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Nonaxial pearlike nuclear shapes
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We have extended the nuclear structure calculations to deformations that break both axia1 and
reAection symmetry. The deformation energy has been calculated within the Strutinsky method
with the Woods-Saxon mean field for systems that show signatures of octupole-deformed ground
states. In well octupole-deformed light actinides, and in the neutron-rich heavy-barium region, the
octupole minima turn out to be rather well localized around axial symmetry. On the other hand,
rather Hat energy landscapes in nonaxiality degree of freedom are found in some Z =N =56 nuclei.
The eAect is especially well pronounced in Ge.

I. INTRODUCTION

The motivation of this work is the extension of nuclear
deformation energy calculations to more general nuclear
shapes, including those breaking both axial and reAection
symmetry. Calculations including triaxial but reAection
symmetric, or reAection asymmetric but axial shapes, are
quite common nowadays. The former are performed in
order to study transitional nuclei, the shape evolution at
high spins, the fission process, etc. The latter were most
relevant to fission, but recently the reAection-asymmetric
deformation of nuclear shape was invoked as a possible
explanation for characteristic features observed in the
low-energy spectra in some nuclei. The most typical are
low-lying rotational bands with alternating-parity spin
states linked by enhanced E1 transitions, as observed in
the light radium-thorium region; see, e.g. , Ref. 1. Up to
now such rotational bands have been also observed in
neutron-rich nuclei around ' Ba (Ref. 2) and, at higher
spin, in a few nuclides around ' Sm. There are also
some indications of octupole correlations in the
Z =%=32 region. A simple shell-model argument gives
Z or X equal to 34, 56, 88, or 134 as the particle numbers
of systems where octupole correlations should be
strong. ' The deformed mean-field calculations indeed
predict the reAection-asymmetric equilibrium shapes in
radium-thorium and heavy-barium regions. There is
no a priori reason which would prevent the nuclei which
are octupole-deformed at their ground states to become
triaxial with increasing angular momentum. Similarly,
there is no reason for a fissioning actinide nucleus not to
penetrate all symmetry-breaking shapes on its way from
the first (triaxial) to the second (mass-asymmetric) saddle.
Therefore, the inclusion of triaxial and reAection-
asymmetric deformations seems to be a rather natural im-
provernent of the mean-field approach. As an additional
motivation for enlarging the family of nuclear shapes, one
can mention octupole instability in the superdeformed
minimum, recently found in calculations for ' Dy. '

However, before going to high spins or extreme defor-
mations of fission, it is reasonable to look for effects of
triaxiality first in octupole-deformed nuclei. This is the
aim of the present work.

Since nearly all symmetries of the mean field are bro-
ken and large matrices are involved, the relevant numeri-
cal calculations are rather time consuming. This is pre-
cisely the reason why such calculations were rather rare
in the past. The first, up to our knowledge, Strutinsky
calculation in which a nucleus was allowed to have triaxi-
al, reAection-asymmetric shape has been performed in the
context of fission for heavy nuclei at the second saddle-
point deformation. " More recent calculations of possible
nonaxial pearlike ground-state deformations in the mass
region 220 ( 3 ~ 230 have been reported by Chasman
and Ahmad. ' Using the grid of deformation points near
the octupole minima, they have found the slow increase
of energy with y up to y =15 for some radon, radium,
and uranium isotopes (the njinima were sometimes shift-
ed toward small values of y=7'). The results of Ref. 12
have been obtained without taking into account the de-
formation of multipolarity five P5. This deformation was
later shown to interplay effectively with octupole distor-
tion in producing deeper reAection-asymmetric mini-

13, 14

In this paper we extend the study of Ref. 12 by taking
into account the deformation of multipolarity five. In ad-
dition to the light actinides, we consider the neutron-rich
nuclei around ' Ba, the very neutron-poor nuclei around"Ba (Z =X=S6), and the neutron-poor isotopes with
X=Z=32. The results are presented in the form of
maps showing the Strutinsky energy dependence on
nonaxiality and reAection-asymmetry degrees of freedom
around the equilibrium quadrupole deformation.

II. SHAPE PARAMETRIZATION

A study of an octupole shape requires in general a con-
sideration of at least a seven-parameter family of defor-
mations and implies that the mean field does not possess
any spatial symmetry. In practical terms this leads to a
repetitive diagonalization of complex matrices of large di-
mension. Since it still presents a serious computational
effort, we take a less general approach by imposing some
limitations on the class of considered shapes.

The general nuclear shape is defined via the equation of
a nuclear surface:
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A, =2, 3, . . . , p= —k, . . . , A, . First, we assume, as was
done in previous calculations concerning axially sym-
metric and octupole-deformed shapes, ' that the mirror
reAection in the y-z plane is a conserved symmetry. The
operator which performs such a mirror reAection is given
by S,=PA, ', where %,=exp( im—I, ), I, is the angular
momentum component along the intrinsic x axis, and P
is the spatial refiection. This implies that /3z„=/3q „for
even p, and that /3z = —

/3z „ for odd p. ' Our second
requirement is that Hamiltonian matrix elements are real.
This can be achieved if one adds the second symmetry,
which we choose to be the second mirror reAection in the
x-z plane 42=P%2 '. We note that this implies that
%3=exp( inI3—) is also the symmetry operator and that
all /3&&=0 for odd p, . We are left with a family of shapes,
[Eq. (1)] for which

0 for odd /4,

f3~ „ for even p
' (2)

These conditions mean that, in addition to axial deforma-
tion of arbitrary multipolarity, we can have terms like
Y22+ Y22, Y32 32, 42+ Y42, Y44+ Y44, etc.

The number of deformation parameters in Eqs. (1) and
(2) is 10 for A, ,„=5,and 14 for A, ,„=6. In this work we
restrict ourselves to A, „=5. In order to present our re-
sults in the form of maps showing the energy dependence
on reAection asymmetry and triaxiality, we had to choose
only two relevant combinations of /3&„as the independent
coordinates and to fix or constrain all others. The practi-
cal requirement is that the resulting parametrization
should reduce to the usual one in the limits of reAection
symmetry and axial symmetry. Three hexadecapole de-
formation parameters /34o, P42 =/34 2, and /344=/34 4 are re-
duced to a single one /34 using the parametrization of Ref.
16,

P4 o=/34(5cos y+ 1)/6,

P4 2= —(15/2)' P4sin(2y )/6,

/34 4=(35/2)'~ /34sin y/6,
where y is the usual parameter of the nonaxial quadru-
pole deformation, /32'=/3z z= —(1/&2)/3siny. This pa-
rametrization was used in many previous Strutinsky ener-

gy calculations including nonaxial quadrupole and hexa-
decapole shapes; see, e.g. , Ref. 17. The nonaxial defor-
mation parameters of multipolarities three and A.ve were
put equal to zero, /33&=/3~2=/354=0. The values of P and

/34 were fixed at their equilibrium values following from
the previous axially symmetric energy minimizations'
(performed within the same model). Finally, the defor-
mation /35=/3, o is taken as a constant fraction of /33,

where this fraction equals the one at the equilibrium
point in the above-mentioned studies. As a result, the en-
ergy map is obtained in the effective (/33, y) plane, which
cuts the deformation space through the axially symmetric
equilibrium point.

It is worth noting that for the nonzero deformation P3

or /35, the y values in the range 0' —180' correspond to
dift'erent nuclear shapes (see the right part of Fig. 3). At
y =0' and 180', the parametrization [Eqs. (1)—(3)] gives a
pearlike axially symmetric shape, z axis being the symme-
try axis, with the even-multipolarity-shape component
being prolate and oblate, respectively. At y =60' (120')
the octupole deformation is still aligned to the z axis,
while the x (y) axis is the symmetry axis of the
quadrupole-plus-hexadecapole-shape component which is
oblate (prolate). Thus, for 0' & y & 180', the nuclear shape
has no symmetry axis unless all odd-multipole deforma-
tions vanish. At y =120 and large quadrupole deforma-
tion /3, we obtain for /33%0 "bananalike" shapes discussed
in Ref. 10. Finally, it has to be noted that the well-
known modulo-60 invariance in y of the pure quadru-
pole shape, which is preserved by the hexadecapole terms
given by Eq. (3), cannot be preserved when the
reAection-asymmetric deformation is added. '

III. METHOD OF CALCULATION

The smooth part of the nuclear energy has been calcu-
lated according to the Yukawa-plus-exponential prescrip-
tion. ' The single-particle field used here is a natural ex-
tension of the deformed Woods-Saxon potential of Ref'.
20 to the shapes discussed above. The pairing contribu-
tion to the Strutinsky energy has been calculated within
the BCS method, unless it is stated otherwise. The pair-
ing strengths were taken from Ref. 21. Thus the results
presented below are the generalization of the results of
Ref. 13 to mare general nuclear shapes.

IV. RESULTS

It follows from Ref. 13 that nuclei with reAection-
asymmetric minima in heavy-barium and radium-
thorium regions have a rather large prolate-oblate (PO)
energy di8'erence. Thus one does not expect very y-soft
energy landscapes in these nuclei. We present results for
y ~ 60, which constitutes the wide neighborhood of octu-
pole prolate minima.

A. Radium-thorium region

In calculations of Ref. 13, the evolution of octupole
minima in the radium-thorium region shows a charac-
teristic pattern. For every even-Z element, from Rn to
Cf, the lightest even-even isotope showing odd-
multipolarity deformation has a small quadrupole defor-
mation /32=0. 085. This value is smaller than the equilib-
rium /33 value. These weakly deformed systems occur at
¹=132for Rn and at N=130 for Ra and heavier ele-
ments. The equilibrium quadrupole deformation in-
creases with X, but when /3' becomes larger than 0.15,
the refiection-asymmetric minimum disappears (at
N= 140 in Rn and Ra, at N= 138 in Th, and at N= 136
for heavier elements). The deepest refiection-asymmetric
minimum occurs at N= 134 in Rn, at N= 132 in Ra, Th,
and U, and at N= 130 for heavier elements.

In Fig. 1 the Strutinsky energy maps are shown for
Ra isotopes. The first of these nuclei has the

equilibrium octupole deformation as large as the quadru-
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increase in energy is moderate (100—200 keV). For larger
values of y the energy rises steeply. The stiffness is small-
er in very-neutron-poor xenon and barium isotopes near"Ba for which calculations predict reAection-
asymmetric deformation, yet undiscovered experimental-
ly. The remarkable softness against both reAection-
asymmetric and nonaxial deformations is predicted for

Ge, which shows the shallow octupole minimum in the
calculations.

What are the consequences of y softness in an
octupole-deformed system, i.e., how should it manifest it-
self in the low-energy spectrum of the nucleus?

At first let us describe the extreme situation when the
nuclear shape in the intrinsic frame, defined by Eqs. (1)
and (2), is both nonaxial and reAection-asymmetric (e.g. ,
it has nonzero equilibrium values of /33Q and Pzz=Pz z).
One may thus say that the D2 symmetry of the ellipsoidal
shape is broken by the odd-multipole deformation, while
the symmetries A3 and Sz=PAz ' are still conserved.
Within the rigid-rotor model, on the intrinsic state of an
even-even nucleus with the eigenvalues r3 of %3 and sz of
S2, the rotational spectrum is built with the rotational
wave functions belonging to the Dz representations with
the same eigenvalue of r3 and both eigenvalues rz of %z,
rz =+1 (parity is determined by 7r=rzsz). Taking the
intrinsic ground state with r3 =s2=1, we get the rota-
tional spectrum containing positive-parity states (with
rz =1) with the following spins and in numbers given by
the superscript: 0', 2, 3',4,5, . . . ; and negative-parity
states (with rz = —1) with spins and numbers of states:
1',2', 3,4,5, . . . . In the limit of axial symmetry, only
the alternating-parity band survives as the ground-state
band. The characteristic low-energy features of this rich
rotational structure would be the exceptionally low-lying
y-like band with its parity-doublet band in addition to
the alternating-parity octupolelike ground-state band,
and the enhanced E2 transitions from opposite-parity y-
like bands to the alternating-parity ground-state band.
Furthermore, such a spectrum should contain many low-
lying good-K-like bands with strong interband E2 transi-
tions.

Now consider an octupole-deformed system with y
softness, but without any stable nonaxial deformation. In
such a system we should expect the low-lying y-
vibrational band. Its parity-doublet partner
(I =2,3,4, . . . ) may be shifted up in energy by the

interaction with the nonaxial octupole one-phonon state
which carries the same E number and is expected at low
energy. Indeed, in the actinide region the low-lyingI"=2 states have been observed and interpreted as the
one-octupole-phonon states with E =2 . Approach-
ing the limit of the y instability, the system should show
features more similar to the ones discussed above for
stable nonaxiality, in particular, relatively many low-
lying bands (resulting from the superposition of the low-
energy y vibration with other low-lying excitations), and
the enhanced E2 interband transitions.

Unfortunately, not much is known about the y bands
in octupole-deformed nuclei. Very often only one state,
interpreted as a bandhead, is known. Moreover, the nu-
clei of interest are weakly deformed, which makes the in-
terpretation of bands more dificult. With these reserva-
tions in mind, we can compare the energies of the quasi y
bandheads, taken from Ref. 28, to the energies of the
lowest negative-parity states in all four studied regions of
octupole nuclei. In Ra the y-vibration energy, 965
keV, is more than 4 times larger than that of the lowest
negative-parity state; in ' Ba (1316vs 759 keV) and ' Ba
(1115 vs 739 keV), it is less than 2 times larger, but it is
less than 2 times smaller in" Xe [1148 vs 1798 keV (Ref.
24)], Ge (1693 vs 2798 keV), and Ge (1777 vs 2649
keV). These data are not inconsistent with our results
showing increasing importance of nonaxial correlations
for lighter octupole-deformed systems.

The enhanced interband E2 transitions are the charac-
teristic feature of y softness or y deformation also in odd
nuclei, provided that they do not follow from the Coriolis
coupling. Such transitions have been analyzed in Ref. 12.
The transitions of a few single particle units found in

Ra and Ra were proposed as the evidence for nonax-
ial correlations in these nuclei. It follows from our study
that such transitions should be even stronger in the re-
gions of lighter nuclei showing octupole correlations.
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