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Analysis of low energy m+ scattering to second O+ states
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An optical potential with a strong Ericson-Ericson-Lorentz-Lorenz parameter is used to calculate
low-energy pion inelastic scattering to selected collective states and excited 0+ states in ' C and 'Si.
The nuclear structure input is carefully evaluated, and there are no free parameters in the calcula-
tion. The scattering to the 02+ states proceeds dominantly through the one-step mechanism, but the
two-step mechanism is significant and can be used to extract some information about the form fac-
tors connecting excited states.

I. INTRODUCTION II. m.-NUCLEUS INTERACTION

If one makes a naive use of the experimental
nucleon-scattering cross sections, one would expect that a
low-energy ( —50 MeV) pion would be a weakly interact-
ing nuclear probe. On the other hand, if one translates
the same data into an optical potential of the Kisslinger
type, one can end up with very strong multiple scattering
in the ~-nucleus interaction. The corresponding high-
momentum components in the wave function must then
be suppressed by a variety of mechanisms, which are col-
lectively referred to as the Ericson-Ericson-Lorentz-
Lorenz (EELL) effect and which can be approximately in-
corporated into the m.-nucleus optical potential through a
single parameter. ' Unfortunately, it has proved dificult
to extract this parameter unambiguously from the data.
It has been argued that inelastic scattering of low-energy
pions to second 0+ states provides one way of attacking
this question: the point is that the form factor must have
a vanishing volume integral for orthogonality reasons,
and this results in a depression of the differential cross
section at forward angles for weakly interacting probes.
On the other hand, such a decrease can also result from
the interference between the one-step Oi+ —+0&+ and the
two-step 0&+ ~2&+ ~02 amplitudes. ' The arguments
are model dependent: Potentials that generate strong
multiple scattering in the elastic channel will also gen-
erate strong two-step amplitudes, and conversely for po-
tentials with large EELL parameters.

For a long time, inelastic-scattering data to a Oz+ state
was available only for ' C. ' Very recently, much better
energy resolution has become available at LAMPF, and
an experiment was performed on Si at 50 MeV. This is
very useful data because the nuclear structure is much
better understood here than in ' C. Moreover, new data
on ' C has also been taken. '

The purpose of this paper is to do a unified analysis of
all the low-energy data for pion scattering to second 0+
states, and, among other things, to draw a clear con-
clusion about the relative importance of one- and two-
step amplitudes. For completeness and consistency, we
also calculate elastic and inelastic scattering to the first
2+ and 4+ states, and show that they are correctly pre-
dicted without any adjustable parameter.

Elastic scattering is calculated in the usual way by
solving the Klein-Gordon equation with an optical poten-
tial of standard form, but restricted to N =Z nuclei, and
proton and neutron densities having the same shape:

2toV=uo+ Uo+ V + U, V
1+A,u, /3

+ [7 (u, + —,'U, )],
27?1~

o
= 4m t AboP

U, = —4~p, A'B,p',
tt i 477ACop/p i

U, =4~A Cop /pz,

p, = I+colm„,

p2 = 1+m/2m„.

(2)

(4)

We use the low-energy parametrization of Meirav
et ah. ' which is the best available at the moment, and
which is summarized in Table I. This is a potential with
a "strong" EELL parameter.

Inelastic scattering to Jf&0 states is calculated assum-
ing a one-step distorted-wave Born approximation
(DWBA) mechanism using a much modified version of
the code NDwpI. ' Inelastic scattering to the 02+ states is
calculated as a coherent sum of one-step (0,+~02+) and
two-step (0,+~2,+ —+02+) amplitudes using a homemade
code BORNOJo. For inelastic vertices, the transition
operator is taken to be that piece of

2co5V=2co( V[p+5p I
—V[pI ),

which is linear in 5p.
The diagonal and off-diagonal transition densities are

the point nucleon densities and are obtained, as far as
possible, by unfolding the finite proton size from elec-
tromagnetic data: longitudinal electron scattering form
factors, and 8(E2) and M(0) values from y decay or
Coulomb scattering.
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TABLE I. The m-nucleus optical potential parameters.

50
65

bo(m ')

—0.021;0.0
—0.026;0.0

co(m ')

0.231;0.051
0.237;0.087

Bo(m )

—0.075;0.036
—0.025;0.025

Co(m )

0.036;0.053
0.025;0.038

1.8
1.8

For computational convenience, we use standard ana-
lytic forms (specified below) fitted to the experimental
densities and form factors. There is no loss of accuracy
resulting from the choice of simple forms for this pur-
pose.

III. NUCLEAR STRUCTURE OF Si

5p(r)=f1((21+1) ' Yi* (0, (b)fi(r), (10)

with a 3pf form for p. The parameters c, z, w, and Pi are
obtained by fitting (after folding) the longitudinal electron
scattering form factors' ' and the experimental

B(E2;Oi+~2i+)=326e fm

(Ref. 16), and

B (E4;0,+ ~4,+ ) = 1.78 X 10"e fm

(Ref. 15). We found that the conventional procedure of
using the ground-state values of the parameters c, z, and
w and adjusting P2 to the experimental B(E2) gives a
form factor that peaks at too low a momentum transfer,

A three-parameter Fermi (3pf) shape is used for the
ground-state density

po[1+co(r/c) ]
p(r) =

1+exp[( r —c) /z]

with the parameters fitted to the known charge density'
after folding in the proton charge density. As expected,
the point nucleon and the charge density have almost the
same radius, but diA'erent surface thickness.

For 0&+ ~2&+ and 0,+ ~4&+ transitions, we use collective
model form factors:

and is too weak in the region of the peak when compared
to the electron-scattering data. Since pion inelastic
scattering around 50 MeV involves momentum transfers
characteristic of this peak region, it is important to get
this right. In other words, if one uses the ground-state
values for c, w, and z, one should expect that the P2 need-
ed to fit the pion inelastic cross section will be systemati-
cally and significantly larger than the Pz deduced from y
decay. This has been the case with most fits up to now, '

see, for example, Refs. 7 and 4.
For the 0,+ ~02+ form factors, we use the form suggest-

ed by the collective model' of P-vibrational states.
opo(r) =(47r) 'i /3ofo(r), (12)

fo(r)=r p+ ,'r p . — (13)
dI'

We again take p to have a 3pf form, and fit the four pa-
rameters to the electron-scattering data. '

We now complete the nuclear structure input by noting
that all the states relevant to this work are good 1s, Od
shell states, ' ' and deformed Hartree-Fock calculations
long ago showed that the 02+ state could be interpreted as
a P-vibrational state. Consequently, the diagonal densi-
ties of the 2,+ and the 02+ states are taken equal to the
ground-state density, and the Oz ~2+, form factor is
given the same shape as the 0,+~2&+ form factor, with
the corresponding Pz derived from the known lifetime of
the 02+ state: tji2=21 fs. ' Actually, this is something of
an upper limit on Pz since, if all the data is included in-
stead of just the two more accurate Doppler-shift mea-
surements, then t&i2 increases to 31 fs. Finally, the rel-
ative phases are defined by the relation Po=(2/&ir)Pgz
which holds in the small vibration limit of the collective
model. All the nuclear structure parameters are listed in
Table II.

Nucleus

12C

12C

12C

12C

12C

12C

28S'

28S1

28Si

28Si

"si

Transition

01+~01+

01+ ~21+

01+ ~02
02+ ~2
02+ ~21+
0+ 0+

Q+ Q+

01+ —+21+

0+ 4+

01+ —+02+

02+

2.002 0.3833pf
r 3pf- —d

dr
co11.,3pf

r 3pf- —d
dr

Kamimura
3pf

1.921 0.428

0.520

0.428

1.282

1.921

1.688 1.212

3.3613pf
—r 3pf-d

dr
r 3pf——

dr
coll. ,3pf

r 3pf——

0.485

0.408

0.458

2.775

3.170

2.476

2.775

0.361

0.408

TABLE II. Form-factor parameters.

Form factor

0.540
—0.160
—0.075
—0.160

—0.039

—0.245

0.653

—0.209

1000

0.653

0.65

0.34

0.38

1.52

0.39

0.21

0.091

0.19
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IV. Si (w+, m+ ) REACTION

Figures l —4 show that all the Si(m. +,) data are well
reproduced using only one-step 0%'BA with an optical
potential based on a strong EELL parameter and the nu-
clear structure input taken from electromagnetic data.
There are no free parameters in the calculation.

As shown in Fig. 4, the two-step (0,+~2,+~02+) am-
plitude is smaller than the one-step amplitude by a factor
of 2 even at small angles, but the interference between the
two amplitudes has a significant effect which goes in the
direction of improving the agreement with experiment, if
the relative sign of the two amplitudes is taken from
theory. This result is in contrast to the conclusions of
Ref. 7 who find that the two-step amplitude dominates at
forward angles. The difference between the two results is
primarily due to our use of a better optical potential,
better form factors, and a more reasonable (i.e., experi-
mental) value for the Pz connecting the 2&+ and Oz states.
If we use the potentials and parameters of Ref. 7, we get
results very close to theirs, from which we conclude that
there is little difference between coupled-channels and
one-plus-two —step DWBA calculations in this case.

10 ' Si(7r+, sr+) "Si(2+,1.78)
50 MeV

~~ 10
b

I I I I

20 40 60 80 'l00 120 'l40 160
8 (deg)

FIG. 2. Inelastic (one-step only) differential cross sections for
'Si(m+, n+ ) 'Si(2+, 1.78 MeV) at 50 MeV. The data are from

Refs. 7 and 29.

V. NUCLEAR STRUCTURE OF ' C

For the ground-state density, and the 0& —+2& and
0&+~0&+ form factors, we can use the same functional
forms as in Si, with all the parameters determined by
the (e, e') data. ' It would be tempting to use the same
approach as in Si for the rest of the form factors as well,
but the available nuclear structure information does not
allow this. All theoretical models agree that the 0&+ and
2,+ states are members of the same oblate ground-state
band, and that their dominant components can be attri-
buted to the Op shell. It follows that the diagonal density
for the 2&+ state can be taken the same as the ground-state

density. On the other hand, shell-model calculations
do not provide any candidate for the 02+ state which must
therefore be attributed to configurations beyond the Op

shell.
One model that provides a state space large enough to

include all the states relevant for our purposes is the clus-
ter model. There is a price paid in that the X-X forces
that can be used are more crude than those of the shell
model, and important spin-orbit effects cannot be accomi-
dated. Nevertheless, form factors have been calculated in
this formalism by Kamimura. The description of the
0,+ and 2,+ states is much the same as in the shell model,
except that they are more deformed. The 02+ state is

'l0 ' Si(7r+, 77') Si(O, gs

l0
20 40 60 80 100 l20 l40 'l60

8 (deg)

10 I I I I I I

20 40 60 80 100 120 140 'l60
8 (deg)

FIG. 1. Elastic (optical model) differential cross sections for
' Si(~+,sr+) at 50 MeV. The data are from Refs. 7 and 29.

FIG. 3. Inelastic (one-step only) differential cross sections for
'Si(m+, ~+ ) Si(4+,4.63 MeV) at 50 MeV. The data are from

Refs. 7 and 29.



1392 R. ALVAREZ del CASTILLO AND N. B. de TAKACSY 43

'lO

10 =
b

10

I I I I

"si(~+ ~+)"si(o+ 4.gH)
50 MeV

I I I I

02+~2,+ transition has a shape that is totally different
from that of the 0&+ —+2I+ transition; see Fig. 5. Its phase
is the same at low q, but it has a node and changes sign
at high q . It underestimates the B(E2;O+z~2,+) by
more than a factor of 2 and this is sensitive to the choice
of nucleon-nucleon potential —other calculations give
even smaller numbers. For the present purposes, we
take the 02+ —+2&+ form factor to be a linear combination
of the Kamimura form factor (Kam) and the p-
vibrational form factor:

fz(Oz+ ~2&+, r) =Pzf z(Kam; r)+Pz'f z(OI+ 2I+,'r) .

(14)

The coefticients will be varied subject to the constraint
that

20 40 60 80 l00 'l20 140 'l60
8 (deg)

highly deformed and mostly prolate; consequently, its
density is much lower and more spread out than the
ground-state density. A standard three-parameter Fermi
shape provides a reasonable and convenient representa-
tion of the shape given in Ref. 26, with the parameters
listed in Table II. The Kamimura form factor for the

10
12C

10

FIG. 4. Inelastic differential cross sections for
'Si(m. +,~+ ) 'Si(0, 4.98 MeV) at 50 MeV. The dashed line is a

purely one-step calculation, the dot-dashed line is a purely two-
step (0&+ ~2I+ ~02+) calculation, and the solid line is the
coherent sum of the two mechanisms. The data are from Refs.
7 and 29.

B (E2;Oz+ ~2I+ ) = 13+4e fm"

(Ref. 28).

VI. ' C (zr+, zr+ ) REACTION

As shown in Figs. 6 and 7, the DWBA cross section for
the 2I+ state is in good agreement with the data; ' ' in
particular, there is no need to change the electromagnetic
value of pz. The one-step DWBA cross sections for the
Oz+ state are shown in Figs. 8 —10. They agree with the
data at both 50 and 67.5 MeV but only for L9) 70'. The
shape of the angular distributions shows the suppression
at forward angles characteristic of weakly interacting
particles, and the low nuclear density of the final state is
significant in this regard. Nevertheless, the data require
more suppression than the one-step theory provides, at
least with the present optical potential.

The calculation of the two-step contribution to the 02+

cross section is complicated by the theoretical uncertain-
ty in the 02+~2I+ form factor. If we use a pure Kamimu-

—3
10

10 "c(~,~ )"c(o,gs)
50 MeV

I 1) I

I

I

6
I I I

I
I I I t

I
I 1 l I

I
I I I 1

I
I

0.0 0.5 'l. O 1.5 2.0
q (fm ')

FIG. 5. The charge form factors squared in ' C obtained by
folding the finite proton size (Ref. 30) into the matter distribu-
tions discussed in the text. The solid line is for the 0&+~2I+
transition with the parameters given in Table II, and the data is
from Ref. 23. The dashed line is Kamimura's form factor (Ref.
26) for the 0,+~2~ transition, multiplied by 1.52 to make the
magnitude consistent with the measured 8(E2) (Ref. 28). The
dot-dashed line show the Oz+~2,+ form factor with Pz=0.8, and
Pz'=0. 18, which is preferred by the pion inelastic-scattering
data.

K

E
110—

b
b o

b

10
I I I

20 40 60 80 lOO 120 'l40 l60
8 (deg)

FIG. 6. Elastic (optical model) differential cross sections for
' C(n+, ~+) at 50 MeV. The data are from Refs. 6, 31, and 8.
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I I I I !

"C(~' ~') "C(2,4.44)—
50 MeV

"c(~',~') "c(c),7.(-s)
50 MeV

N~10—

lO =
b
C3

I I I I

20 40 60 80 'l00 120 140 160
8 (deg)

10
I I l

20 40 60 80
ox

C.fr).

I I

'IOO 120 140 160
(deg)

FIG. 7. Inelastic (one-step only) differential cross sections for
' C(sr+, ~+ )' C(2+,4.44 MeV) at 50 MeV. The data are from
Refs. 6, 31 and 8.

ra form factor, but with the strength increased to match
the experimental 8 (E2), i.e., P2= 1.52, Pz'=0 in Eq. (14),
we get the wrong sign for the interference, as shown in
Fig. 8. This form factor can therefore be considered as
ruled out by the data. The interference has the right sign,
and agreement with the data is improved over the purely
one-step calculation if we use p2= 1, p2'=0. 13. The
form-factor mix favored by the data has P2=0.8,
Pz'=0. 18; these cross sections are shown in Figs. 9 and
10. This preferred 02+ ~2I+ form factor is shown in Fig.
5.

"c(~'~ )"c(o,v. ( r)
50 MeV

FIG. 9. Inelastic differential cross sections for
"C(m+, ~+ )"C(0+,7.65 MeV) at 50 MeV. The dashed line is a
purely one-step calculation, the dot-dashed line is a purely two-
step (0,+~2I ~0&+) calculation using a P,'=0.8, and P2 =0.18,
and the solid line is the coherent sum of the two mechanisms.
The data are from Refs. 6 and 8.

VII. CONCLUSIONS

We have taken advantage of the availability of a new
pion-nucleus optical potential with a strong EELL pa-
rameter' to study low-energy inelastic scattering on ' C
and Si. Since the distortion and absorption are
moderate, the pions can penetrate into the nuclear interi-
or. The difterent cross sections to the low-lying collective
states are well predicted without any free parameters, us-

'IO =--
b
U

10

N& 'lO

I I I

"'C( ', ') "C(C)+,7.65)
67.5 MeV

II

20 40 60 80 100 120 140 'l60
8 (deg)

l0-
b

FIG. 8. Inelastic differential cross sections for
' C(~+, a+ )' C(0+,7.65 MeV) at 50 MeV. The dashed line is a
purely one-step calculation, the dot-dashed line is a purely two-
step (0,+~2~+~02+) calculation using a @2=1.52, and /3z'=0,
and the solid line is the coherent sum of the two mechanisms.
The data are from Refs. 6 and 8.

10 tt tI
I I I I f I

20 40 60 80 100 'l20 'l40 'l60
8 (deg)

FIG. 10. The same as Fig. 10 but at 67.5 MeV. The data are
from Ref. 5.
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ing form factors taken from electron scattering. At these
energies, the cross sections are particularly sensitive to
the form factors near q —1 fm ', that is near their peak;
it is not enough to use a reasonable size parameter and a
strength fitted to the measured B (El).

The cross sections to the 02+ states are dominated by
the one-step mechanism which can explain both the ob-
served magnitude and also, though less well, the shape of
the angular distributions. The two-step Oi 2i 02

amplitude is smaller at all angles and is forward peaked.
The interference between these two amplitudes is impor-
tant, and results are an improved agreement with the
data. Again, there is no need to adjust any parameters
insofar as they can be extracted from electromagnetic
data or we11-established theory (e.g. , the relative phases).
It is interesting to note that this interference can be used
to extract information about the form factors connecting
excited states, specifically the 2& ~02 form factor in C.
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