2.2)

y v 1)11(+) ) —y v ( I

qg(+ ) ) I

qf(+ ) ) )

= UO) I @1& U021@z &

—:U, Ic, ) . (2.9)

Using the well-known" expressions

U,.IC.) =gt, G, U,.14.&, (2.10)

one easily finds

Uo1@) & =(1 P)2)t) Go Ul@) &+tgGO U31+) & (2.11)

which expresses Uo in terms of Uand U3.
For the numerical performance it is advisable to work

with new operators T and T3 defined by

Uo—= (1—P)2)T+ Tq,

which obviously obey the coupled set

T = —t) P)2+ t)GO( 12T+ Tq ),
T3 t3( 1 —P, 2 )+t~GO( 1 —P, 2 )T

(2.12)

(2.13)

(2.14)

This is the coupled set of equations' to which we shall
compare the equations in the isospin formalism.

Once T and T3 are known, the operators for elastic and
rearrangement processes follow by quadrature:

where, in 1%', +'), the neutron i is initially free. Then the
operators U for elastic and U3 for rearrangement scatter-
ing are introduced by

U= —Pi2GO —P)2T+ T3

U3 (1 P)p)GO +(1 P)2)T—
(2.15)

(2.16)

( v2 + v3 ) I

+'+ '
&
—= U) ) I+) &

—U)~ I @2&

=UIe, &,

(v, + v, )le'+)&= —P„(v,+v, )le'+)&

= —P„U14,&,

(v, +v, )1%'+)&=—U„le, &
—U„Ie, &

(2.3)

(2.4)

I
n(2)p(3)n (1)),
Ip(2)n(3)n(1) ),
In(2)n(3)p(1)) .

(2.17)

Let us now regard the same physical situation of different
nn and np forces in the isospin formalism. In the nd sys-
tem there are three charge states

(2.5)

We used the standard "odd-man-out" notation for the
pair interactions and the AGS transition operators
U &.

' They obey the AGS equations'

U ))1@p)=(1—6 t))GO '1&It))+ g trGOUrpI+p) . (26)
yea

As a simple consequence of (2.6) we find

Ulc')&= —P), Go l+)) P), t)GOUI+)&

We shall drop the particle numbers in the following. Our
convention is that the neutron (proton) carries the z com-
ponent —,

'
(
—

—,') of the isospin. Then the three —,
' nucleons

can be coupled to total isospin T= —,
' and —,

' states

1(t—,')TM =
—,') . (2.18)

These are again three states with two-body isospins t =0,
1 for T=—,', and t =1 for T= —,'. The convention is that t
refers to the 2-3 subsystem and —,

' to particle 1. The con-
nection between (2.17) and (2.18) is

+ t 3 GQ U3 I
c ) ) (2.7)

U&le) &=(1—P)2)GO lc) &+(1—P)2)t)GOUI@) & .
1(0—,') —,

'
—,
' &= —(Inpn &

—Ipnn &),1 1 1

v'2 (2.19)

(2.8) 1(1—,
'

)—,
'

—,
'

& =&2/31nnp &
— —( Inpn &+ Ipnn & ), (2.20)

1

v'6
Into these two coupled equations enter the np t operator:t 23 and the n n t operator t 3

= t
& z, which are difterent

for CIB.
The transition operator for the breakup process is

I ( 1 —,
'

)—', —,
' ) = —( I nnp ) +

I npn ) + Ipnn ) ),I 3 I 1

v'3

or

(2.21)
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pnn ) = — (0—,
'

) —,
'

—,
' )

1

2

npn ) = —
~
(0—,

'
)—,

'
—,
' )

1

2

(2.22)

The 2N t operator conserves the isospin t to a high degree
of accuracy but depends on the charge states of the two
interacting nucleons. One finds from (2.25)

(2.26)

(2.27)

(2.23)

~
n np ) =&2/3

~
( 1 —,

'
)—,

'
—,
' ) + —

~ ( 1 —,
'

)—,'—,' ) . (2.24)
t=l t=l(t„„—t„p ), (2.28)

We recognize that if we want to choose particles 2 and 3
to be specific nucleons, we need the total isospin T= —', .
In the identical particle formalism this case occurs au-
tomatically and the absence of T=—', rejects either the
dynamical equivalence of nn and np pairs or an approxi-
mation, whose quality depends on the amount of CIB.

Similarly the T= —,
' and —,

' states are needed to distin-
guish the nn and np t matrices in the 3N system. We re-
gard the 2N t operators in the three-particle isospin space
assuming, of course, charge conservation:

(2.29)

In obvious notations we introduced the two-body t ma-
trices for the nn and np systems in the isospin states t =0
and 1. We explicitly see the need of the T=—', state to
distinguish between the t„' ' and t,', ' interactions:

(2.30)

X QC(t ,' T, vMT —v)—
(2.31)

X C(t' ,' T', vMT—v)—
(2.25)

A decomposition analogous to (2.25) is valid for the two-
body potential V:

~tt'~t1 ~TT') ( Vnn Vnp ) +~tt'~tl~TT'~T3i2( 3 Vnn +
3 Vnp3

The t and V operators are connected by the Lippmann-Schwinger equation

t= V+ VGot .

In case of CIB in the state t = 1 it is a coupled set of two equations (T= —,', —'„T' fixed):

((1,')TMT~t~(1 —,
' )T'—MT)= ((1—,')TMT~ V~(1 —,

' )T'MT)

( ( 1 —,
'

) TMT i Vi ( 1 —,
'

)T"MT )Go ( ( 1 —,
'

) T"MT
i
t i ( 1 —,

'
) T'MT ) .

T"=1/2, 3/2

(2.32)

(2.33)

(2.34)

T= tP+ tPGo T (2.35)

valid for identical particles. In Ref. 7 we projected (2.35)
onto two types of basis states:

~pq a )—:
~pq angular momenta ) ~ ( t—,

'
)T=—'MT ), (2.36)

Inserting the decomposition (2.32) for V, it can easily be
shown that the linear combinations (2.26) —(2.29) are the
solutions. Thereby, t„'„' and t„' ' obey uncoupled (in iso-
spin) Lippmann-Schwinger equations driven by V„'„' and
V„' ', respectively. Based on that introduction, we can
regard the modified AGS equation

~pq/3):— pq angular momenta) ~(t—,')T= —,'MT) . (2.37)

If the transition matrix elements (2.28) are different from
zero, the amplitudes (pqa ~

T~4& ) and (pqP~ T~ &5 ) are
coupled. It is that set of equations which we solve if the
distinction between the nn and np forces has noticeable
efFects for certain 3N observables. In case the neglection
of T= —,

' states is justified, CIB is taken care of by the
effective two-body t matrix shown in Sec. I and Eq. (2.27).

Now we want to demonstrate that (2.35) is equivalent
to the two coupled equations (2.13) and (2.14) if we as-
sume that the nn and np t = 1 forces are difFerent.
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The initial channel state lk) —= I4, ) is enriched by a
3N isospin state

l~) =P, lc ) I(o-,')-,' —,') . (2.38)

For convenience we made the symmetry of
I

4& ) in
momentum and spin space explicit by introducing

t = Inn )t„'„'(nn
I

+-,'( I np &+ lpn & )t„',='(& np I+ & pn I )

+ —,'(lnp &
—

Ipn &»„'p '=((np
I

—(pn I) .

Consequently,

(2.43)

Po= —,'(1+P23) . (2.39) tP 4) =v'2lnnp &t„'„='P,P, P IN)

The caret indicates, as previously, only the operations
onto degrees of freedom in momentum and spin space.

Next we evaluate Pl+), where P is the sum of two
cyclical permutation operators (acting on all degrees of
freedom):

I
@& = (P12P23 +P13P23 ) I

+ &

—( I nnp ) —
I npn ) )P,2P23Po I

4 )v'2

+ —Ipnn &
—Innp &)P13P~3POI4) . (2.40)

2

Introducing

—(Inpn)+Ipnn &)t„' 'P=, P,zPOI4)
2

—(Inpn ) —Ipnn ) )t„'~= POP, zPoIZ&)
2

(2.44)

Now let us regard the coupled set resulting from project-
ing (2.35) onto the basis states (2.36) and (2.37). We can
form linear combinations (2.23) such that one projects by
( npn I. This leads to the driving term

(npn ItPIe) = — (t„',='P, +t„',='P", )P»P, le) ."P

(2.45)
P, —:—,'(1 —P23 )

one finds

P
I
C &

= —
I nnp )2P, P„P, I

e &

2

(Inpn ) + Ipnn ) )P,P,2POI4)
2

(2.41) The expression in the bracket is the full t operator for the
np system:

(2.46)

We see that t' ' (t' ) acts on antisymmetric (sym-
metric) states in momentum and spin space, as it should.
So we end up with the driving term

—(Inpn ) —Ipnn ) )PoP, 2POI4) . (2.42)
2

(npn ItPI@)= — —t„(23)P,2Pol@) . (2.47)

The t operator given in (2.26) —(2.29) can be equivalently
represented as

For the sake of clarity, we indicated the particle numbers
again. Now we regard the second term on the right-hand
side of (2.35) and find after some simple algebra

(npn ItPGOTI@) = ,'t„' 'Go(P1—zPz3(pnn I+P13P23(npn I )TI+)+ ,'t„' 'Go—(P12P23+P13P23)(nnp
I
Tl&)

+
p tgp GQ(P12P23 &p« I

—P 13P~3 & npn
I
)T

I
@& + —,

' t.',='Go( —P12P23 +P13P23 ) & «p I Tl @& (2.48)

The amplitude Tl@) is antisymmetric in particles 2 and 3. This follows from the antisymmetry of I4). Namely, the
driving term of (2.35) is antisymmetric,

P tP
I
4') = t(23)P 3P I

@)

= t ( 23 )PP23 I
C& ) = tP 4 &, —

and (2.35) is linear. Consequently,

and, therefore,

P~3 ( «p I TI e &
= —

& «p I TI @&,

P23 (pnn
I Tl @&

= —
& npn I Tl @& .

This will now be used to simplify the right-hand side of (2.48):

(+P12P23+P, 3P23)(nnpl Tl@)=(+P23P13P~3P~3+P, 3P~3)(nnplTle)

( 1+PQ3 )P 13P23 & «p I TI @&

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)
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P„P„&p«TC )+P]3P23&npn~T~+ &= —P]2&npn~T~C &+P23P]p(npn~T~@&

= —(1&P2~)P]2(npn(T(4) . (2.54)

Using (2.46) one gets

& npn I TI @&
= — —t.,(23)P]2PO I

@&"P

+t„~(23)GOP]3P23( nnp ~
T~4)

—t„~(23}G Poz](npn ~T~4) . (2.55}

At this stage we arrived at amplitudes and operators
which refer to neutrons and protons carrying numbers.
Therefore, we can compare with Eq. (2.13). We
recovered exactly that form and can identify

(npn
~
T~@)= T~4)

2
' (2.56)

P]3P23 & nnp T~@) = T, ~4 )
2

(2.57)

The factor 1/&2 arises from the normalization of the iso-
spin state (2.19).

The equation for P»P23(nnp~T~@) remains to be
worked out. Similar steps, sketched in the Appendix,
lead from (2.35) to

p]3pp3 & «p l Tl ~ &
= —t„'„='(12)(1—P]2 )P, ~

e &

2 ""

+ t„'„='(12)GO(1—P]z )( npn l TI @) .

III. CHARGE-INDEPENDENCE BREAKING
IN THE TRITON

The fact that the np force is slightly stronger than the
nn force in the state 'So leads to a correction to the
theoretical triton binding energies, which are calculated
with only one type of 2N force. So the pure Paris, '

Bonn, ' Nijmegen, ' Argonne, ' Reid, ' etc. potential
predictions have to be modified. Studies of that type
have already been undertaken ' ' ' leading to shifts of
about 100—200 keV. We would like to illustrate that
again for the meson-theoretical 2N interactions from the
Paris and Bonn groups. Therefore, we include the T =

—,
'

admixture, which was neglected in Refs. 8, 9, and 15.
We use our momentum-space code including 34

channels. The results for the Paris, Bonn A, ' and Bonn
B (Ref. 15) potentials are displayed in Table I. They
agree very well with previous results. ' ' ' Now we in-
clude CIB in the 'So state. First we neglect the T=—', ad-
mixture and incorporate CIB only through the effective t
operator, Eq. (2.1), in the 'So state. For the Paris calcu-

(2.58)

This is the second equation (2.14) in the coupled set (2.13)
and (2.14). This concludes the demonstration of the
equivalence of (2.35)—with the understanding that the
T= ,' and —,

' states are—used—to the coupled set (2.13)
and (2.14).

]tj=GotPQ . (3.1)

If we assume that only t('So) breaks CI, one more "chan-
nel" is added to the, by now, standard 34 angular mo-
menta and isospin combinations. The jJ coupling basis
states in momentum space are

~pq(ls) j(A, ,' )Jd(t ,' )T ), —— (3.2)

where (ls)j and isospin t refer to the two-body subsystem
and (A, —,

] )J to the third particle. 8 and T are the total an-

gular momentum and isospin of the triton and p, q stan-
dard Jacobi momenta. CIB in the 'So state (l =s =j=0)
adds to the standard "channel"

~pq(00)0(0 —,
'

)—,
' cP =

—,'(1 —,
'

)T= —,
' ), (3.3)

TABLE I. Triton binding energies for three potentials. First
row: 34-channel calculations. Second row: CIB in 'So included
via t, ff- of (1.1), T=

2 neglected. Third row: CIB in 'So treated

exactly including T= 2. Change in energy in the fourth digit

not shown.

E (MeV)

Paris

—7.46
—7.59
—7.59

Bonn A

—8 ~ 32
—8.08
—8.08

Bonn B
—8.14
—7.92
—7.92

lation, t„„ is taken from the Paris potential (neglecting
charge-symmetry breaking) and t„ from Bonn B. The
remaining t matrices are taken from the Paris potential.
For the Bonn 3 and Bonn B calculations, t„„ is taken
from Bonn B with the o.-meson coupling constant
modified to g /4+=8. 8557, ' which adjusts the 'So 2N
force to the pp system, and t„ is taken either from Bonn
A or Bonn B. All the remaining t matrices are either
from Bonn A or Bonn 8, respectively. The resulting
binding energies are displayed in the second row of Table
I. We see the expected shifts, downward in the case of
the Paris potential and upward in the case of the Bonn
potentials. The Paris and Bonn B potentials have similar
strengths in the S&- D

&
tensor force, which is measured

in the similar c& mixing parameter and the similar deute-
ron d-state probability Pd =5.77% (Paris) and
Pd=4. 99% (Bonn B). Now correcting for the different
'So forces for np and nn (pp) pairs, we see that these two
potentials come closer to each other in the predictions of
the triton binding energy. On the other hand, the Bonn

potential with a significantly weaker tensor force
(smaller c.] and smaller Pd =4.38%) binds the triton
stronger and, correcting for the 'So forces, the result is
still closer to the experimental value of —8.48 MeV than
for the Paris and Bonn B potentials.

Let us now include the T= —,
' admixture. The Faddeev

equation reads
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TABLE II. Artificial strength parameters from Ref. 10 modi-
fying the Bonn B potential in the P states.

3P
3p

p, - F2

0.86
1.05
1.02

~np

1.04
1.07
1.03

~nn

0.75
1.08
1.03

the additional one

~pq(00)0(0 —,
'

)—,'8= —,'(1 —,
' )T= —,

' ) . (3.4)

IV. EFFECTS OF CHARGE-INDEPENDENCE
BREAKING IN THE Nd BREAKUP PROCESS

We solved Eq. (2.35) for the Bonn B potential acting in
all 2N states with j ~ 3. In the 'So state we either used

The resulting binding energies are shown in the third row
of Table I. As expected in Refs. 8 and 9, the effect of in-
cluding T= —,

' in the triton binding energy is very small.
(We estimate it to be 1 keV. )

Finally, we study CIB in the P 2N forces. In Ref. 10
we found that the experimental np and pp analyzing
powers A allowed for P phase shifts, which are different
for the np and pp systems. We generated these new P
phases by modifying the Bonn 8 potential in the P
states. This was done by introducing artificial strength
parameters into the Bonn 8 2N potential. They are
displayed in Table II. The modified Bonn 8 potential de-
scribes the experimental analyzing powers in the pd sys-
tem rather well —contrary to all previous trials with
standard 2N potentials. In order to also describe the nd
data for A we had to introduce charge-symmetry break-
ing. The corresponding strength parameters k„„ in the
P states are also shown in Table II. This defines the

Bonn 8 potential modified in the states P as we used it
for triton calculations. We applied t,tt of (1.1) for the P
states and the state 'So, neglecting in both cases the
T= —,

' admixtures. The result is —7.89 MeV for the
Bonn 8 potential. The effect is very small, as could be ex-
pected from the small contribution of P 2N forces to the
triton binding energy. For the binding-energy difference
of He and H, however, which is not fully explained by
the Coulomb force, an effect of charge-symmetry break-
ing in P states may be visible. For the phenomenological
Bonn 8 potentials modified in P states according to
Table II, the binding-energy differences between H and
He are E& —E& =10 keV. That difference is only due

to the Bonn 8 modifications in the P states as given in
Table II. (In the 'So state, charge symmetry is assumed. )

That small effect of 10 keV reduces the energetic distance
between the (negative) binding energies of H and He
and opposes the effect of charge-symmetry breaking in
the state 'So. In Ref. 10 we assumed that the difference
between the low-energy pd and nd analyzing powers in
the maxima are caused by CSB in the P states. In case
part of it, or even all, is caused by the Coulomb force act-
ing in the pd system, CSB can be reduced and, conse-
quently, our result of 10 keV will decrease, too.

the original Bonn 8 potential, which is adjusted to the np
system, or a version which is adjusted to the pp system.
This is reflected in two different coupling constants as
mentioned in Sec. III. In this work we neglect charge-
symmetry breaking in the 'So state and identify the pp
and nn interactions. We shall display the results of four
different dynamical assumptions for the forces in the 'So
state: a pure Bonn 8 =Bonn B (np) calculation, with np
forces between all 2X pairs, a pure Bonn B (pp) calcula-
tion, with pp (=nn) forces between all 2X pairs, CIB in
the T= —,

' state, with t,& between all 2N pairs, and CIB in
the T= ,' and ——', state, with the proper np and nn (=pp)
forces.

Out of the rich spectrum of breakup configurations we
selected a few which were suggested to be especially in-
teresting in the search for three-nucleon force (3NF)
effects. These are the space-star, the collinear, the
quasifree scattering (QFS), and final-state interaction
configurations. We want to investigate in how far the ex-
act treatment of CIB in these configurations is of impor-
tance or whether the —', —,' rule of Eq. (1.1) neglecting
T= —,

' is sufficient.
From the Watson-Migdal approximation and 3X cal-

culations with the Paris and Bonn potentials it is well

8~-39.0, 82=,62. 5, 4&g2,=180., 0 E=1,3.0 MeV

H(n, nn)'H FSI (np)

C4

6-
J3
E

l/)

C;
u

C:a
3

a

0
0

S(MeY)
16

FICx. 1. The cross section d'o. /dQ&d02dS as a function of
arc length S for the np FSI configuration at 6

&

= 39.0',
e2=62. 5', and 4»=180'. Experimental data are from Ref. 25.
The theoretical curves are the Bonn B potential predictions,
with two-nucleon interactions restricted to act in the partial-
wave states j ~ 3 and with a different 'So dynamic: the dotted
and dash-dotted curves result if the 'So forces of Bonn B (np)
and Bonn B (pp) are used, respectively', the T=

2 approximation
in the form of the

3 3
rule using these 'So forces and the full

calculation with T= —', admixture are given by dashed and con-
tinuous curves, respectively.
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known that the FSI peak area is strongly dependent on
the So scattering length. This is visible in Figs. 1 and 2,
where np and nn FSI configurations at E„""=13.0 MeV
are shown. The curves for the Bonn B (np) and Bonn 8
(pp) potentials are indeed far apart in the FSI peak areas.
The Bonn 8 (np) curve corresponding to the scattering
length a„. ('So) = —23.76 fm lies higher than the Bonn B
(pp) curve corresponding to a ( So)= —17.66 fm. The
T= —,

' approximation (—,'-—,
' rule) lies in between. The full

calculation including T=—', , which distinguishes between
the np and nn forces, coincides —to our surprise —very
well with the respective pure potential predictions. It
seems unavoidable to conclude that the full breakup am-
plitude has the structure of a production amplitude for
the pair interacting in the final state multiplied by an am-
plitude which is responsible for the FSI per se. The first
amplitude should then be insensitive to CIB, while all the
sensitivity should be carried by the second one. This
deserves further theoretical investigation. We conclude
that, in the whole FSI peak area, the full treatment of
CIB in the form of the T= —,

' admixture is necessary. The
T= —,

' approximation in the form of the
3 3

rule is inade-
quate. An alternative is to perform two calculations with
pure potentials adapted to the pair of nucleons interact-
ing in the final state. The good agreement of the nd
data with the full calculation as seen in Fig. 1 might be
fortuitous, since our theory has not yet been folded with
energy and angular resolutions.

The collinear configuration in the cases we studied
turned out to be insensitive to CIB. We show an example
in Fig. 3, where the four curves at the collinearity point
overlap. The nearby peaks are slopes of FSI's from
neighboring angles. In the right peak, CIB effects are
strongly visible and the T=

—,
' admixture is essential. It is

e'=39.0 Br=75.5 Wz. =(80.P E=13,0 MeV.

3

E
l/)o

CV 2-
Clo
D
O

H(n, nn)'H collinear

0
0 S(Mev} l2

FIG. 3. The same as in Fig. 1 for the collinear configuration
at 6) =39.0, 6~=75.5', and N&&=180. The collinearity point
is indicated by the arrow.

a np FSI. Here we also show nd data which, at and
around the collinearity condition, deviate significantly
from theory. We feel that a second independent measure-
ment should confirm the data before a signature for dy-
namics beyond the 2N forces only can be claimed. The
agreement in the FSI peak area may again be fortuitous,
since we have not yet corrected the results for experimen-
tal resolutions.

8) -)9.0, gz=,62.5, Qu, =180.,0 E=13.0 QeV 8)=50.5 8$ 50.5 412:120.0 E=13.0 MeV
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FIG. 2. The same as in Fig. 1 for the nn FSI configuration at
6& =39.0', 6&=62.5', and 4 &p= 180.

FIG. 4. The same as in Fig. 1 for the space-star configuration
at 6,=6&=50.5 and 4&&=120.
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e1 =39.0, 82=39.0, '42=.180.0, E=13,0 M@V

4
C4

L
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JD
E

Cl
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Cl
2

D

H(n, nn)'H QFS (nn}

0
0 S(MeV}

Another configuration besides collinearity which is
robust against changes in 2N dynamics is the space star.
In Fig. 4 we show results at E„" =13.0 MeV. The four
curves overlap totally. This is in line with the result
that the exchange of the Bonn A against the Paris poten-
tial shifts the cross section only by =4%. Therefore, like
collinearity, the space star is an ideal candidate to look
for 3NF effects. The nd data at 13.0 MeV show a strong
variation along the S curve which is not present in

81 =39.0, O2=39. 0 . ~t2=,180.0, E=13,0 Me&

2H(n, np) n QFS (np)

CV
L

lh

8E

Cl

Cl
O

4"U

S(MeY} )6

FICy. 6. The same as in Fig. 1 for the QFS (np) configuration
at e& =ez=39.0' and @]z=180'.

FICx. 5. The same as in Fig. 1 for the QFS (nn) configuration
at e&=ez=39.0 and 41z=180.

theory. They should also be confirmed by a second in-
dependent measurement before a signature for 3NF
effects can be claimed.

In Figs. 5 and 6 we show nn and np QFS's at
E„" =13.0 MeV. In the whole peak area (central peak)
the difference between the approximate calculation (T= —,

'

only) and the result of the full calculation (inclusion of
T= —,') is negligible. For the np QFS even the predictions
of the pure potentials coincide with each other and the
full calculation.

Finally, let us regard a possible CIB in the P states as
discussed in Sec. III. The effects on the breakup cross
sections shown in Figs. 1 —6 are totally negligible except
for the np QFS (and the two FSI's), where the T= ,' ad-—
mixture decreases (increases) the cross section by —3%
in comparison to the results based on pure Bonn B, which
coincides with the

3 3
rule approximation. The situa-

tion is totally different for polarization observables.
There CIB in the P states can be clearly seen. We
display in Fig. 7 the analyzing powers for the breakup
configurations of Figs. 1 —6. The three theoretical curves
correspond to the original Bonn B, to a restriction to
T= —,

' with effective t operators in P states, and to the in-

clusion of T= —,
' states. All three curves are based on a

full treatment of CIB in the state 'So. That latter sophis-
tication is, however, unimportant, since the So force has
little inhuence on 3

V. EFFECTS OF CHARGE-INDEPENDENCE
BREAKING IN ELASTIC Nd SCATTERING

Studies of CIB in elastic Nd scattering is important for
various reasons. From elastic Nd scattering one may ob-
tain new information about 2N forces, which is not possi-
ble (or difficult) to obtain from the 2N systems. We
showed in Ref. 27 that the nucleon to nucleon polariza-
tion transfer coeKcient E for Nd scattering exhibits a
strong sensitivity to the S, - D, tensor force which, up to
now, is insuSciently determined by two-nucleon observ-
ables only. In extracting information from K~ about the
tensor force, it is important to reliably control the depen-
dence of K on 'So and P 2N forces, which —though
much weaker —is also present. Therefore, CIB in these
force components should be checked. In the case of the
analyzing power A in Nd scattering, we found that a
persistent discrepancy between theory and experiment at
energies below =50 MeV could be removed by introduc-
ing CIB in P 2N forces. Therefore, it is important to
know how far the T= —,

' admixture is quantitatively im-
portant and also how far the proper treatment of CIB in
the 'So is relevant.

The solution of the 3N equations (2.35) at 13.0 and 22.7
Me V revealed the following results. We studied the
differential cross section, the nucleon and deuteron vector
analyzing powers, the deuteron tensor analyzing powers,
the various nucleon to nucleon and nucleon to deuteron
polarization transfer coe%cients. Among them there is
none which is measurably sensitive to CIB in the state
'So. As an example demonstrating the weak sensitivity,
in Fig. 8 we show K at 22.7 MeV. As for the breakup
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FIG. 7. The analyzing power A~ as a function of arc length S for the same configurations as in Figs. 1 —6. The dotte curve is the
Bonn B potential prediction with j ~3. The predictions with CIB in I' states as given by the modified pp and np potentials from
Table II and treated exactly including T= —states or approximately by the

3 3
rule (T = —') are presented by dashed and continuous

curves, respectively. All three curves are based on a full treatment of CIB in the 'S& state with Bonn B (pp) and Bonn B (np) 'So po-
tentials.
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mental value. CIB and CSB, as introduced in Ref. 10 for
the P 2NF have a small effect of -30 keV and reduces
the binding-energy difference between H and He by 10
keV.

For 3X scattering we studied breakup and elastic Nd
scattering processes. Among the investigated breakup
configurations, the FSI cross sections were most sensitive
to CIB in the 'So 2NF. A proper treatment requires the
inclusion of the T= —,

' states to clearly distinguish the nn

and np forces. The effective t operator of Eq. (1.1), keep-
ing alone T= —,', is not sufhcient in the FSI peak area; it
is, however, a good approximation for the nn QFS. Oth-
er breakup configurations, such as the space star, col-
linearity, and np QFS, turned out to be insensitive to
CIB. Very small effects of CIB in P 2NF were visible in
FSI and np QFS cross sections.

Strong and significant shifts showed up in the analyz-
ing powers for all the considered breakup configurations,
if CIB in P 2NF was introduced.

Spin observables in elastic scattering are, in general, in-
sensitive to CIB in 'So and P 2NF. Interesting excep-
tions are the vector analyzing powers and nucleon to
deuteron spin-transfer coeKcients. They show a strong
sensitivity to P 2NF and exhibit clear effects of CIB in
these 2NF components. We illustrated that for the CIB
in P 2NF, introduced in Ref. 10 to explain low energy
Ay 's in the nd and pd systems. In that case, the neglect
of a T= —,

' admixture turned out to be justified.
The numerical progress in solving 3N equations and

new experimental data of high quality make the study of
CIB in 3X scattering possible and useful. Future applica-
tions to FSI's and to nucleon to deuteron spin-transfer
coefricients appear promising.
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APPENDIX

To derive (2.58) from (2.35) we start from

&nnplTl&P&=&nnpltPl@&+&nnpltPGoT 4& . (Al)

Using (2.43) and manipulating permutation operators,
one finds

& nnP
I
Tl+ & =t„'„='(23)(Ptz—P)3)Po I

& &

2

+t„'„='(23)G,(P»P» & npn l Tle &

+P, P32&3pnn ITI@&) .

(A2)

Next we apply the cyclical permutation Pi3P23 and get

P~3P23 & nnp l Tl + &
= —t„'„='(12)(1—P,2)Po l

N &

2 ""

+ t„'„'(12)Go

X(&npnlTl@&

+P,3P,2&pnn l Tl@ & ) . (A3)

Using P»P, 2 =P,zPz3 and (2.52) led to (2.58).
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