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Variational Monte Carlo calculations for the binding energy of A'~Si
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The binding energy of the AA hypernucleus ~'~Si has been calculated variationally with a
'Si+n +A+A four-body model. The integrations have been carried out with the help of a Monte

Carlo technique. Three different types of A-A and A-N potentials have been used. n- Si and A- 'Si
potentials have been generated by folding the N-N and A-N potentials into the harmonic-oscillator
shell-model density distribution of 'Si. The calculated values of the binding energy for the three
different potentials are 40.19, 46.30, and 39.90 MeV. These values are compared with the reported
experimental value of 38.2+6.3 MeV. The dependence of the binding energy on the depth of the
A-A interaction has also been investigated.

I. INTRODUCTION II. MATHEMATICAL FORMULATION

Until now knowledge of the A-A interaction has been
gathered by studying two light hypernuclei, namely, ~~Be
and &&He which have been experimentally identified. '

The total separation energy of both the A's from the
above two hypernuclei is given as B&A(~~Be) = l. 17+0.4
MeV and Bz~(~~He) = 10.9+0.5 MeV, respectively. The
binding-energy calculations for these hypernuclei have
been made with the aim of obtaining information about
the A-A interaction. More recently, Mondal et al. '

reported an event in nuclear emulsion identified as evi-
dence of a very heavy hypernucleus. They predicted it to
be z'&Si and calculated its binding energy from range
measurements to be 38.2+6.3 MeV. Since it is the only
heavy double hypernucleus for which there is some ex-
perimental evidence, it would be interesting to calculate
the binding energy of ~'~Si and compare the results with
the reported value. Since no other experimental evidence
on this hypernucleus is available, it is difIicult to com-
ment on the absolute reliability of the status of the sup-
posed event.

For z'&Si we use a four-body Si+n+2A model, since
a realistic 29X+2A calculation is virtually impossible.
Vr'e calculate its binding energy by variational Monte
Carlo techniques.

A three-body calculation for ~'~Si taking it to be a
Si+2A has been made and its binding energy is calcu-

lated to be 39.7 MeV. " However, a four-body model for
~'~Si is much more sensible. In a four-body calculation it
becomes very difficult to evaluate the multidimensional
integrals of the Ritz variational method analytically and
that is why a Monte Carlo technique is developed and re-
ported here.

The Ritz variational principle, which is usually em-
ployed to calculate the properties of light nuclei,
demands that one minimizes the expression

fO'*H+dr

with respect to the parameters in the trial wave function
4, H being the total Hamiltonian of the system. The
analytical calculation of the integrals is extremely
dificult for nuclei more massive than the triton or o. par-
ticle. Therefore, a Monte Carlo method has been
developed for heavier nuclei which allows one to calcu-
late E from Eq. (1) without analytical calculations. The
integrations are performed by a random process. The
basic idea of the method is the following:

The integrands +*HO and %*V are written in the
form p(r, , . . . , r„)w(r, , . . . , r, ), where p is called the
probability density function and contains essentially 4'*,
m is called the weight function and contains essentially
II+ or 4, respectively. Random coordinates are generat-
ed with the probability distribution p(r&, . . . , r„). For
these random numbers the weight functions are calculat-
ed. The values obtained in this way are estimates for the
integrals 1 +*H+dr and I+"+dr and the averages of
a large number of these estimates converge towards the
value of the integrals.

Our trial wave function is a product of six two-body
correlation functions

where 0 represents the Si core, 1 stands for neutron, and
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the two A's are denoted by 2 and 3. The shape of the
correlation functions is taken from Ref. 11:

f ( r ) =e " +/3e (3)

In these functions, assuming that y )&a, the second term
represents the form of the wave function for the two-
body systems in the region of close approach while the
first term is related to the long-range part of the wave
function. A product-type wave function with a correla-
tion function of the form (3) has already been useful in
earlier investigation of three-body hyper nuclear sys-
tems. ' This is, however, only a good starting point, a de-
tailed knowledge of A-N repulsive core would perhaps in-
volve a more detailed correlation function.

The total Hamiltonian of the system is given by

Q2 2 3

v,'+ y y v.. . (4)
l =0 J=l +1

where p; are the reduced masses of the four pairs of par-
ticles and have the appropriate numerical values.

There are 12 position coordinates for the four particles.
The center of mass takes care of three, and there are
three Euler angles defining the orientation of the hyper-
nucleus in space. This leaves six coordinates describing
the tetrahedron formed by the four particles. These can
be taken as the six interparticle distances. When the
wave function is independent of the Euler angles, the
kinetic-energy operator simplifies considerably. If V; is
the Laplacian operator corresponding to the ith particle,
and r; is the vector displacement from the ith to the jth
particle, we have

2

I =0 J = I + 1 ~
gJ &J &J / =0 J = l + 1 I ]

= I J ]
:l ] + 1 &J &

1 J )
&p,2 p' . Qp' .

where 5,", =1 if i =i] or j =j], and 5,", =0 otherwise. Using Eq. (3) for the correlation functions the expression for
V' 4 becomes

2 3 0
)v' ]l(=2+ g [2 a,

.( 2a, .r,. —1)e ' "+2b; c; (2c) r .
J
—1)e ' "]+f k

i =0 j =i +1 kWj
2 3 a f' C ~ J'

+ g g 4(a;, e —" '+b;, c;,e ' ') Q f;k
i =0 j=i +1 kWj

2 3 2 3

+2+ g g g (r, . r,. )(a, e ' "+b;~cje ' ".)

t =0 j=i+1i =i j =i +1
1 1 1

2
C

2

1 1 ] (
) g f
k&i), k&jl

where r," r,. =cos(r, r, ) X tr, "~ ~r, ~. The core-

neutron interaction V0, and the core-A interactions V02
and V03 are generated by folding the N-N and A-X in-
teractions over the shell-model density distribution of Si
core. X-X and A-N potentials are taken from MalAiet
and Tjon' and Dzhibuti, Mikhelashvili, and Shitikova, '

respectively. The volume element dw in Eq. (1) is given
by

1=2,J =3
16vr Q r, dr, "

i =O,j=i+1
2 2 s1/2r 2 2 s1/2

Q2( ]3 r ]3(min) ) ( ]3(max) r ]3 )

where

r ]3( '
) rQ3 + rQ] 2rQ3rQ] cos(8 0 )

2 = 2 2 1

r]3( ) rQ3+rQ] 2rQ3rQ]cos(8+4 )
2 2 2 I

(see Fig. 1). Limits on 8 and (1(' are

0~0~~, 0~%'~~.

FICx. 1. Coordinate system for the four-body calculations.
rol is the n-core separation, ro& and r» are the A-core separa-
tions, r» and r» are the n-A separations while r» is the A-A
separation.
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( )
P' + //

2~3/2 (~+/1)3/2 2P3/2
(16)

where

/
1 18 292agagag

fPl = 1 18+ 58

3ab6 a6
58n=

15a'b'6'
1

ah 5

The second one we use is from Dzhibuti, Mikhelashvi-
li, and Shitikova' which has a Gaussian form corre-
sponding to the two-pion exchange

2 2v= voe (20)

This is used for both A-A and A-N cases. The parameters
are viz= —38. 19 MeV, b~&=1.034 fm, viz= —52.25
MeV, b~~=1.566 fm. They reproduced the binding en-
ergy and rms radius of &&He excellently.

The third one we use is the potential of Mian ' which
is a three-parameter density-dependent force

In Eq, (14) Iuo, is the n- Si reduced mass and p02 and p03
are the reduced mass of A- Si. The optimum parameters
a, /3, y and the corresponding values of Vo, are given in
Table I.

V. A-A AND A-1V POTENTIALS

(21)

where v0=297. 86 MeVfm, /3'=1. 92 fm, d =0.729 fm.
With this potential Mian reproduced the binding energy
of ~He, ~ B, ~ C, and ~ N satisfactorily.

For the ground state of A-A hypernuclei it is the 1SO
A-A interaction which is relevant and to which V~&
refers. We use three different forms of V~~. The first
one is the Urbana-type 2m-exchange potential which is
of the form

VI. MONTE CARLO METHOD
FOR THE FOUR-BODY SYSTEM

An integral

fp(r„. . . , r„)w(r„. . . , r„)dr, . . . dr„ (22)

Vq„= V, —VT

V, is a Woods-Saxon repulsive core

V, = IV, I I+exp[(r —R )/d]f

(17)

(18)

can be evaluated in the following way: One generates
random numbers U according to the normalized proba-
bility distribution p(r, , . . . , r„). The possibilities of
choosing p(r&, . . . , r„) are restricted by the difficulty of

T (r)= 1+—+3 3
X

X —cr )2 (19)

with x =0.7r, c =2 fm

TABLE I. Two-body parameters for the n- 'Si and A- 'Si
systems. Separation energies are (for n- 'Si) 8.47 MeV and (for
A- Si) 19.2 MeV, respectively.

Parameter

a (fm )

y (fm )

VQ

n-"Si

0.09
5.50
0.60

—24. 15

0.12
6.00
0.90

—10.70

with 8, =2137 MeV, R =0.5 fm, d =0.2 fm. A similar
potential is also used for V~~ with the same 8'„R, and d
values, and these values are very close to those for the
spin, isospin independent core of the N-N potential of
Ref. 20. Only the strength V is different for V~~ and
V~~. The values are V(AA)=6. 24 MeV and
V(AX)=6.20 MeV. T is the lm-exchange tensor poten-
tial shape modified with a cutoff:

Parameters

cxQ] (fm )

Poi

yQ1 (fm )

aQ2 (fm )

00~

yQ2 (fm )

(XQ3 (fm )

Po~

yQ3 (fm )

a&2 (fm )

Pie
y, 2 {fm )

a(3 {fm ')
0»

y, 3 (fm )

a23 (fm )

P2~

y23 (fm )

VQ„{MeV)
B/ /, (MeV)

Urbana V~~

0.022
6.500
0.070
0.022
6.500
0.070
0.022
6.500
0.070
0.022
6.500
0.070
0.022
6.500
0.070
0.022
6.500
0.070

—2137.0
40.19

Dzhibuti V~&

0.070
6.500
0.100
0.070
6.500
0.100
0.070
6.500
0.100
0.070
6.500
0.100
0.070
6.500
0.100
0.070
6.500
0.100

—52.25
46.30

Mian V~~

0.065
4.500
0.100
0.065
4.500
0.100
0.065
4.500
0.100
0.065
4.500
0.100
0.065
4.500
0.100
0.065
4.500
0.100

—297.86
39.90

TABLE II. Four-body parameters. Statistical error on B»
is +0.06. VQ&, VQ2, and VQ3 are taken from two-body results.
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TABLE III. Calculated values of the binding energy BA~ for the different potentials along with potential parameters.

Potential

Urban a

Dzhibuti

Mian

VAN

VAN

VhN

Depth and other parameters

8', =2137 MeV, R =0.5 fm, d=0. 2 fm, V=6.20 MeV
8, =2137 MeV, R =0.5 fm, d=0. 2 fm, V=6.24 MeV

U» = —38. 19 MeV, b&z =1.034 fm

U~~ = —52.25 MeV, bA&=1. 566 fm
vv=297. 86 MeVfm', P'=1.92 fm', d=0. 729 fm
v]1=297.86 MeVfm, P'=1.92 f]n, d=0. 729 fm

Binding energy B«
with Monte Carlo errors

(MeV)

40.19+0.06

46.30+0.06

39.90+0.06

generating random numbers. For a distribution function
depending only on one coordinate the generation of ran-
dom numbers is easy. A transformation function can be
obtained by a one-dimensional numerical integration
which transforms random numbers of a uniform distribu-
tion into random numbers of the desired distribution.
Here in our case we take p a product of functions each of
which depends only on one coordinate and every factor
for itself is used to generate a random coordinate. For
example, we take p as

main contribution to the variance comes from the Hamil-
tonian in the region where two or more particles are close
together. A somewhat different probability function
would therefore change the variance slightly while the
computing time will be smaller for the simpler probabili-
ty density function used in this paper. The variance is
calculated approximately from

2
fl

1
l1

v= —gw, — —gw,
n n,.

2 3 2

rr rr
i =0 j=i+1

(23) The statistical error is obtained by

b, l =(v/n )'i (27)

or

lnU-'" .1
01

o'o&
(24)

All radius vectors are generated in this way. Triangular
inequalities are maintained strictly, e.g. , ro]+I"O3) 7

etc. The weight functions for the numerator and denomi-
nator of Eq. (1) are

0/C

w, =—4"H%, w, =—%*%,
p

'
p

(25)

respectively. The quantities w, and w 2 are calculated nu-
merically. These are calculated a large number of times n
and then the average values are calculated which give the
estimates of the integral in Eq. (1). The exact form of the
probability function p is not very important, since it has
only an inhuence on the variance. In this method the

A random number U in the domain (0, 1) is generated so
that

2
01 01

VII. RESULTS AND DISCUSSIONS

First as a check of our Monte Carlo calculations we
used the same three-body parameters and potentials as
used in our previous paper" wherein the calculations
were done analytically, and got approximately the same
value for the binding energy of ~'~Si. The result is 39.95
MeV. Four-body results for three A —N potentials con-
sidered here are shown in Table II. For ~'~Si the wave
function 4' depends on the total of 18 variational parame-

01 PO] YO] 02 P02 3 02 03 P03 ) 03 +12 P]2 ) 12

cx]3 p]3 7 ]3 ]x23 p23 7 23 For simplicity, we consider
f01, f02, and f03 equivalent and similarly f]2, f», and
f23 equivalent which leaves six parameters for variation.
The expectation value ( ]p

~
H~ 4 ) and normalization

( 4
~

]p ) are obtained by a Monte Carlo procedure with
statistical errors of about +0.06 MeV. The optimum
variational parameters are shown in Table II. These were
obtained for vz&= —10.7 MeV and vQ2 vQ3

—24. 15
MeV.

For the three different potentials the calculated values

TABLE IV. The experimental BA~ and the additional binding energy KB&A.

AA hypernuclear
system

6 e
10

~~C (Ref. 23)

Experimental value
of B~& (MeV)

10.9+0.5
17.7+0.4

27.21+0.7
38.2+6.3

Experimental value
of

B, (MeV)

B&(&He)=3. 12+0.02
B ( Be)=6.71+O.O4

B~(A C) =11.69+0. 12
B~(p Si) = 19.5+0.02

aB„(MeV)

4.66+0.54
4.28+0.48
3.83+0.94

—0.8 +6.7
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FIG. 3. Plot of 8~~ vs U~~ for Urbana-type potential.
Values of the parameters are taken from Table II.

of the binding energy Bz~ are given in Table III. These
calculated values of the binding energy are not incon-
sistent with the reported experimental value of
B„~(z'&Si)=38.2-i6. 3 MeV, although for the potential of
Dzhibuti, Mikhelashvili, and Shitikova, ' the values are
somewhat larger. The Urbana potential and the potential
of Mian seem to be equivalent for the purposes of the
present calculation. The AA correlation function used in
our calculation does not have the flexibility to give the
needed short-range correlation. This might be the reason
why B&~ for the Urbana V~~ is significantly lower than

Bz~ for the potential of Dzhibuti, Mikhelashvili, and
Shitikova, which does not have any short-range repul-
sion. The use of a more adequate correlation function
could make the result for the Urbana V~& come consider-

ably closer to that for the Soviet potential. The result for
the latter should therefore be considered the more reli-
able one. The effect of different Vz& on AB«
(=B&z—2B&) has been explored. For the three poten-
tials used here the calculated values of AB~~ are 1.79,
7.9, and 1.5 MeV, respectively. For comparison with
other hypernuclei, we tabulate the values of AB~z for
different hypernuclei in Table IV. From Table IV it is
observed that the value of 6B~~ gradually decreases with
an increase of mass number. It has been shown in Ref. 22
that as the mass of the core nucleus becomes infinitely
heavy, B~~ approaches the value 2B~. Since ~'~Si is very
heavy in comparison with the other hypernucleus shown,
the value of hB~~ is obviously too small.

Figure 3 is a plot of B~z vs Vzz. For Vzz =0 we have
B~&=38.16 MeV, which is approximately 2B~. If the
core is infinitely massive then one has as expected the re-
lation B~&=2B~ for Vz~ =0

We conclude that the four-body model for ~'~Si which
is more realistic than the three-body model, gives a value
of B~„(~ItSi) for reasonable A —X potentials quite con-
sistent with the reported value. In view of the large un-
certainties in the experimental value, an exploration of
the finer details of the A —X interaction would not be of
much significance here. Nevertheless, the present calcu-
lation for z'&Si can be used for indicative purposes. Fur-
ther experimental observations of similar events could al-
low one to have more definitive conclusions.
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