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Variational calculations of few-body nuclei
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Improved variational wave functions for use in microscopic studies of few-body nuclei are
presented. The trial functions are constructed from pair-correlation operators, which include cen-
tral, spin, isospin, tensor, and spin-orbit components, and triplet-correlation operators, which in-
clude components induced by three-nucleon potentials. Energy expectation values are calculated
using Metropolis Monte Carlo integration. Variational parameter searches are made using energy
diAerences to reduce the eA'ect of statistical fluctuations on the choice of optimal trial functions.
Results are reported for ground-state binding energies of 'H and He using the Reid v& and Argonne
v, 4 two-nucleon potentials, and Argonne v, 4 with the Tucson-Melbourne, Urbana VII, and Urbana
VIII three-nucleon potentials. The variational binding energies are typically 3—4% above available
Faddeev and Green's-function Monte Carlo results. Nucleon density distributions and elastic elec-
tromagnetic form factors are also presented. Extension of these wave functions to larger nuclei such

He, He, and Li is discussed.

I. INTRODUCTION

A major problem in nuclear physics is understanding
how nuclear structure comes about from the underlying
interactions between nucleons. This requires modeling
nuclei as collections of strongly interacting nucleons.
There are many fundamental issues that have not been
addressed satisfactorily to date, including the stability of
light nuclei against breakup and the origin of the spin-
orbit splitting. A starting point for resolving these issues
is the solution of the many-body Schrodinger equation
H 4 =E% for realistic nuclear Hamiltonians such as

Uij g Up(l ij )Oij
p =1

where

S; (r; r ), L S, L S(r; r ), L

I.'(r, r, ), L (cr, o., ), L (o, o, )(r, r)), .

(L S), (L.S) (r;.r ) . (1.3)

—fiH=g V, + gU;, + g V;k,
i&j i &j&k

where v, is a nucleon-nucleon potential that fits scatter-
ing data and deuteron properties and V, k is a supplemen-
tal three-nucleon potential.

Many realistic nucleon-nucleon potentials can be writ-
ten in an operator form:

The parameters in 4, are varied to minimize E„and the
lowest value is taken as the approximate ground-state en-
ergy. The corresponding 'P„can then be used to calcu-
late other properties, such as the particle density,
momentum distributions, and electromagnetic form fac-
tors. ' ' The quality of such calculations depends on the
chosen form of the variational function 4', and the accu-
racy with which the expectation value is evaluated.

A general form for the trial function that has been used
in few-body nuclei and nucleon matter is a symmetrized
product of two-body correlation operators (1+U; ) acting
on a Jastrow trial function:

I +. &
= 'S ~ (1+U~, )

'

I
e &, (1.5)

such as Paris, the four terms with I. operators are re-
placed by similar terms with p operators. Models for
the three-nucleon potential V;Jk commonly include a
long-range two-pion-exchange part of the
Fujita —Miyazawa form, and may also include short-
range parts as in the Tucson-Melbourne model and Ur-
bana models. '

The variational method can be used to obtain approxi-
mate solutions to the many-body Schrodinger equation
for a wide range of nuclear systems, from few-body nu-
clei such as H and He, to light nuclei such as ' 0,
to nuclear matter and neutron stars. ' ' A suitably
parametrized trial function 4, is used to calculate an
upper bound to the energy:

&+.lal+. &

(For convenience, we sometimes refer to these operators
by the abbreviations c, ~, o. , o.~, t, t~, b, b7., q, qz, qo. ,
qo. r, bb, and bbr) The first eight op.erators appear in the
R.eid v8 potential, ' while all 14 terms appear in the A.r-
gonne v&4 potential. In several other potential models,

where

Here f, (r) is a central pair-correlation function and 4& is
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an appropriate antisymmetric single-particle wave func-
tion. The philosophy behind this ansatz is that each
operator component of the two-body interaction can in-
duce a corresponding correlation in the wave function.
Hence a standard choice for the pair-correlation operator
is

(1.7)

U)=u (r, )cr, o +u, „(r, )S, (r, r ) . (1.8)

This simpler form gives a reasonably good trial function
for the s-shell nuclei because' up to terms linear in u it
is equivalent to the U;. of Eq. (1.7) with I =8. The U, is
constructed from knowledge of the S-wave nucleon-
nucleon interactions, and thus is a sort of variational
equivalent of the standard five-channel Faddeev wave
function. In previous calculations and the current work,
a central three-body correlation is generally folded into
the u (r,~):

u (r, )~ Q f,,k u (r;).
kWi,j

(1.9)

where the number of operators I is as large a subset of
the potential operators of Eq. (1.3) as can be conveniently
used in a calculation. The symmetrization is required be-
cause the operators do not commute. In nuclear matter
and ' 0, for example, the first eight operators have been
used, although expectation values involving spin-orbit
correlations are evaluated at a lower level than spin, iso-
spin, and tensor correlations.

Most previous variational calculations of few-body nu-
clei using operator-product trial functions have used a
simpler pair-correlation operator U; containing only two
noncentral terms:

"He with three Hamiltonians: the Reid v& and Argonne
v&4 two-nucleon potentials, and Argonne v i4 with the Ur-
bana VII three-nucleon potential. Additional calcula-
tions for the Urbana VIII and Tucson-Melbourne three-
nucleon potentials are also reported. Expectation values
are obtained using the Metropolis Monte Carlo algo-
rithm. ' Essentially exact Faddeev calculations' have
been made for H with these Hamiltonians, and Green's-
function Monte Carlo results' are available for He with
Reid v8 and for Argonne u&4+Urbana VIII. The best tri-
al functions of the old form, using U;- without U," or
U,"k ' terms, give upper-bound energies that are typically
7—8% above the exact results. The new trial functions
reported here give upper bounds that are typically 3—4 %
above the exact results.

The method for generating the pair correlations f, (r)
and u„(r) and their parametrization is presented in Sec.
II along with the triplet correlations. The method of
evaluating expectation values and searching parameter
space for the best trial function is explained in Sec. III ~

Section IV contains numerical results for the various
Hamiltonians. Section V discusses a reasonable extension
of this wave function for five- and six-body nuclei. A dis-
cussion and conclusions are given in Sec. VI.

II. PAIR AND TRIPI.KT CQRREI.ATIONS

The pair correlation should reAect the inAuence of the
two-body potential at short distances, while satisfying
asymptotic boundary conditions of single-particle separa-
bility. Reasonable correlations can be generated" by
minimizing the two-body cluster energy of an interaction
(u —A, ). The quenched interaction u is related to the bare
interaction by

In this article we construct variational trial functions
for few-body nuclei of the form

u;~
—g aalu (r, )0,

p=1
(2.1)

)= 1+gU + g U
i &j&k

(1.10)

where U, contains the first five noncentral operators of
Eq. (1.3) and U; is the spin-orbit correlation operator,

with P a simple multiplicative constant. It would be
preferable to include spin-orbit correlations in the prod-
uct form, i.e., as part of Eq. (1.7), but then expectation
values would be much more expensive to compute. The
U,"k is a three-body correlation induced by the three-
nucleon interaction V;-k and has a correspondingly com-
plex operator dependence.

The effect of these three improvements to the trial
functions used in Refs. 6—8 for few-body nuclei, i.e., the
increase to five noncentral operators in U,", and the addi-
tion of U;- and U, k ', is systematically studied here by
calculating the ground-state binding energies of H and

where the variational parameters e are meant to simu-
late the average quenching of spin-isospin interactions be-
tween particles E and j due to interactions of these parti-
cles with others in the system. The Lagrange multipliers
A. (r) simulate screening effects at short distances, and
are fixed at large distances by the asymptotic behavior of
the correlation functions.

Eight coupled differential equations are needed to gen-
erate the eight pair-correlation functions f, (r) and u (r),
where p =2—8. By projecting into channels of fixed spin,
S, and isospin, T, the equations can be decoupled to two
single-channel equations for T =0, 1 and S =0 states, and
two triple-channel equations for T =0, 1 and S =1 states.
These channel equations are written in terms of four cen-
tral functions fs r(r), two tensor functions f, r(r), and
two spin-orbit functions fb r(r) The differenti. al equa-
tions have been previously derived for v 8 and v, 4 poten-
tials in nuclear matter at fixed density. ' '" In the present
work, we use the same equations, but in the limit kF ~0.
The single-channel equation for S =0 states (with L =0
for T=1, the 'So state, and I =1 for T=O, the 'I',
state) is
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L+1) L(L +1) (f L+1)
O, T 2 O, T

+[up T+kp T+L (L +1)u&p T](fp Tr + )=0,
(2.2)

where the double prime denotes a second derivative. The
three coupled channels for S =1 states (with L =0 for
T =0, the S1- D1 states, and I. =1 for T = 1, the
3 3

z F2 states) are

$2

+8[v, T+k, T
—

,', L(L—+1)ubbT](f, Tr ')+ ,'L(L—+1)(ubT+Ab T
—, ubb —T)(fbTr ')=0,

(2.3)

g2
(f L+1)ir (f L+1) +[— +g 1 L (L + 1)— ](f L+1)

+[u, T+A, , T
—2(v, T+A., T) —3(vb T+kb T)+6u, T+9ubb T+L(L+1)(u, 7+ —,vbb T)]

X(f, Tr +')—
,', L (L +—1)(ubT+Ab T 2ubb T—)(fb Tr +')=0, (2.4)

2

(fb, Tr ) p (fb, Tr ) +(»,T+~b, T pvbb, T)(fl, Tr ) (vb, T+~b, T 2vbb, T)(ft, Tr3 —L — — 3 —L

r2

+[u, T+k, T
—(u, T+A, , T) ,'(vb T+A—b —T)+(6—4L)(u, T+ubb T)](fb Tr )=0 . (2.5)

fs, T(r~~)=hs, T

1 j(A —1)
exp( ks, T" )

f, T(r~0)=0,

f, T(r~ ~ )=riTT(r)fs, T(r)

fb T(r~0)=constant,

fb T(r ec )=(TB(r)fS T(r),

where

(2.6)

For finite nuclei, the boundary conditions imposed on

fs, T ft T, and fb T are

fs T(r~0)=constant,

1.2 , 1 I I I
t

I I I I

]
I I I I

[
I I I I

j
I I I

1.0

0.8

malizations hs T, tensor/central ratios g T, and spin-
orbit/central ratios gT are variational parameters. The
Lagrange multipliers A,„ in Eqs. (2.2)—(2.5) are radial
functions consisting of two parts: The long-range part
A„(r) is fixed by the asymptotic behavior of f„and is cut
o8' at short distances by an exponential function, while
the short-range part is a Woods-Saxon function multi-
plied by a constant F:

T(r)= 1+ +3 3

s, Tr (ks, Tr)'

X I 1 —exp [ —(r /d, T ) ],
kS, T+ '

I 1 —exp[ —(r/db T) ]j,
r r

1/2

(2.7)

0.4

0.2

-0.2

kS, T= 3 —1 2m
0 4

0 3 4

The asymptotic boundary conditions imposed on the f
are suggested by previous work which examined the
wave function when one nucleon is separated far from the
other A —1 nucleons. The separation energies Es T, nor-

FICr. 1. The fs r(r), f, T(r), and fb, (r) correlations for He
Argonne U &&+Urbana VIII Hamiltonian.
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1+exp
r —R

a

'2 I

1.0

+& (r)t 1 —exp[ (r/'c—)2jI . (2.8) 0.8

The constants I „are determined by solving the
difT'erential equations subject to the boundary conditions
The Woods —Saxon and exponential cutoA constants R
a„, and c in Eq. (2.8) and the exponential cutoff con-
stants d in the tensor and spin-orbit functions T(r) and
8(r)ofE . (27q. ( . ) are additional variational parameters.

The functions f, (r) and uz(r) in the operators U," and
U; are related to the channel functions via

0.6

04

0.2—

0.0

-0.2

X fs, T(", )Ps PT = & f ( r;, )OP~.
p=1

-0.4
0 2 3

r (fm)
4.

=f, (r, ) 1+ g u (r,, )OP~

p =2
FIG. 3. The ~ ~r,~, ( ), u, (r), and u„(r) correlations for H, 'H,

and He with the Argonne ul4+Urbana VIII Ham l

g f, T(r, . )S, PT= g"f (r,, )Of~
p =5

6

=f,(rj) g up(r, , )Of),
p=5

(2.9)

1.2 I I I I I I I I I
/

I I I I
/

I 1

1.0

0.8

0.4

0.2

0.0

g fb, r(ri, )(L.S)PT= g f~(r,~ )OP~.
p —7

8

=f, (r;, ) g u (r; )OI',
p =7

where P and P are hT e the usual spin and isospin projection
operators, i.e., P = =(3+cr o. )/4 P =(1P PJ', s —0

—1—o; oj)/4, etc. The optimized fs T(r), f, T(r~ ), and.
fb 7 (

r J ) for He with the Argonne U, 4 plus Urbana VIII
Hamiltonian are shown in Fig. 1. The corresponding
operator functions f, (r) and uz(r) are shown in Fig. 2. A
comparison of the f, (r) and u„(r) for H, H, and H is
given in Fig. 3.

Th e total number of possible parameters in these equa-

tions is 54, which includes 14 a to define v, 8 values each

stren ths Eg s r, gT, and gT, and 4 values for the mixing
parameters hs T. In practice far fewer are used. The a
are taken to be 1 for p = 1,9, 13, 14, and a single value a
for all other p. Four values of R are used: R =R
R =R R =R

o s=o, T~

s = &, T t t T and Rb =R b T. Only two values
of a are used: a =ao ~: =as T=a, T and ab =ab T, two values ofc: c =c 0 T a " c, = s, T=, T=cb T, and a single
value of d ' d =d , T =d& T. In addition, there is the mul-
tiplicative constant /3 in Eq. (1.11).

In practice, the addition of a spin-orbit correlation in
the S =1 T=O 'e =, =0 ( S

&

- D
&

) channel was found not to im-
prove the energy of the trial function, so fb o is taken to
be zero and no go parameter is required. This is not
surprising, since there is no direct coupling of central and
tensor channels to the spin-orbit correlation in Eqs. (2.3)
and (2.4) for L =0. Further, the energies are not very
sensitive to the cutoA parameters a a
One set

a, ab, co, c&, and d.
ne set of values was used for all the Hamiltonians stud-

ied in both H and He: a =0.4, a& =0.3, c = 1.0
and d =2.0 fm. The remaining 17 pair-

correlation parameters for the best trial functions found
are given in Table I for H, and in Table II for He.

The U; ofEq. (1.8) used in the earlier variational cal-
culations — can be constructed as a special case of the
equations used here. If Eqs. (2.2) —(2.4) are solved only ionly in
L =0 channels, i.e. , for (S, T) = (0, 1 ) and (1,0), then

the expressions

-0.2—

-0.4
0

+ u„(xS)

2 3
r (fm)

u (xS)
I I

f.=
—,'(3f i,o+fo i »

= 4(f i,o fo, ] )/f,

(2.10)

FIG. 2. The projected f, (r) and u (r) correlations for 4He

with the Argonne u &4+Urbana VIII Hamiltonian.

In practice, this will give correlations only marginally
diff'erent from those used in earlier work, and will serve
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TABLE I. Pair- and triplet-correlation parameters for H. Energies E~ T are in MeV and radii R
are in fm. All other parameters are dimensionless.

Hamiltonian

Eo,o

Eo, 1

Ei,o

ho, o

hO, l

hI, O

go
Yj ]

CX

Ro
Ri
R
Rb

b

Reid v8

1.8
5.4

12.0
5.8
1.81
1.77
1.86
1.79
0.026

—0.008
0.001
0.94
0.8
2.8
3.4
0.8
0.5

10.0

Argonne u 14

1.6
5.4

10.8
4.8
1 ~ 37
1.82
1.89
1.69
0.027

—0.006
—0.020

0.93
0.8
2.8
3.2
0.6
0.4

10.0

Argonne u&4

+TUcson

2.0
6.8

13.0
5.4
1.42
1.86
2.02
1.73
0.027

—0.009
—0.020

0.90
0.8
2.8
3.6
0.8
0.5
9.0

—0.000 15
0.70

Argonne v&4

+Urbana VII

2.6
7.2

12.2
7.0
1.45
1.90
1.94
1.83
0.028

—0.009
—0.020

0.91
0.8
2.8
3.6
0.8
0.5
8.0

—0.0004
0.70

Argonne u&4

+Urbana VIII

2.4
7.0

12.0
6.8
1.43
1.90
1.88
1.83
0.028

—0.009
—0.020

0.92
0.8
2.8
3.6
0.8
0.5
8.0

—0.0004
0.70

as a reference point for the new correlations of the
present work.

There are two kinds of triplet correlations in the trial
function of Eq. (1.10). There is the central three-body
correlation f; k in expression (1.9), which modifies the
noncentral pair-correlation operators uz(r~ ), and there is
the three-body correlation operator Ujk representing

the correlations induced by V~k. The f Jk performs a
quenching function analogous to the potential quencher
az of Eq. (2.1), but in a manner that is dependent on the
relative position of a third particle with a correlated pair.
It is used whether or not there is a V; k term in the Ham-
iltonian. The same form is chosen here that has appeared
in previous work,

TABLE II. Pair- and triplet-correlation parameters for He. Energies Ez T are in MeV and radii R
are in fm. All other parameters are dimensionless.

Hamiltonian

Eo,o

Eo, I

Ei,o

El, I

~o, o

~O, 1

~I,O

IO

Y/ l

Ro
R)
R,
Rb

E

b

Reld u 8

11.0
18.0
21.0
17.0
2.05
1.77
1.76
1.72
0.040

—0.014
0.001
0.84
0.8
2.8
3.4
0.8
0.4

13.0

Argonne u, 4

7.0
16.0
20.0
15.0

1.41
1.78
1.75
1.70
0.040

—0.014
—0.020

0.78
0.8
2.8
3.2
0.6
0.5

11.0

Argonne u, 4

+TUcson

9.0
22.0
26.0
18.0
1.47
1.91
1.83
1.76
0.038

—0.014
—0.020

0.82
0.8
2.8
3.6
0.8
0.5
9.0

—0.000 15
0.70

Argonne u&4

+Urbana VII

11.0
22.0
26.0
19.0
1.51
1.91
1.85
1.79
0.039

—0.017
—0.020

0.82
0.8
2.8
3.6
0.8
0.5
8.0

—0.0004
0.70

Argonne u&4

+Urbana VIII

9.0
20.0
23.0
17.0
1.47
1.88
1.75
1.74
0.038

—0.014
—0.020

0.82
0.8
2.8
3.6
0.8
0.5
9.0

—0.0004
0.70
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f,jk —1 —t
ijk

exp( t—3R;~k ), (2.11)
III. ENERGY EVALUATIONS

AND PARAMETER SEARCHES

U~~)k'=«;, k(r, ~)k rk ) . (2.12)

Here r =br is a scaled variable that serves to spread out
the correlation relative to the interaction and e is a small
negative multiplicative constant. This form builds into
U; k a11 the operator dependence of the three-nucleon in-
teraction. For example, the Urbana series of three-
nucleon potential models ' is given by a sum of long-
range two-pion-exchange and intermediate-range repul-
sive terms:

where R, -k=r;. +r k+rk;. The t„ t2 and t3 are varia-
tional parameters and cou1d in principle be made
different for each u~(r) in expression (1.9), but a single set
of three parameters is used here.

The U,-
k is used only when a V; -k term is present in

the Hamiltonian. Its form is suggested by simple pertur-
bation theory:

Energy expectation values are calculated using Monte
Carlo integration. ' The expectation values are sampled
both in configuration space and in the order of operators
in the symmetrized product of Eq. (1.10) by following a
Metropolis random walk. ' Sampling in the order of
operators saves significant computational efFort, since the
number of possible orders is P!, where P =

—,
' A( A —1) is

the number of pairs. This introduces relatively little sta-
tistical variance, because the different orders contain the
same linear terms and differ only at O(u ) and above.

The Monte Carlo energy expectation value is given by

(%q(R)H+q(R) ) /W q(R)(a)=
g ( %„(R)4 (R) ) /W„(R)

where the sums run over configurations denoted by the
particle coordinate set R=(r„r2, . . . , r~), and the
specific order of operators, p and q, on the left and right
sides. The brackets indicate a complete sum over all
spin-isospin variables. The weight function is

2m RV~k= ~jk+~~k . (2.13)
W (R)=Re((%~(R)%' (R))) . (3.2)

Here the two-pion-exchange part is a cyclic sum over in-
dices ij, jk, and ki of products of anticommutator and
commutator terms:

V„i, = g A([X,),XJi, I [r; rj, r) ri,I.
cyc

+ —,'[X, ,X„][r,r, , ~, r„]), (2.14)

where X; = Y(r,")o; cr~ +T(r, )SJ is . the on"e-pion-

exchange operator. The intermediate-range repulsion is a
cyclic sum of purely central character:

V,jk
= g UT (r,) )T (r&k ) .

cyc

(2.15)

The potential constants 3 and U have the values—0.0333 and 0.0038 in Urbana model VII, and the
values —0.028 and 0.005 in Urbana model VIII. The
Tucson-Melbourne three-nucleon potential has a more
general two-pion-exchange part with additional operator
terms, but no intermediate-range repulsive part. In either
case, U;&& has the full operator dependence of the in-
teraction.

This kind of three-nucleon correlation was tried in ear-
lier work in the case of H, but with the scale factor
b =1, so the correlation was not spread out. That corre-
lation gave an improvement that was statistically
insignificant. With b & 1 and the energy-difference tech-
niques described below, the scaled correlation gives a
clear improvement in H and has a very significant effect
in 4He.

In practice, the parameters t2 and t3 in Eq. (2.11) are
taken to be the same for all Harniltonians in both H and
He: t2=4 and t3=0. 1 fm '. The optimal values of the

remaining three parameters, t, from Eq. (2.11) and e and
b from Eq. (2.12) are given along with the pair-
correlation parameters in Tables I and II.

The Metropolis algorithm produces a set of
configurations [R,p, q I whose density is proportional to
this probability distribution. The energy evaluation has a
statistical error, estimated by the standard deviation o".

(H') —(H &'

X —1

@('H)=~' ( —,
'

—,
'

—,
' —

—,')= ~ lpgn 1'n l. &,

4( He)=N (0000)= A ~pl'p1n 1'n l, ) . (3.4)

The Jastrow wave function +J(R) is obtained by multi-
plying 4 with the central pair correlations f, (r,, ) for the
coordinate set R. The trial function of Eq. (1.5) is then
built up by successive matrix multiplication with the
pair-correlation operators U;. (in the selected order p or
q) on %J. This matrix multiplication is the basic unit of
computational work, and is proportional to the size of
the array. The construction of 4 (R) requires P of these
matrix operations to build up the pair product, with
another P operations to construct 4 (R).

The expectation value of the first six terms of the two-
nucleon potential, v

& 6, are evaluated in a similar
manner, with P sparse matrix operations required to sum

where N is the number of statistically independent sam-
ples.

The wave function 4' can be represented by an array of
2"X(z) complex numbers, which are the coefficients of
each state with specific third components of spin and iso-
spin. The spin, isospin, and tensor operators 0- ' con-
tained in the two-body correlation operator U, and in
the Hamiltonian are sparse matrices in this basis. '

The initial uncorrelated state, 4=4( JMTT3 ), is taken
to be an antisymmetrized product of single-particle spin-
isospin states with no coordinate dependence:
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over the different pairs. The expectation values of the ki-
netic energy and spin-orbit potential terms require the
computation of first derivatives and diagonal second
derivatives of the wave function. These are obtained by
moving each particle a small distance t. in both positive
and negative directions along each axis:

r}% (R)
Br;

a'e, (R)
Q(rm)2

[4 (R+er, ) —4 (R—er, )],

1=—2[%&(R+er, ) —2.%'z(R)+4 (R—Er, )],
(3.5)

where r; is the mth spatial component of particle coordi-
nate r;. This requires 6 3 constructions of %' and is
correct to O(e ). Potential terms quadratic in L, such as
those appearing in Argonne v, 4, require mixed second
derivatives:

B% (R) =—[4 (R+Fr, +Er,") 4(R+—er, )
mg n &2

I I

1

B% (R)
2[@q(—R+er, +sr") 4(R—+er, )

1 J

0' (R+or")+—4 (R)], (3.6)

which are calculated to O(e ) to save effort. Tests with
derivatives calculated to O(e ) show this approximation
to be sufficiently accurate for Argonne v, 4, which has lit-
tle net contribution from vp —9 $4 terms. These mixed
second derivatives require an additional 3A+9P con-
structions of %q.

To evaluate the energy in one configuration for 4',
given by Eq. (1.5) with the Reid vs Hamiltonian requires
the equivalent of 6A +3 trial function constructions; for
Argonne v&4 the number is 9A+9P+3. In addition
there is the effort involved in generating statistically in-
dependent configurations proportional to Wz (R)
through the Metropolis random walk. Typically 10 new
configurations, with all the particles moved, are tested be-
tween each energy evaluation, requiring 20 more trial
function constructions.

The spin-orbit correlation operators U, require the
same linear derivatives 8/Br, as the spin-orbit potential.
However, they must be evaluated more frequently, since
they contribute to the weight function Wzq(R) and well

as to the energy expectation value. Because the up 7

are small, the derivatives are evaluated only to O(e ), re-
quiring 3 A (rather than 6A) constructions of %' and 3 A

constructions of %~ for each configuration [ R,p, q ] test-
ed in generating one sample W (R). Kinetic energy and
potential terms quadratic in I. involving the U;~ are eval-
uated using integrations by parts, i.e., 'P~(R)V, V, %~(R);
this requires calculation of mixed second derivatives on
both %~(R) and 4 (R). Thus the introduction of spin-
orbit correlations as in Eq. (1.10) adds significant compu-
tation to the generation of configurations IR,p, q], and

the energy evaluation.
The three-nucleon potential V; k, with the commutator

and anticommutator structure of its two-pion-exchange
part, Eq. (2.14), is evaluated using the same basic spin,
isospin, and tensor sparse matrix operations required in
the construction of U, . However, these operations must
be made twice in opposite orders, and their results
summed or differenced accordingly. Further, because of
the cyclic sum over pairs, there are three such terms to
evaluate in any given triple. Some effort can be saved by
storing the results of the first operation on all pairs in a
given triple, and using each as the starting point for two
different terms in the cycling sum. The energy evaluation
then requires 9T operations, where T=

—,
' A ( 3

—1)( 2 —2) is the number of triples.
The three-nucleon interaction correlations U; k re-

quire a similar effort to construct. However, they also
contribute to the weight function W (R) and must be
evaluated at every attempted move in the random walk.
Evaluation of their kinetic energy and I -dependent po-
tential contributions also requires first derivatives and di-
agonal second derivatives and the corresponding wave
function constructions at slightly shifted positions. In-
tegrations by parts are used to avoid the necessity of
evaluating mixed second derivatives for the U; k

'. This
again requires that mixed second derivatives of both %'

and 4 be available, even if no U; terms are used.
The computer time required to generate a statistically

independent configuration [R,p, q] and to evaluate its
energy for the Argonne v, 4 plus Urbana VIII Hamiltoni-
an is shown in Table III for systems ranging in size from
3 =2—6. These times have been measured on one pro-
cessor of a Cray-YMP4; the approximate speed of the
computer code and the memory requirements are also
shown. The time required to sample the energy of the
simple trial function of Eq. (1.5) is dominated by the
kinetic-energy calculation. This is proportional to the
number of wave-function constructions required for the
kinetic energy, the number of pairs in the symmetrized
product of correlations operators, and the size of the ar-
ray for +, or 3 XP X2"X(z). This factor grows rough-
ly 1 order of magnitude for each particle added to the
system. It is compensated for somewhat by the increas-
ing efficiency of the computer code as the relevant vectors
get longer. For a given nucleus, the spin-orbit and three-
nucleon interaction correlations add significantly to the
computation effort, with the result that the full trial func-
tion of Eq. (1.10) requires almost 1 order of magnitude
more time than the simple trial function of Eq. (1.5).
This is partially compensated for by the fact that the full
form is a fundamentally better trial function, with
significantly less variance, and thus requires fewer sam-
ples to obtain an energy with the same Monte Carlo sta-
tistical error.

Two significant tests have been made to verify the com-
puter code. The energy has been evaluated for H using
exact wave functions, and for H using the 34-channel
Faddeev wave functions of the Los Alamos —Iowa
group. ' For the deuteron, the exact wave function can
be written in the correlation operator form of Eq. (1.5)



1592 R. B. WIRINGA 43

TABLE III. Computer time (in seconds) for generating one statistically independent configuration
and evaluating its energy for different-size systems and different forms of the trial function. The Hamil-
tonian used here is Argonne UI4+Urbana VIII. The speed (in MFLOPS) and size (in Mwords) of the
computer code is also shown.

H

H

'He

'He

Li

U;J

U;J
+ ULs+ U TNI

jJ V ij k

U;J
+ UL,S+ U TNI

1J IJ ij k

U;J
+ ULS+ U TNI

V IJ ijk

U;J
+ ULS+ UTNI

Configuration

0.0018
0.0048
0.026

0.013
0.15

0.038
0.76

0.15
4.2

Energy

0.0006
0.0032
0.012
0.024
0.11

0.145
0.81

1.03
6.4

Total

0.0024

0.0080
0.038
0.037
0.26

0.183
1.57

1.18
10.7

Speed

23

59
75

120
118
175
156

211
187

Size

0.43

0.53

0.65

1.35

5.7

using f, (r) and u„(r) correlations with the definitions

f,(r)=, u„(r)=u (r) —w(r)
3 gu(r)

(3.7)

where u (r) and w(r) are the usual S- and D wave deu-te-
ron wave functions. The deuteron energy and wave func-
tions are found using an independent computer code, and
the latter are used as input to the Monte Carlo energy ex-
pectation value code; the results agree within 1 keV. The
configuration-space Faddeev wave functions for H can
also be used as input, and the energies reported below
agree with those reported by the Los Alamos —Iowa
group within 60 keV. Both these checks give some as-
surance that the energy expectation values are being ac-
curately evaluated.

The search in parameter space for the best trial func-
tion of a given form is done by hand. The time required
to evaluate an energy with a sufficiently small error esti-
mate is too large to use an automated minimzation pack-
age that might make hundreds of evaluation requests. In
earlier variational Monte Carlo calculations of few-body
nuclei the standard procedure was to make many in-
dependent random walks with small changes in the wave
function. Unfortunately, the statistical errors of in-
dependent runs might be larger than the actual change in
the energy, so promising routes to a lower energy might
be missed. Also, there was a consequent tendency to pick
a wave function whose energy had benefited from a low
statistical fluctuation. With longer runs, the energy
would almost inevitably go up.

In the present work the searching is done by evaluating
energy differences between different trial functions using
configurations generated by a single random walk. In
general, the energy difference

g(4 t(R)H'll (R))/W (R)
6E=E—E =

g(V~(R)4 (R))/W (R)
g(% (R)H% (R))/Wq(R)

(3.8)
g(%„(R)V (R) ) /W~q(R)

between trial functions 4 and + has a much smaller sta-
tistical error for a given number of samples than the ab-

solute energy for either. In practice, an initial random
walk is made with trial function %' to generate a set of
configurations and weights W (R), which are stored.
Then on the order of 10 different %' are tried, varying one
or two parameters at a time, with the energy difference
being calculated using the same W (R). The 4 that
gives the lowest energy is then used to generate a new
W (R), and the search is continued. This search pro-
cedure is less likely to go astray due to statistical Auctua-
tions in the energy evaluations. It has the added advan-
tage of saving significant computational effort because a
stored random walk is being used most of the time; the
time required to generate a new configuration (first
column of Table III) is effectively eliminated.

IV. RESULTS FOR THREE- AND FOUR-BODY NUCLEI

Calculations have been performed for H and He us-
ing five Hamiltonians: the Reid U8 and Argonne U &4

two-nucleon potentials, and for Argonne U, ~ with the
Tucson-Melbourne, Urbana VII, and Urbana VIII three-
nucleon potentials. In the first two cases the calculations
are done using three different trial functions: U, , U, ,

andU&j+UI jForArgonneu&4 Plus Urbana VII the two
combinations U; + U,"I, and, "+,k +, I,

' are add-
ed. For Urbana VIII and Tucson-Melbourne only the
fully combination U,"+U, + U,"k is used. Calculations
for H have also been made using the 34-channel Faddeev
wave functions of the Los Alamos —Iowa group, ' as in-
put to the Monte Carlo code.

The search in parameter space is made using the
energy-difference techniques discussed above. The op-
timal parameters are found first for the U, trial function
in H for a given Hamiltonian, typically using runs with
10000 configurations. The parameters Ro, R, , and R,
are then fixed for the other trial functions with that Ham-
iltonian. All other parameters continue to be varied as
the U;~ and U, &

' correlations are added. The addition
of U, correlations fixes the parameters g, , Rb, and P;
they are such a small perturbation that the only other pa-
rameter that need be varied is t, . The U,"&

' correlations
have a bigger effect, and small increases in the Ez T and
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TABLE IV. Absolute energies, energy differences, and best energies by least-square fits (in MeV) for
H with Argonne vI4 interaction. Numbers in parentheses give 1-standard-deviation Monte Carlo error

estimates in the last digits.

E
E( U„)—E(+.)

E( U;-) —E(%/, )

E(U. . +U. . ) —E(g )

E (Faddeev) —E(4, )

U;j

—7.154(26)

0.0
—0.257(38)
—0.293(34)

—7.173(17)

U;j

—7.434(21)
0.198(39)
0.0

—0.032(13)

—7.415(13)

U~+ U.
—7.453(22)

0.254(36)
0.042(7)
0.0

—0.330(57)
—7.454(13)

Faddeev

—7.699(16)

0.212(56)
0.0

—7.702(15)

gT parameters are generally beneficial. Going from H to
He the parameters Ro, R„R„and R& are kept fixed,

and searching is done with runs of 5000 configurations.
The major changes are a significant increase in the
separation-energy parameters Ez z- and gz- and a decrease
in 0..

When the optimal trial function of any given type is
obtained, a long energy evaluation with 50000 (25000)
configurations is made in H ( He). In addition, several
energy-difference evaluations using 10 000 (5000) in-
dependent configurations are made up to help pin down
the effect of different terms in the trial function. An ex-
ample is shown in Table IV for the case of H with the
Argonne v &4 interaction. The results of the long runs are
given in the first row of numbers; the numbers in
parentheses are the 1-standard-deviation error estimates
in the last digits quoted. The difFerence results are given
in the following set of numbers, where the column head-
ing indicates the type of trial function used to generate
the random walk, and the row heading indicates the trial
function whose energy difference with the original trial
function was evaluated. Final energies are obtained by
performing a least-squares fit to both the long indepen-
dent runs and the difference runs. These numbers are
given in the final row of the table.

In Table IV the energy with the U&'j+ U&'j trial func-
tion is lower than that with U; alone, but the difference
between the two numbers is not statistically significant
after independent walks with 50000 samples. However,
the two difference runs with only 10000 samples both
show that the U, + U,

" trial function is better by a sta-
tistically significant amount. The difference runs with U;.
also support this conclusion. The final numbers after

least-squares fitting rejecting this fact, and the combina-
tion of long independent runs and shorter difference runs
reduces the error estimate of the final numbers.

The results of all the calculations for H are shown in
Table V, and for He in Table VI. The numbers quoted
are the fitted values from independent energy and
energy-difFerence runs, with the exception of the last row
of Faddeev energies for H from Ref. 17, and the
Green's-function Monte Carlo (GFMC) energies for He.
From these tables one can see that U; correlations give
energies that are 6—8% above the available exact Fad-
deev' or GFMC (Ref. 18) calculations. (The U~ values
reported here are consistent with the variational results
reported in Refs. 7 and 8.) The U,"+U," correlations
give a significant improvement for the Reid v8 and Ar-
gonne v, 4 models, reducing the upper bound to 3 —4%
above the exact results. For the Urbana V; k models, the
U;. +U; +U;k ' correlation also gives results that are
within 3—4% of the exact results The H result with the
Tucson-Melbourne V,"k is off by nearly 6%%uo, but an older
U; result is off by 13%. The Monte Carlo results for
the Faddeev wave function are generally slightly lower
than the values given in Ref. 17.

The change from U; to U; correlations is the varia-
tional equivalent of going from a 5- to an 18-channel Fad-
deev calculation, in that the former is constructed from
information about the 'So and S, - D, parts of the in-
teraction, while the latter adds information about the P-
wave parts. Because the nucleons in s-shell nuclei in-
teract mainly in S waves, the U; correlations do provide
a very good first trial function. However, the U; correla-
tions are no more expensive to compute, and do give a

TABLE V. Binding-energy results for H in MeV. Numbers in parentheses are 1-standard-deviation
estimates of the Monte Carlo statistical error in the last place.

Hamiltonian

U;j
U;
Uj+ U"

+ UTNI
ij ijk

+ ULS+ U TNI
V IJ ijk

Faddeev (MC)
Faddeev (Ref. 17)

Reid U8

6.99(2)
7.26(2)
7.31(2)

7.59(2)
7.59

Argonne UI4

7.17(2)
7.41(1)
7.45(1)

7.70(1)
7.67

Argonne UI4

+Tucson

8.80(3)
9.33(2)
9.32

Argonne U I4

+Urbana VII

8.37(2)
8.48(2)
8.54(2)
8.69(1)
8.79(1)
9.05(1)
8.99

Argonne U, 4

+Urbana VIII

8.21(2)
8.49(1)
8.46
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TABLE VI. Binding-energy results for He in MeV. Numbers in parentheses are 1-standard-
deviation estimates of the Monte Carlo statistical error in the last place.

Hamiltonian

U;j
U;j

U +Uk
+ ULs+ UTNI

ij ij ijk
GFMC

Reld u 8

23.06(6)
23.43(6)
23.62(6)

24.55(13)

Argonne v&4

22.98(5)
23.37(4)
23.54(4)

Argonne ul4
+Tucson

30.64(9)

Argonne u&4

+Urbana VII

28.46(8)
28.73(6)
28.94(6)
30.04(4)
30.51(4)

Argonne vI4
+Urbana VIII

27.23(6)
28.3(2)

significant improvement.
The U; correlations give a small but statistically

significant additional improvement. Interestingly, the
U;j seems to be more efFective when joined with the
U,"k ' in the presence of a three-nucleon potential. In ear-
lier Faddeev Monte Carlo studies ' of H the small P-
state part of the wave function gave a rather large contri-
bution to the expectation value of various V; k models.
The main role of U;. is probably to improve this part of
the wave function. The U;k

' correlation gives a very
significant contribution when a three-nucleon interaction
is present. The U;. and U; k 'correlations together lower
the energy by more than 0.4 MeV/nucleon in He. Al-
though the cost of computing these correlations is nearly
eight times as great as for U; alone in He, the trial func-
tion is sufFiciently better that its Monte Carlo variance is
only —', as large, so that only —,

' as many configurations
need be sampled to get the same statistical error estimate.

A detailed breakdown of the energy expectation value
for the Argonne v&4+Urbana VIII Hamiltonian is given
in Table VII. The results for H are obtained both by
direct integration and by Monte Carlo evaluation with

the exact wave function. For H Monte Carlo evalua-
tions have been made for both the best variational wave
function and the 34-channel Faddeev wave function. For
He a Monte Carlo evaluation of the best variational

wave function is shown, along with results from a
Green's-function Monte Carlo calculation. ' The GFMC
calculation was actually made for a v 8 version of the Ar-
gonne potential, and then corrected in perturbation
theory for differences with the v &4 model. D-state percen-
tages and point rms radii are also given.

The proton density distributions of H, He, and He
are displayed in Fig. 4. The variational wave functions
tend to give a higher density in the interior than the Fad-
deev or GFMC wave functions. The elastic electromag-
netic form factors, F, (q) and F (q), are shown in Figs.
5 —9. The form factors have been calculated in impulse
approximation, and with the inclusion of the exchange-
current contributions discussed in Refs. 13 and 14. The
exchange currents include both a "model-independent"
part fixed by the two-nucleon interaction that conse-
quently has no free parameters, and a "model-dependent"
part that includes the currents associated with the pm. y,

TABLE VII. Energy breakdown for Argonne vI4+Urbana VIII: H is evaluated in both direct and
Monte Carlo (MC) integration with the exact wave functions, 'H is evaluated by the Monte Carlo code
for both variational (VMC) and Faddeev (FMC) wave functions, He has been evaluated by the Monte
Carlo code for the variational wave function (VMC), and Green's-function Monte Carlo (GFMC) re-
sults are also shown. Energies are in MeV and radii in fm.

System
Calculation

No. of samples

u;j

u;j(p =1,6)

u;j(p =7, 14)

uj(e /r;, -)

V;,k
2'~,k
R~,k

D state (%)
( p2) 1/2

P
(i2)l/2

H
Direct

—2.225

19.19
—21.42
—20.80
—22.42
—0.61

6.07
1.98
1.98

H
MC

150000

—2.225(1)

19.05(11)
—21.27(11)
—20.67(11)
—22.45(10)
—0.60(4)

1.96(1)
1.96(1)

H
VMC
50 000

—8.20{2)

50.5(4)
—57.7(4)
—56.9(4)
—47.8(2)
—0.8(1)

[0.66(1)]
—0.96(3)
—1 ~ 87(3)

0.92(2)

9.54(1)
1.59(1)
1.71(1)

H
FMC
50 000

—8.49(1)
49.4(3)

—56.9(3)
—56.1(3)
—47.4(2)
—0.8(1)

[0.65(1)]
—0.99(2)
—1.84(3)

0.86(2)

9.68(1)
1.61(1)
1.75(1)

4He

VMC
25 000

—27.2(2)

106.6{8)
—129.7(7)
—129.3(8)
—105.8(4)

—0.4(2)

0.74(1)
—4.84(9)
—9.48(11)

4.73(8)
15.5(1)
1.47(1)
1.47(1)

4He

GFMC

—28.3(2)

113.3(20)
—136.5(20)
—136.2(20)
—111.8(10)

—0.3(10)
0.75(1)

—5.8(3)
—10.8(3)

5.0(2)

16.6(2)

1.45(1)
1.45(1)
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FICz. 4. Point proton density distributions for 'H, 'He, and
He with the Argonne v&4+Urbana VIII Hamiltonian in varia-

tional (V), Faddeev (F), and Green's-function Monte Carlo (G)
calculations.

cu~y, and 6-excitation mechanisms. The Hohler parame-
trization of the electromagnetic form factors of the nu-
cleon is used. The variational form factors have a first
minimum at slightly larger wave number than the exact
calculations, and a second minimum at smaller wave
number. The corresponding magnetic moments for H
and He are given in Table VIII.

The variational and Faddeev magnetic form factors for
H and He are in reasonable agreement with data, al-

though the position of the minimum is shifted toward
lower q values. The magnetic moments are in good
agreement with the experimental values. Retaining only
the model-independent exchange currents would improve
the agreement with the magnetic moments and form fac-
tors. The charge form factors for H, He, and He are
all in good agreement with data up to 6 fm '. Beyond
about 7 fm ' there are large Monte Carlo statistical er-
rors in the expectation values and the diA'erences between

10'
0 1 2 3 4 5

q (fm ')

FICi. 6. Magnetic form factor ~F (q)~ for 'He with the Ar-
gonne U&4+Urbana VIII Hamiltonian calculated in impulse ap-
proximation (IA) and with meson-exchange-current (IA+MEC)
contributions for both variational (V) and Faddeev (F) wave
functions.

variational and exact calculations are not statistically
significant. [It should be pointed out that the present
Faddeev results for F (q) and p, are somewhat different
from those quoted in Ref. 14, where the wave function
with the Urbana VII three-nucleon potential, which gives
too much binding, was inadvertantly used instead of the
Urbana VIII model. ]

V. EXTENSION TO FIVE- AND SIX-BODY NUCLEI

The trial function of Eq. (1.10) can be used for larger
nuclei by simply generalizing the structure of the Jastrow
wave function OJ. A Jastrow function for 3 =5 is con-
structed from an a-particle core with a fifth particle in a
p-wave orbital with respect to that core:

10 10'—

10 10

10 10

2
-3

10 10

104 = 10

10'—
0 4 5

q (fm

10
4 5

q(fm ')

FIG. 5. Magnetic form factor ~F (q)~ for 'H with the Ar-
gonne v &4+Urbana VIII Hamiltonian calculated in impulse ap-
proximation (IA) and with meson-exchange-current (IA+MEC)
contributions for both variational (V) and Faddeev (F) wave
functions.

FICr. 7. Charge form factor ~F, (q)~ for H with the Argonne
U, 4+Urbana VIII Hamiltonian calculated in impulse approxi-
mation (IA) and with meson-exchange-current (IA+MEC) con-
tributions for both variational (V) and Faddeev (F) wave func-
tions.
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) =A g f (, ).1I f ( „)~C& (0000)XN (JMTT )) (5.1)
1 ~i &j~4 1 &k&4

Here f„and f, are central pair-correlation functions for pairs within the s-she11, and between the s- and p-shells, re-
spectively. The single-particle wave function for the p-shell nucleon is

~t+p(JMTT3)) =pp(R5 )[Y, '(A5 ) Xy~( —,'m, )]JMV5( 2t3) (5.2)

with P a function of the coordinate R, =r, —R' . For He, i.e., the n- He scattering system, we wish to study the
spin-orbit splitting, which requires calculating with both 4 ( —,

' —', —,
' —

—,
'

) and 4 ( —,
'

—,
'

—,
' —

—,
' ) states. The antisymmetriza-

tion operator in Eq. (5.1) means that a sum over five terms must be taken in which each particle takes its turn in the p-
shell.

For A =6 systems, a plausible Jastrow function puts two nucleons into p-shell orbitals with respect to an O.-particle
core:

~+J) = A Q f„(r,") Q f, (rzk)f, (r6i, )f (r&6)~4 (0000)X@ (JMTT3)) (5.3)
1+i &j~4 1&k&4

X [g5( —,'m, ) XX6(—,'m, )]sM ] JM

X [v~( —,'t3) Xv6( ,'t3)]TT— (5.4)

Now antisymmetrization means there are 15 terms to be
summed over in Eq. (5.3), where each possible pair of nu-
cleons is in the p shell. The specific Npp of interest are

(001 —1) for He, and @ (1100)for Li.
The role of f, in the Jastrow wave function of Eq. (1.6)

has been split into multiple parts f„,f, , and f in Eqs.

Here f is an additional central correlation between the
two nucleons in the p-shell, and

~e„(JMTT, ) & =y, (R, )y, (R, )

X t[Yi '(Q~ )X Y, '(06~)]LM

(5.1) and (5.3). These pieces must have a similar short-
range behavior, as dictated by the core of v;, but may
have difI'erent long-range behaviors. For example, the
asymptotic behavior of the scattered neutron in He can
be built entirely into P, so that f,~ would simply go to a
constant, instead of having the exponential tail of Eq.
(2.6). In principle, one would also like to allow for the
possible splitting of the noncentral u functions of Eq.
(1.7) into different pieces. Unfortunately, such a split
would be very expensive to compute, given the need to
symmetrize the noncommuting U;& operators and an-
tisymmetrize 4J.

Calculations of He, He, and Li with the trial func-
tions of Eqs. (5.1)—(5.4) are in progress; the computation-
al efFort required is reported in Table IV. The initial goal
is to obtain reasonable descriptions of the spin-orbit split-

1O'— 1O'— I I I

(
I I 1 I

[

I I I I

)
I I I I

[
k I I I

10 10

10 10

10

10

q(fm )

"'
= -----IA(V)
:——-IA (6)

—IA+MEC (V)
IA+MEC (G)

0
0 1 2 3 5

q(fm ')

pi~. g. Charge form factor ~F, (q}~ for He with the Argonne
v&4+Urbana VIII Harniltonian calculated in impulse approxi-
rnation (IA) and with meson-exchange-current (IA + MEC)
contributions for both variational (V) and Faddeev (F) wave
functions.

Flax. 9. Charge farm factor ~F, (q) ~
for He with the Argonne

v&4+Urbana VIII Hamiltonian calculated in impulse approxi-
rnation (IA) and with meson-exchange-current (IA+ MEC) con-
tributions for both variational (V) and Careen's function Monte
Carlo (G) wave functions.
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TABLE VIII. Magnetic moments for three-body nuclei, calculated in impulse approximation (IA)
and with model-independent (MI) and model-dependent (MD) exchange-current contributions.

Wave function + ULs+ U TNI
1J V ijk

isosc alar
Faddeev + ULs+ UTNI

1J jJ ij k

isovector
Faddeev

IA
IA+ MI
IA+ MI+ MD
Experiment

0.404
0.422
0.428
0.426

H

0.403
0.420
0.427

—2.182
—2.561
—2.630
—2.553

He

—2.168
—2.535
—2.602

IA
IA+ MI
IA+ MI+ MD
Experiment

2.586
2.983
3.058
2.979

2.571
2.955
3.029

—1.778
—2.139
—2.202
—2.127

—1.765
—2.115
—2.175

ting in He, and the binding energies of He and Li. Ear-
lier variational Monte Carlo calculations of He with a
trial function of the U;. form gave about 60% of the
spin-orbit splitting. Previous calculations of six-body
nuclei as six-body problems have been limited to simple
central force models. (As a test of our six-body code we
have reproduced the variational results of Ref. 24).

The six-body nuclei are weakly bound systems: He at
29.3 MeV is bound by only 1 MeV relative to a separated
a and two neutrons, while Li at 32.0 MeV is bound by
only 1.5 MeV relative to a separated a and a deuteron.
Current results suggest that obtaining six-body nuclei
stable against particle breakup with realistic interaction
models is nontrivial. For example, with the Argonne U, 4
plus Urbana VII model, a variational wave function of
the form described above that has the correct charge ra-
dius for Li gives a binding energy of 30.8+0.3 MeV.
While this is not so far from the experimental binding en-
ergy, it is well above the variational upper bound for a
separated a and deuteron of 32.7 MeV for this Hamil-
tonian.

Possible explanations for this difhculty are that the
variational ansatz described above is not adequate, or
that the variational parameter space has not yet been ex-
plored adequately. It is also possible the the Hamiltonian
is at fault. Recent studies of ' 0 with the same model us-
ing comparable variational wave functions in a cluster ex-
pansion Monte Carlo calculation give only 0.3
MeV/nucleon more binding for ' 0 than for He, com-
pared to an experimental difference of 0.9 MeV/nucleon.
It may be that He and Li are simply not stable with this
Hamiltonian. The very crude form for the short-range
part of the three-nucleon interaction is the most likely
culprit in this case. Calculations of p-shell nucleon could
provide key information for making better models of the
three-nucleon interaction.

VI. CONCLUSIONS

In summary, we have reported a set of improvements
for variational trial functions in few-body nuclei. We

have shown that they give upper bounds to the binding
energy that are typically 3—4%%uo above available exact
calculations in H and He. The extension to a six-
operator correlation, U, , is a straightforward and inex-
pensive step. The addition of a three-nucleon interaction
correlation, U; &

', makes a significant improvement when
a three-body potential, V; k, is present in the Hamiltoni-
an, which completely justifies the extra cost of its compu-
tation. The addition of a spin-orbit correlation U, - gives
only a very marginal improvement by itself, which may
not justify its expense. However, it seems to be more im-
portant in the presence of V; I, and U; k

' and it may be
expected to play a more significant role in p-shell nuclei.
We have also discussed how these wave functions may be
extended for the five- and six-body nuclei.

Obtaining a consistent description of nuclear systems,
from few-body nuclei to nuclear matter, with realistic in-
teractions using nonrelativistic quantum mechanics, is a
challenging problem. The solution will require continu-
ing advances in both the many-body theory and the Ham-
iltonian, particularly in the many-nu. cleon part of the in-
teraction.
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