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A generalized quantization formalism (QF) is proposed which works for the partial space (e.g. ,

the orbital, or spin, or color) space as well as for the total space. The creation and annihilation
operators in the generalized QF are in general neither boson nor fermion operators. However, if we

restrict ourselves to the totally antisymmetric (symmetric) states (including any intermediate states),
then they are reduced to the fermion (boson) operators. Therefore, the generalized QF is an exten-
sion of the second QF. The generalized QF is superior to both the first and second QF for comput-

ing the matrix elements in a basis which has definite symmetry in each subspace. Using the general-
ized QF, the shell-model calculation for the multishell, multispin case is reduced to that for the
single-shell, single-spin case, and the Brussaard and Glaudemans results become the trivial case of

n& n2
two shell and zero spin, i.e., the case (y &

'y2 ), where y =j or jt.

I. INTRODUCTION

In nuclear physics or particle physics we often need to
deal with multishell and multispin cases. For example, in
nuclear physics we need to calculate the matrix elements
of [CJ, &C CJ,],where C, , are creation operators int J~t j /

the second quantized form, and a,P=1,2. . . , while in
particle physics, the matrix elements of [C, ,&,

L(A, P ))(.A.f/ f )S
X Ct,&, ] ' ', etc. , where c, f, and s are indices

p
for the color, flavor, and spin, respectively, and
(A,,p, ), (A,fpf ) are SU(3) irreducible representation (irrep)
labels. The labor involved in the calculation increases
drastically with the increase of the number of shells and
spins involved. Several schemes of calculation for the
two-shell case have been proposed. ' All these schemes
are not very practical and have not been programmed
due to their complexity. The available multishell shell-
model codes are based either on the j-j coupling scheme
or the m scheme. The former is based on the scheme of
first antisymmetrizing each single (j t) space and then an-
tisymmetrizing the total space, i.e., using the basis ~[1 ]:
(j, t) '[1 '], (j 2t) '[1 '], . . . ) with n =n, +n, +
The Oak Ridge code and Ritsschil code belong to this
scheme. Tutorial monographs on this approach are avail-
able. '"

Recently a powerful new approach" to the two-shell
and two-spin problem is proposed with the following cou-

p»ng sc"erne: ~[1"1: ((ji) '[vi] (j2) [~2])[v]; (t)"[v]»
which is based on the assumption that the creation and
annihilation operators, C, ,C, , can be factored

into products of operators acting in the separate sub-
space 12 1 3

Cjm. tm Cjm. Ctm i' Cjm. tm Cj m. Ctmj t j t j t j t

The matrix elements of one-body and two-body operators
are likewise factored into a product of the matrix ele-

ments for each individual subspace and the coupling
coefficients between the different subspaces. Since the di-
mensions of the factored subspaces are generally much
smaller than the dimension of the space carrying the an-
tisymmetric fermion wave functions, the calculation can
be extended into regions beyond the feasibility limits of
modern shell-model codes. A code DUsM (Drexel Univer-
sity shell model) based on the factorization is currently
under development.

Although the factorization (1) greatly simplifies the
calculation of the matrix elements, the interpretation of
(1) as the factorization of second quantized operators is
not correct. As we know that the second quantization
formalism (QF) applies only to the total space where par-
ticles are indistinguishable and thus are not labeled by
particle indices. In the partial space where particles are
distinguishable, we need to use the first QF where both
states and operators have particle indices. The operators
Ci~, C, , etc. , for partial spaces in (1) have no particle

indices and are meaningless. In other words, the second
quantized operator cannot be factored. Besides, in Ref. 11
only the main idea behind the algorithm is outlined
without neither going to the detail of derivation nor pro-
viding explicitly all the essential formulas. The formal-
ism in Ref. 11 is rather cumbersome and is hard to be
generalized to the multishell, multispin cases.

In this paper we are going to introduce a generalized
QF, where the states have particle labels and the opera-
tors have implicit particle labels. The generalized QF can
be applied to both the partial space and total space. The
creation (annihilation) operator a (a ) in the general-
ized QF is in general neither a boson nor fermion opera-
tor, and is called a hybrid operator. It is the hybrid
operator which is factorizable. If we restrict ourselves to
the totally antisymmetric (symmetric) states (including
any intermediate states), then it is reduced to the fermion
(boson) operator. In this sense the generalized QF is an
extension of the second QF. The present paper is organ-

43 152 1991 The American Physical Society



43 CrENERALIZED QUANTIZATION FORMALISM 153

ized as follows. In Sec. II, the generalized creation and
annihilation operators are defined, whose reduced matrix
elements are related to the reduced Wigner coefticients,
or coefficients of fractional parentage (CFP). In Sec. III,
the relation between the matrix elements in the general-
ized and second QF are discussed. In Sec. IV, the matrix
elements for the one- and two-body operators are cast
into a form which allows us to generalize it to a multi-
shell, multispin case in a straightforward way. In Sec. V
the multishell, multispin case is treated in detail. Finally,
Sec. VI contains a comparison among the three QF.

II. THE GENERALIZED CREATION
AND ANNIHILATION OPERATORS AND THEIR

FACTORIZATION

In the following the first, second, and generalized
operators are denoted by the following:

First QF, a (i) [a (i)] ;

second QF, C (C );

X & [v']p', w'~a."i[v]p,, w & . (3)

In this paper we often use v, v, v, v', and v" to denote
the irrep labels for the states with n +2, n +1, n, n —1,
and n —2 particles, respectively, and similarly for other
quantum numbers, e.g., p, m, etc. Notice that due to the
branching rule of the permutation group we have
[v ]p =[v ][v]p,=[v ][v][v']p', . . . . Since a is the
creation operator for the (n +1)th particle, it is a scalar
of S„.Therefore it will not change the quantum number
v and its matrix elements are independent of p,

& [v']p, ', w'/a /[v]p, w &
=

& [v']v, w'/a /[v]w &

=([v ]w /a [[v]w &, (4)

generalized QF, a (a );
where a, P, . . . are state labels and i,j, . . . are particle la-
bels. The operators a and a are tobe defined.

Suppose that in a certain space, which could be a par-
tial space, such as orbital space, spin space, or a total
space, we have a set of single-particle (s.p. ) states
a, P, y, . . . , which carry the fundamental representation
of the unitary group SU(N).

Definition 1. The creation (annihilation) operator a
(a ), called the hybrid operator, in the generalized QF
creates (annihilates) the last particle in the state a,

a ~%'(1,2, . . . , n) &=~%'(1,2, . . . , n)&~/ (n+1)&,
(2)

a ~%(1,2, . . . , n —1)itjii(n)&=5 &~%'(l, 2, . . . , n —1)& .

Suppose that %(1,2, . . . , n) is the Yamanouchi basis
~[v]p & of the permutation group S„and an irreducible
basis

~ [v]w & of SU(N), denoted by ~ [v]p, w &, where [v]
is the partition, w any convenient subgroup labels of the
unitary group, and p the Yamanouchi symbol(r„„r„2,. . . , r, ). By inserting a complete set of inter-
mediate states, we have

at~[v]p, w&= y ~[v']p', w'&
v0p0~0

It is easy to identify the matrix element of the hybrid
operator with the SU(N) Clebsch-Gordan coefficients
([v ]w ~[v]w, [1]a&,

& [v']w'la'. 1[v]w &
= ( [v']w'I [v]w, [1]a& (6)

The operator a (a ) can be visualized as the operation
of adding (removing) one box to (from) the Young dia-
gram [v].

Suppose that G is a subgroup of U(N), then the G-
reduced matrix element (in the definition of Ref. 14) of a
hybrid operator is the U(N) D G isoscalar factors (ISF),

where A is the irrep label of the subgroup 6, and 0; is the
inner multiplicity label (not to be confused with the
single-particle state label) for the subduction [v]1A.

Specifying to the orbital space, the SO(3) reduced ma-
trix element of the hybrid operator aI in the
SU(2l +1)&SO(3) basis is the SU(21+ 1)DSO(3) ISF,
or the one-body orbital CFP,

([v ]a L [[an't[~((v]aL &

=(I" '[v ]a I. I ~l"[v]aL, l & . (8)

The definition (8) for the matrix elements of the hybrid
operator ai differs from Eq. (5) of Ref. 13 and Eq. (2.5) of
Ref. 11 by a factor [n (2L + 1)]'~ .

Notice that in Eq. (5) the irrep label v for the inter-
mediate states is a summation index. For example, if
[v]=[1 "], then [v ] has two possible values, [1"+']and
[21" ']. In the following we often use the phrase "re-
stricting to totally antisymmetric (symmetric) states" or
"in totally antisymmetric (symmetric) spaces. " It means
that all the initial, final, and intermediate states are total-
ly antisymmetric (symmetric). To implement such a re-
striction it is convenient to introduce the operator a
which is equal to the product of the antisymmetrizer

]n+1P(' (or symmetrizer P "+')) with the hybrid operator
Q~,

t]n+ I)
A' n

a /[I"]w &=+ /[I"+']w &([1"+']w /a /[I"]w & .
0

Up to now there is nothing new. Essentially we are
still within the first QF. One can say that we merely
simplified the notation: replacing a (n +1) and a (n) by
a and a, respectively. The difference between the first
and generalized QF's arises as soon as the pair-creation
operator is involved. According to our Definition 1

a Pa+( 1,2, . . . , n —2 ) &

= ~'P(1, 2, . . . , n —2)gii(n —1)g (n) &, (10)

where in the right-hand side we delete the quantum num-
ber v in the bra vector ( [v ]vw, since it has to be the
same as in the ket vector ~[v]w &. Keeping only the
essential quantum numbers, Eq. (3) can be rewritten as

a /[v], w &= g /[v ]v, w &([v ]v, w /at /[v]w & . (5)
v0~0
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a~a p =5~p .

However, in general, a@ %0, even a&P; a@ shifts the
last particle from the state a to the state P. Equation (13)
shows that a a & is a c number and we have

(vt isa, a,t i[vt ) =5 5—„„5 (14)

where I:—JM. It is thus seen that the order of the opera-
tors in the generalized QF is crucial. We never change
the order of the operators for the same shell in computing
the matrix elements of one- or two-body operators. In
the actual calculation, we only use the normal-ordered
operators such as a a&, a a&, a af3, a a@&as, etc. , and
never use the non-normal-ordered operators such as
a a&.

An essential difference between the normal order and
non-normal order hybrid operators is that in calculating
the matrix elements of the former between two totally an-
tisymmetric (symmetric) states, all the intermediate states
are necessarily totally antisymmetric (symmetric), while
for the latter the intermediate states may include other
states; see Eq. (18) given below.

Since the hybrid operators a t, (a, ) are creation

operators for a specific (the last) particle, they are factor-
izable

a~ =a~ af
jm tm jm. tm ~ jm tm jm. tmj t j t j t j t

(15a)

The factorization of (15a) is recursive and can be ap-
plied to any combined space, for example,

a =a a =a a a =a a a aai,f, —aI a„.f, —a$ a, af, —ai a, afa, (15b)

Obviously, the hybrid operators acting on different sub-
spaces commute. These properties enable us to "factor-
ize" (summing over intermediate quantum numbers) the
matrix elements of any product of the hybrid operators;
see Eqs. (22) —(27) given below.

a@.'~q(1, 2, . . . , n —2))
= ~'P(1, 2, . . . , n —2)q (n —1)gati(n)) . (11)

Therefore, a and a& neither commute nor anticomrnute.
Similarly for a and a&,

[a t, a ti ]+%0, [a,ap]+%0,
in contrast to the first QF and second QF,

[at(i), a&t(j)]=0 for fermion or boson,
fermion

[Ct, cp~]+ =0 for '

b

From Definition 1, it is obvious that

C ~[n]w)=&na ~[n]w) .

From (17) we immediately obtain the relation between
the matrix elements of the operators in the second QF
and the generalized QF,

([n]wlc I[n —1]w') =&n ([n]wl~
1 [n —1]w'),

([n]~c&C [n])=(n + 1)([n]~afta ~ [n]),
([n]~C Cti~[n —2])=&n (n —1)([n]~a ap~[n —2]),

(18)

([n]~ctcf3C cs~[n])=n(n —1)([n]~a a@t as~[n]),

([n] / C.'C,'C,
/ [n —1])

=(n —1)&n

([n]~ataunt

~[n —1]),
([n] C C~csl[n+1])=n&n+1([n]~a a as~[n+1]) .

For the totally antisymmetric states, we have the same
results.

From (18) we know that in the totally antisymmetric
space, a and a

& anticommute,

I a t,
apt I =0, (19a)

while in the totally symmetric space a and a & commute,

[a,ap~]=0 . (19b)

Letting a =jm, from [C,C I
=5 and (17) we

have

(n + l)a a +na a, (20)

when it is acting on the state ~[1 "]). Notice that if there
is no restriction on the intermediate states we would have
a a~

jm l jm2 m
1 m2

From Eqs. (18)—(20) we conclude that in the totally an-
tisymmetric space, the generalized operators (apart from
nonessential factors) reduce to the fermion operators.
Similarly, in the totally symmetric space, they reduce to
the boson operators.

IV. APPLICATION TO THE SINGLE-SHELL
AND SINGLE-SPIN CASES

tisymmetric) n-particle states is equal to n times that of
the one-body operator referring to a specific, say, the nth
particle, we have

([n]w~C C&~[n]w)=n ([n]w~a a&~[n]w) . (16)

From (16) and (9) we obtain the relation between the
second and generalized QF,

C ~[n]w)=&n+ lat~[n]w),

III. THE HYBRID OPERATOR IN THE TOTALLY
ANTISYMMETRIC OR SYMMETRIC SPACE

Now let us use a, P, . . . , to denote the single-particle
state in the totally antisymmetric (or symmetric) space.
It could be Im&, jm, jm tm„lmIsm„etc. According to
the well-known fact that the matrix element of a one-
body operator between two totally symmetric (or an-

We will use parentheses to denote a totally antisym-
rnetric state, while the angular brackets denote a state
with arbitrary symmetry. For convenience in exposition,
we use l and s to denote two arbitrary unitary quantum
numbers, which does not mean that we deal with the I.-S
coupling only, since l and s could be j and t. A totally an-
tisymmetric state is classified according to the irrep labels
of the following group chain:
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U(M&)&(U(M) &SO(3))X(U(lV)DSU(2))
[1] [v] aLML [v] /3SMs

(21)

where M (N) is the total number of the s.p. states in the l
(s) subspace, [v] is the partition of n, while /3 is the multi-
Plicity label for the reduction U(lV))SU(2). The orbital,
spin, and total spaces will be termed as the spaces V
V, and V, respectively, V =V g V .

A. Single-particie creation operator

The isoscalar factor corresponding to the group chain
(21) is the total CFP and can be factorized [see Eq. (7-
185) in Ref. 5],

( [1"][vj«, /3S iia„ii
[1" '][v' ja'L', /3'S')

= (vlb'Iv')&[vj«ll~iil[v'j~'L'&

X ( [v]/3S iia, ii
[v']/3'S' ),

where (vib iv') is the U(MN) DU(M) XU(N) ISF, '

(vlb'lv') =(v'lbl»=(vv, [1"]Ib'Iv'v', [I" '])
=A Qh ~ jh

where h is the dimension of the irrep v of the permuta-
tion group S„,A is the relative phase factor for the
Yamanouchi basis first introduced by Butler, ' and [v] is
the conjugation of the partition [v]. The creation opera-
tor b can be visualized as the operation of adding one
box to both the orbital and spin Young diagrams [v'] and
[v']. Notice the difference between the creation operator
ai (a, ) in the orbital space V (spin space V ), and the
creation operator b, the former adds one box only to the
Young diagram [v' ] ( [v'] ).

If s is the usual spin, then ([v]/3Siia, ii[v']/3'S') is the
single-particle CFP in the spin space. The space spanned

by the basis iv)—:ivv, [1"]) will be denoted by VM~

V = [iv): [v]H any partitions of the integer n I,
(22c)

with dimension equal to the number of partitions of the
integer n.

By inserting a complete set of intermediate states be-
tween two operators and using (22a), we can generalize
the factorization (22a) for a single creation operator to
any product of the creation and annihilation operators.
Several examples are given below.

B. Pair-creation operator

([1"][v]aL,pS ii [ai, X ais ]"qll [1" ][v"]a"L",p"S")

=y (vlb'b'I v" ).( [v]aL II
[ai'X ai'j"

ii
[v"]~"L"&"'& [v]/3S II [a,' X a,']'ll [v"j/3"S" & (23a)

The U(M~) ~U(M) XU(~) two-body ISF (vib b iv") can be factorized,

(vlb'b'Iv"). =(vlb'Iv')(v'Ib'Iv") =A:A::V'h. ~h. . (23b)

C. One-body operator

([1"][v]aL,PSii[a„Xa„]"iii[1"][v]«,/3S)=g (vib b iv) .([v]aLii[a, Xa, ] ii[v]aL ) ([v]/3Sii[a, Xa, ] ii[v]PS )

(24a)

h ~

(24b)
Qh h

For later convenience, (vib biv), . will be referred to as the one-body matrix elements in the space V defined by

(22c). Notice that (1) the one-body operator [ai X ai ] is a scalar ofS„,with its matrix elements being diagonal in v'p'

and independent of the component index p', (2) the representative matrix of [ai Xai]" is not diagonal in v, since

[ai Xai]" is not a generator of the unitary group U(2l +1) [in fact, it is a generator of the group U'"'(2l +1) acting

only on the nth particle].
The matrix elements

([v]aL ll[ai Xai ]"ii[v"]a"L"), ([vjcxL ii[ai Xai]"ii[v]«)', and ([v"]iz"L"Il[ai Xai]"ii[v]«&'

as well as the corresponding matrix elements in the spin space, can be calculated by

[v]~LIII'„XZ„]"Il[v]«&"'=g ( —)"'+"' "U(Lk,Lk, ;L'k)(lv]~LIII; ll[v'j~'L'&&Iv']&'L'IIZ„ Il[v]~
a'L'

where Yk and Zk are irreducible tensors of ranks k, and k2, respectively.
1 2

As an example, using (18), (24), and the fact that the CFP

& [2]Lllai'II[1]» =
& [» ]Slla,'II[1]s & =I,

we immediately get the following one-body matrix element,

(24c)

(25a)
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([1 ][2]LSll[C(,XC(, ]" ll[1 "][2]LS)=2(—)
(2l + 1)(2s + 1)

1/2

U(LlLl;1k)U(SsSs;sq) . (25b)

D. Two-body operator: V(kq)=[a&, Xa&, ] «. [if~, X&&, ]"«

The scalar product of two tensors is defined by

Uk Vk —v 2k + 1[Uk. Vk]0

By introducing the two-body generalized operators in the orbital and spin spaces,

V(k)=[a~ Xa&t]" [a&xa&]", V(q)=[a, Xat] .[a, Xa, ]

the two-body matrix element can be expressed as

([1"][v]aL,pSll V(kq)ll[1 "][v]aL,pS) = g (vlb'b'bb lv), „,, & [v]aL ll V(k)ll[v]aL ) ( [v]pSll V(q)ll[v]pS )
'"" '

V V V

(26a)

The matrix element (vlb b bblv), „,will be called the two-body matrix element in the space V and can be factor-
ized

h-
(v b'b'bb v), „., =(vlb'b' v")-.,(v" bblv). =A",,A; A: A: (26b)

Notice that the two-body operator V(k)=[a& XaI ]".[a& Xa&] is a scalar of S„2and thus its matrix elements are diag-
onal in v"p" and independent of the component index p". Using (24c) we have

]/2

2 ( )
+" &[v]aLII[a, Xai ]"ll[v"]a"L")'([v"]a"L"ll[a, Xai]"ll[v]aL

L"—L+I, 2L"+ 1

a"L"

Similar equation holds for the matrix element ( [v]pS ll V(q) ll [v]pS )

E. The operators [[ai Xa& ]"XQ'&]' and [ai X[&i Xaq]"]

(26c)

In the multishell calculation the matrix elements of the above two operators serve as two of the building blocks. Us-
ing (24c) we have

( [v]aL ll [[a, X a, ]"X a, ]' ll[v']a'L')

( —)
+' U(L'1Lk;L "I')([v]aL l[a& Xai ]"ll[v"]a"L") ([v"]a"L"lla&ll[v']a'L'),

IIL II

([v]aLll[a( X[aixai]"]' ll[v ]a L )

(27a)

= g (
—)"+' ' U(L kLl;L'l')([v)aLllaI ll[ ]av'L')([ ]av'L'll[aI xa&]"ll[v ]a L )

a'L'

(27b)

F. In the totally antisymmetric space

Since in the totally antisymmetric space the hybrid
operators reduce to the fermion operators, the (I"s")
cases discussed above also cover the (y") cases, where
@=j, or jt, which can be classified as the single-shell
zero-spin case. The formulas (14.32)—(14.35) obtained
through the second QF by Brussard and Glaudemans
are special cases of our (24c), (26c), and (27) [in conjunc-
tion with (16)—(18)]. By letting 1 —+j, L —~J,
[v]= [1"],[v'] = [1" '], and [v"]= [1" ], Eqs. (24c),

(26c), and (27) collapse to their results. In passing, we
note that the factor v'(n +1)n (n —1) in their Eq. (14.33)
is incorrect; it should be (n —1)&n as shown in Eq. (18).

V. APPLICATION TO THE MULTISHELL,
MULTISPIN CASK

It is sufficient to consider the two-shell, two-spin case,
since the extension to the multishell, multispin case is
straightforward. Let a, ,p, , . . . be the s.p. state labels for
the shell i, e.g. , n; =l;I;, which span the defining repre-
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sentation of U(M ), M~ =21; + 1. The definition of the
hybrid operator a, is exactly the same as for the single-
shell case, i.e., see De6nition 2.

Definition 2. The operator a (a ) creates (annihi-
I I

lates) the last particle in the state a, .
Similar to the single-shell case, the hybrid operators

neither commute nor anticommute,

[a,a ]+%0, [a,a ]+%0 for any i,j, (28a)

and when acting on an antisymmetric state they satisfy

(n +1)a. a +nat a. =5 5Jl 1 ~2 2 ~2 2 Jl 1 ~1~2 1 2
(28b)

A. The irreducible basis for the two-shell, two-spin case

The group chain U(M) DO(3) for the single-shell case
is extended to

U(M) O O(3) ~U(M, +M2) D(U(M, ) DO(3) ) (U(M2) XO(3))DO(3)
[v] aLM~ [v]8 [v, ] a,Li [v2] a2L2 LM (29)

a ~8[v& ]a&L &, [v2]azL2, (30a)

with M; =2l;+1, i =1,2. The multiplicity label cz for the
single shell goes over to

When we focus our attention to the unitary groups, it is
convenient to introduce the U(M& +M& ) DU(M& )

U(M2 ) basis

where the quantum number 0 is a multiplicity label,

8=1,2, . . . , {v,v2vI, (30b)
~v, v2, v8) (31b)

~[v] aL,M) v]L ) v2L2
(31a)

with the integer {v,vzvI decided by the Littlewood rule.
In the following the multiplicity labels a, and a2 are
suppressed for brevity.

The single-sheH state is replaced by

with all the SO(3) quantum numbers being totally ig-
nored. The spaces spanned by the basis vectors (31a) and

M1+M2 Ml +M2
(31b) are referred to as V ' ' and V ' ', respective-
ly.

The basis (31a) has a definite symmetry for the group
U(M&+Mz), and is referred to as the coupled basis. In
contrast, the following basis is called a decoupled basis:

~v,p&L&, v2p2L2', LM ) = ~v&p&(1, 2, . . . , n& )L&, iv2(t2&n+1, . . . , n)L2', LM ), (31c)

where the shells 1 and 2 are decoupled in the U(M, +M2) level [i.e., it is no longer an irreducible basis of the group
U(M, +Mz )], leaving only the angular momentum coupling intact.

Similarly, to go from the single-spin to two-spin case, we make the following substitutions:

U(N)D U(2) ~U(N, N2)&(U(N, )D U(2)) X(U(N2)D U(2))
PSM~ [v]4 [".] P ~Ms [v ] P rM (32a)

4[v, ]p, ~, [v, ]p, ~, (32b)

where the quantum number P is the multiplicity label
whose range is decided by the Clebsch-Gordan series of
the permutation group S„,

For convenience in exposition, s and t will be referred to
as the spin and isospin, respectively, although they could
be any two unitary quantum numbers. The group
SU(N, )[SU(Nz)] is the unitary group associated with the
spin s (t}, and N, (N2) is the total numbers of s.p. states
in the s (t) subspace.

The multiplicity label p for the single-spin case goes
over to

/=1, 2, . . . , (v, v, v) . (32c}

SM 7M ) ~

[v]4 (33a)

where for simplicity we ignored the Yamanouchi symbol.
When we focus our attention to the unitary groups, it is
convenient to introduce the U(N&N2)&U(N&)XU(N~)
basis

In the following for brevity the multiplicity labels p, and

p, are incorporated into S and T.
The many-particle state for the single-spin case is re-

placed by
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Iv, v„vp) (33b) n n n n
[v, ]= —+S,——S, [v, ]= —+T, ——T

2 '2 ' ' 2 2
(34)

with all the U(2) quantum numbers being totally ignored.
The spaces spanned bv the basis vectors (33a) and (33b)

N, A'z N)N
are referred to as V ' ' and V ', respectively.

Notice that if the quantum numbers s and t are the
spin and isospin, then v, and v, are redundant, since they
are determined by S and T, respectively,

B. The matrix elements

1. Single-particle creation operator

With the substitutions (31a) and (33a), the single-
particle CFP in the total space, Eq. (22a), is extended to

[v]~L [v]0 [v'l~)'L' [v'l0'
I: I "l'

v1L1v2L» v&Sv, T I
' v 1I. 1v2L» vsS'vf T'

=(v b Iv')
2L2 & v1L 1v2Lp vsSv] T vsS vt T (35)

The second factor in (35) is the ISF corresponding to the
group chain (29), or the one-body CFP for the mixed
configuration. According to (9-24) in Ref. 5, it can be
factored as a product of the U(M, +M2)DU(M, )

8U(M2) one-particle CFP, the CFP for shell 1 and an
SO(3) recoupling coefficient,

[v]OL [v']O'L'

v1L1v2L2 l v1L 1v2L~

(v)0, v&v2 L L'+L
1
L1- —

( v')9'viv&, [ 1 1[1 1[0]

lates) the last particle in the shell i with state label o., in
the decoupled basis. For example, we have

I%'(1, . . . , ni —1)&b(n, +1, . . . , n ))

= I'P(1, . . . , n 1
—1)g (ni )N(n, +1, . . . , n) ),

I%'(1, . . . , ni)4(n, +1, . . . , n))

=
I P( I, . . . , n, )4&(n, +1, . . . , n)P (n +1)),

I%'( I, . . . , n 1
—1)g& (n 1 )@(n, +1, . . . , n) )

X U(L', L2liL;L'Li)(viL (36a) (37a)=6
& I%'(I, . . . , ,n—1)@(n,+1, . . . , n)),

Similar expression exists for the matrix elements of aI .
The first factor in (36a) is the U(M, +M2)
ZU(M, )CIU(M2) one-particle CFP, which is just the
outer-product isoscalar factors (OISF) C' ', ' ' of the

1 1' 2 2

permutation group S„.' It is convenient to introduce
the following notation for the U(M1+M2)DU(M1)
g U(M2) CFP or the OISF:

Iv(1, . . . , ni )N(ni+ I, . . . , n —1)P& (n))

=5
& I'Ill, . . . , ni)@(ni+I, . . . , n —1)),

where %' and 4 are the wave functions for shells 1 and 2,
respectively. Notice the subtle difterence between
Definitions 2 and 3. Clearly, the shadowed operators be-
longing to difterent shells commute with one another.

C(v)0, (v')0'
(v )0 vlv~, [1][1][0] vlv), v2v2

= ( v, v„veI
a ti

I

v', v„v'8')
[a,a ]=[a,a ]=[a,a ]=0 for iWj .

1 1 2

(37b)

(36b)

where the creation (annihilation) operator a 1 (a i ) can be
visualized as the operation of adding (removing) one box
to (from) the Young diagram [vi] ([vi]). The OISF
( v, v2, v9

I a, I

v', v2, v'8' ) gives the probability amplitude
for the final state to be Iv, v2, vO) after adding a particle
in the shell 1 to the state Iv', v2, v'8').

In order to give a physical interpretation of the factori-
zation (36a) and simplify the derivation to be given later
for the matrix elements of one- or two-body operators, we
introduce the hybrid creation (annihilation) operator a
(a ) for the decoupled basis (31c). Notice that the sha-

I

dowed symbol is used here to distinguish it from the
operator defined by Definition 2.

Definition 3. The operator a (a ) creates (annihi-
I t

(
[v]HL [v']O'L'

= ( v, v„vOIati Iv', v„v'6')
x ( viL 1 v2L2 L IIai IIvIL I v2L2 (38a)

i I= ( —)
' 'U(L', L2l, L;L'L, )

(38b)

Notice the essential difference between (28a) and (37b).
With the shadowed operator, (36a) can be rewritten as
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Equation (38a) can be interpreted in the following way:
The OISF undo the coupling [v, ][v2]~[v] between
shell 1 and shell 2, leaving only the angular-momentum
coupling, while the matrix elements of the shadowed
operator ~l in the decoupled basis can be calculated by

simply using the Racah algebra.
Equation (37b) enables us to reorder the creation and

annihilation operators belonging to different shells (in
conjunction of course with the corresponding change in
angular momentum coupling). This property is crucial
for the multishell calculation.

Notice that for a single shell, the shadowed and plain-
faced operators are identical. To simplify the notation,
henceforth we will not distinguish these two symbols.
Depending on which basis (coupled or decoupled) they
are acting, we immediately know which is which.

The last factor in (35) is the ISF corresponding to the
group chain (32a). According to (7-153) in Ref. 5 and in
parallel with (38a), we have

[v]4, [v'l0'
vSv, T

where the first factor is the U(&,~ )~U(~, )XU(~ )
one-particle CFP, which is just the inner-product isoscal-
ar factor (IISF) Ci '~" '~ of the permutation group '

S S' t

&v, v„vglb Iv,'v' v'P'& = &v,'v,', v'P'Iblv, v„vg&

—C( V)P, ( V')P'
V V, V VS S

(39b)

The IISF undo the coupling [v, ]X [v, ]~[vJ between the
N)

spin spaces V ' and the isospin space V ', and is the
probability amplitude for the final state to be ~v, v„vP)
after adding one particle to the state ~v,'vI, v'P'). The
CFP in (22b) is a special case of (39b). If s and t are the
usual spin and isospin, then the quantity in (39b) is the
spin-isospin one-particle CFP. An efficient code is avail-
able for the OISF and IISF.'

The factorization (35) for a single creation operator can
be generalized to any product of the creation and annihi-
lation operators. Below are the matrix elements of the
one- and two-body operators.

= (v, v„vy~b ~v,'v'„v'y'&&v, &~~a, ~~v,
'~'&

X(v, T[fa, iiv', T'), (39a)

2. One-body operator

Equation (24a) is extended to

[v]«[v'l0, „,„„[v]~L[vl4
[1"]; — — — — [a,'„Xa,„]"" [1"];v, I, , v2L2, v, Sv, T t" j" ' v, L, v2L2, vsSvt T

[v]«, „[v]~L .' [v]0,
„

l v]4[,'x-, ]" — — [,', xu„]"
I viLiv2I 2 f vi 'jv2 2 VSvt T vs vt

Ml +&2The second factor in (40) is the one-body matrix element in the space V ' ', which can be factored as

(
[v]OL [v]OL

[a, Xa, ]"
1L1v2L2 ' j viL i v2L2

2 ( viv2 v'gla a, lviv2 v~ &i...,i, & viL iv~L2 L ll[ai', Xai ]"((viL i v2L2,'L &'

(vl 2 int

(40)

(41)

where (v, vz);„,is the shorthand notation for the irrep labels of the intermediate states, which specify the path for the
further factorization of the two matrix elements in (41). The matrix elements (vivz, v8~a; a& ~viv2, vg)i i undo the

1 2int

coupling between shell 1 and shell 2, and is called the one-body matrix element in the space V ' '. By inserting a
complete set of intermediate states and noting that the quantum numbers v' and (v, v2);„,have already specified the ir-
rep labels of the intermediate states, we have

(42a)

(42b)

The orbital matrix elements (v, Liv2L2', L ~~[at Xai ]"~~viLiv2L2,'L ) ' ' '"' in the decoupled basis can be calculated
l J

by simply using the Racah algebra and will not be given here.
The last factor in (40) is the one-body matrix element in the space V, which, in analogy with Eq. (41), is factored
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(
[v]4,„[v)k—[a„xa„]'"~ T

= g &v, v„v@lb blv, v„vP&;:.&v, ~v, TII[a, xa, ]'"llv,» T& ' '
I I s t

V V

(43)

t N] N2The factor (v, v„vglb b Iv, v„vg), , is the one-body matrix element in the space V ' ', which decouples the spin

space V ' from the isospin space V '. In analogy with Eq. (42) we have the following factorization:

=g &v, v„vglb lv,'v;, v'P') &v;v,', v'P'Iblv, v„vg& . (44)

N] N2The second factor in (43) is simply the product of the one-body matrix elements in the spaces V ' and V
I t I t

&v, &v, TII[a„Xa„]'"IIv,», T) ' '=(v, &ll[a, Xa, ] Ilv, &) '(v, TII[a, «, ]"Ilv, T) '. (43')

Notice that when v (and thus v') is totally antisymmetric, (43) is reduced to (24a) by letting v,
' =v', ~v', (st)~(ls), and

(qr) ~(kq).

3. Two body -operator: V{kqr)=[at „Xat„]' [itt „.Xttt.„]"~'

Equation (26a) is generalized to

[v)8L [v]4 [v]8L [v]4[1"]; — — V(kqr) [1"];
V]L ) v2L2, V~Svt T v, L,v2L2, v, Sv, T

[v]8L [v)4 [V]P v'v"v'

(vlb b bblv),„„,— — V(k) L L V(qr)
1 [ 2 2 viL i v2L2 v Sv]T v SvfT

where

V(k)=[a& Xa& ]" [aI Xai ]", V(qr)=[a„xa„)~"[a„Xa„)".
Ml +M2The second factor in (4S) is the two-body matrix element in the space V ' ', which is again factored

(
[v]8L [v]gL v'v"v'

V(k)
v]L ) v2L2 v~L i v2L2

X & viz vgla'a'a a'lviv»vg&(. ..,'),„,& viLiv2Lz L II «k)llviLivzL~ L &
' ""'

(~]~2)int

(46)

(47)

The intermediate quantum numbers (v, v2);„,are determined by the combinations of the indices i, j, j', and i' The first.
Ml +M2

factor in (47) is the two-body matrix elements in the space V ' ', which can be expressed as a sum of products of
four OISF. Some typical cases for them are listed below:

( vjv2»la ~a ~a ~
a i I v~v2, » & '". = & & viv2, »I a

& Iviv2, v'8'
& ( viv2, v'8' la i Ivi'vp, v"8"

&

gl et t gl

x(v", v„v"8"la, lv', v, , v'8')(v', v„v'O'Ia, lv, v, ,vg), (48a)

& v) v2', vgla )a )a2a~ lv)v~, vg& o
'l '=

gt gll gt

X ( v
&
vz', v"8"

I
a 2 I

v
& v2, v'8' ) ( v

& v2, v'8'
I
a 2 I v& vz, vg ), (48b)

X ( v
& v2, v"8"

I
a 2 I vI vz, v'8'

& & v', v2, v'8'
I
a ) I v) v2 vg )

x & v', v,', v"8"la, lv, v,', v'8'&(v, v,', v'8'la, lv, v„vg&, (48d)
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x & v, v,', v 8 la21v, v„v'8'&& v, v„v8 la21v, v„ve& .

The corresponding matrix elements (v1L1V2L2,'L 11 V(k)llv1L1v2L2, 'L &
' ' '"' in the orbital space can be calculated by

the Racah algebra as follows.
(a) V(k)= V1111=[ai Xai ] [ai Xai ]

I II I —I II I

& v1L1v2L2 L
II V11,» llv1L1v2L2 L &

' ' '=
& v1L111 V», » llv1L1&

' ' '&i, i, .

(b) V(k)= V'1122 —=[ai Xai ] [ai Xai ]

(49a)

L +L —L —k
(v1L1v2'L2;L

11 V11 22IIv1L1v2L2', L &
= ( —) L1L2 W(L1L2'L1L2', Lk)

0

x(v, L, 111[a, xai, )"llv1L1& '&vz'Lz'll[ai xai )"llv2L2& ' (49b)

where L =V2L + l.
(c) V(k)= V12 2, =[ai Xai ] [ai Xa, ] .

Using the fact that in the decoupled basis, the generalized operators belonging to different shells commute [see Eq.
(37b)], we have the identity

=g ( —) —U(l, l2l, /2;kk, )[ai Xai ) [ait Xa, ]
gk

Using the above equation, the matrix element of the operator V&z z& can be expressed in terms of the one-body matrix
elements for shell 1 and shell 2,

L +L —L
( V1Llv2L2 L

11 V12, 21 IIV1L1V2L2'L & 2 ( —)
' ' —U(l, l2l, l2;kA )L,L2 W(L, L2L, L2,LA )

I I

x &v1L111[ai, xai, )'IIV1L1& '& V2L211[ai, xai, ]'llv2L2 &
' (49c)

I

( v1L1v2L2'L II V11,12 llv1L1V2L2&L &

L +L —L —1
I

=( —)
' ' 'L,L2W(L1L2L1L2, Ll2)(V1L111[[ai Xai ]"Xai ] 'llv1L1&""&v',I. ', Ila, llv2L2& .

l,
(49d)

I II

I II

1 2 ( 1 21 2 1)& '1 Ill i', 1111&& 2 211[i', [ 1, 1,]"]'112 2&'' (49e)

In analogy with (47), the two-body matrix elements in the spin-isospin space V ' ' is factored

(
[Vld [v]0

V(qr) s T
= g g &v,v„vplb b bblv, v„vp&, ",, ',

vsS&t T $
V V V Vt Vt Vt

I II I I II I

x &v, sll v(q)llv, s &"' '(v, Tllv(r)llv, T &""" (50a)

Similar to Eq. (48), the two-body matrix elements in V can be expressed as a sum of products of four IISF,

(v,v„vitplb b bblv, v„vp&',„,
s s s' t t t

= y &v,v„vylb I v,

' v'v'y' &&v,
' v'v'y'I bIV,"v", , v"y" &&v,"v,",v"y"Iblv,'v'„v'y'&&V,'v'„v'y'Iblv, v„vy& . (50b)
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Notice that when v (and thus v', v",v') is totally antisym-

metric, (50a) is reduced to (26a) by letting v,'=v', —+v',
v,"=v,"—+v", v,'=vI~v', (st)~(ls), and (qr)~(kq).

([I '][I '), [I"]lazt 1[1"'][I"2
],[I" '])=benz/n,

(5 lb)

C. In the totally antisymmetric space

To conform with the conventional notation of using jm
as the single-particle state label in a totally antisymmetric
space, in this subsection we change the notation
a; —+j,-m, , I, —+j;, L; —+J, .

Brussaard and Glaudemans obtained the formulas for
the two-shell matrix elements of a two-body operator us-
ing both the first QF (a diagrammatical method, i.e., an-
tisymmetrization by brutal force) and second QF by
lengthy derivation. To apply our general formula to the
totally antisymmetric case, we need the following special
OISF. From (4-163) and (7-254b) in Ref. 5 we have

=( —) 'Qn, In, (5 la)

where n =ni+n2
It can be shown that Brussaard and Glaudemans's for-

mulas (5.33) and (S.40) of Ref. 9 are just triuial cases of
our (49a) and (49c), while their (5.78) and (5.74) are triuial
cases of our (49b), (49d), and (49e); namely, the case they
treated corresponds to our two-shell, zero-spin case.
Their Eq. (15.15) obtained by second QF is a special case
of (49a) and (49c) here. Their Eq. (14.9) is a direct result
of Eqs. (47) and (51). To show this let us derive the phase

(n~ +n
&

)n2factor ( —)
' ' ' in (14.9) of Ref. 9, since other factors

are easily obtained.
Suppose that in the n-body operator there are nI

creation and/or annihilation operators a
& a& and m2

operators az . az. According to (51) and their Hermi-
tian conjugate we know that only the matrix element of
a, or a i contributes a sign ( —) '. Therefore

I

(n-body matrix elements in V ' ')=([1 ')[1 '], [1"]~a, . a, az azar[1 '][1 '], [1"])
r

( )
1 2C ( )

1 1 2C

where we used the fact that if n, is even (or odd), so is n, + n ', and C is a coefficient.
As a further check in the following we calculate the matrix element of the two-body operator

From (47) we have

(
[v]OJ [v]8J

oJO J I'11, iz J J & & vivz~»la ia1a iaz ~v1vz~v() &- ~ & vi Ji vzJz~ Jll vii, iz llv& JivzJz) J &

v,J&, vzJ2 1 1

(52)

Restricted to the totally antisymmetric states, from (51) we have

([1 ' ][1 ' ],[1"]~a,a, a~az~[l '][1 '],[1"])=(—)
' Q(n, +1)nz . (53)

From (52) and (53) we obtain the matrix elements for the totally antisymmetric states

[I")J , , „ , [ 1"]J
n (n —1)[a. Xa ]".[a Xa2 ]

[1 1 ]JO [1 2 ]JI 1 1 1 2 [1 l]J [1 2]J

=( —)
' n, Q(n, +1)nz([1 ' ]J,[1 ' ]Jz,J))[a~ Xa, ] [aj. Xaj ] )([I ']Ji[1 ']Jz,J) . (52')

Equation (52') is identical (including the phase) to the
first term of Eq. (5.74) in Ref. 9. It shows that the gen-
eralized QF is a generalization of the second QF, just as
Eq. (52) is a generalization of (52'). It is worth mention-
ing that the derivation for the general expression (52)

with arbitrary symmetry by the generalized QF is much
simpler than the derivation for the totally antisymmetric
special case by either the first QF or the second QF in
Ref. 9.
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VI. DISCUSSIONS

As a summary, we compare the three quantization for-
malisms.

The Jlrst QF. Both the state and operator have particle
indices, and the operators obey the commutators,

[a (i),a&(j)]=0, [a (i),a&(j)]=5 p," .

(n-body matrix elements in VM )

= g (n-body matrix elements in V )~ ~ int
(~);„,

X(n-body matrix elements in V )

X (n-body matrix element in V )

(54a)

The first QF is most suitable for the partial space.
The second QF. Both states and operators do not have

particle indices, and the operators obey either the bosonic
or fermionic commutators. It works only for the tota1
space.

The generalized QF. The states have particle indices
while the operators have implied particle indices (creates
or annihilates the last particle). It works for both partial
and total spaces. In the totally antisymmetric (or sym-
metric) space, they become fermion (boson) operators.
Therefore in this sense the generalized QF is a generaliza-
tion of the second QF. It is superior to both the first and
second QF for computing the matrix elements when each
of the subspace has a definite symmetry.

The key to the present approach is the successive fac-
torization, ever going from a larger space to a smaller
space. All the formulas (22a), (23a), (24a), and (26a) have
the same structure

where the sum runs over the U(M) irrep labels of the in-
termediate states, denoted by (v);„,. Notice that here the
name "n-body operator" is used in a loose sense which in-
cludes the operators a, a a, a a, a a aa, etc. It is in-
teresting to note the following. (1) The first factor in Eq.
(54a) decouples the orbital space V from the spin space
V; (2) In the factorization of the matrix elements for the
individual space, there is no summation over the irrep la-
bels of the intermediate states, since they have been fixed
in previous factorization. It is seen that the role played
by the permutation group is to provide these intermediate
quantum numbers, such as v' for the single-body opera-
tor, v'v"v' for the two-body operator, which specify the
path for the factorization of the matrix elements. There-
fore this formalism naturally leads to the sum over path
method"' which is crucial for large-scale shell-model
calculation. (3) All these n-body matrix elements in the
individual spaces can be further factorized,

M) +M2 (v),.„,(n-body matrix elements in V ' ')
M) +M2 v)in(n-body matrix elements in V ' ')~

1 2int
2 int

Mi [~1)intX [SO(3) coupling coeft'. ](n, -operator matrix elements in V ' )

M~ ( ~)inX (nz-operator matrix elements V ') (54b)

( n-body matrix elements in V ' ' )

+l ~Z(n body matri-x elements in V ' ')~
~~s~t )int

X(n-body matrix elements in V ') ' '"'(n-body matrix elements in V ') (54c)

where it is assumed that there are n, and nz creation
or/and annihilation operators belonging to she11 1 and
shell 2, respectively, in the n-body operator.

The factorization (54b) and (54c) is of paramount im-
portance in the development of a multishell, multispin
code, since we now only need to store the single-shell ma-

M,-

trix elements (n;-operator matrix elements in V ') and
single-spin matrix elements (n body matrix-elements in

V ').
The second QF works only for the totally antisym-

metric (or symmetric) states in the space V (or
Ml +M2

V ' '), while the generalized QF works for the space
Ml +M2

V (or V ' '
) with arbitrary symmetry including to-

tally antisymmetric or symmetric cases as two special
cases.

The advantages of the present approach over the CFP

technique are that (1) the one- or two-body operators a«
often expressed in the second QF. With the generalized

QF, we are spared the inconvenience of having to switch
back to the first QF for computing their matrix elements.
(2) In this approach, we focus our attention solely on the
reduced matrix elements without using any wave func-
tions and the irreducible tensor technique can be utilized
in a straightforward way.
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