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Optical model description of momentum transfer in relativistic heavy ion collisions
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An optical model description of momentum transfer in relativistic heavy ion collisions, based
upon composite particle multiple-scattering theory, is presented. The imaginary component of the
complex momentum transfer, which comes from the absorptive part of the optical potential, is
shown to be the main contributor to the momentum loss of the projectile. Within the context of the
Goldhaber formalism, predictions of fragment momentum distribution observables are made and
compared with experimental data. Use of the model as a tool for estimating collision impact param-
eters is also discussed.

I. INTRODUCTION

Since the pioneering experiments on relativistic heavy
ion fragmentation using carbon and oxygen beams, ' at-
tention has been directed toward understanding the un-
derlying mechanisms of fragmentation processes. Over
the past two decades, a substantial body of literature has
resulted from studies of these phenomena, and several ex-
cellent reviews have been written. Perhaps the most
significant findings of the early experiments were the ob-
servations that the fragment momentum distributions
were Gaussian in the projectile rest frame, and that the
isotopic production cross sections factored into a product
of target and beam-fragment terms. Initial attempts to
explain these phenomena utilized a statistical model to
describe the reactions. This later evolved into a two-
step model called abrasion ablation' where the abrasion
stage can be formulated using geometric' ' " or
quantum-mechanical arguments. ' ' In the present
work, we use the impulsive excitation energy ideas of
Fricke, ' within the context of composite particle
multiple-scattering theory, to derive a method of predict-
ing momentum transfers occurring in relativistic heavy
ion collisions. This momentum transfer is a function of
impact parameter. A novel feature of this work is that
the momentum transfer is a complex quantity. The real
component is the usual transverse momentum transfer re-
sulting from elastic scattering. The imaginary com-
ponent, shown from kinematics to be the main contribu-
tor to the longitudinal momentum loss or downshift,
comes from the absorptive part of the complex optical
potential. Using this model as input into the Goldhaber
formalism, projectile nucleus fragment momentum
"downshifts" resulting from the dynamics of the nuclear
collision can be calculated and compared with laboratory
beam measurements. In addition, modifications to the
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II. METHOD OF CALCULATION

In Ref. 16, a coupled-channels Schrodinger equation
for composite particle scattering, which relates the en-
trance channel to all of the excited states of the target
and projectile, was derived by assuming large incident
projectile kinetic energies and closure of the accessible
eigenstates. The equation is written as

(V' +k )g„„(x)=2m' AT(A +AT)

X g V„„.„( )xg„.„.( )x,

where the subscripts n and p (primed and unprimed) label
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widths of the momentum distributions can also be es-
timated.

The outline of the paper is as follows. In Sec. II the
dynamical momentum-transfer expression is derived, and
representative calculations of momentum transfer as a
function of impact parameter are presented. In Sec. III
the connections between collisional momentum transfer
and fragment momentum downshifts-widths using the
Goldhaber formalism are made. A method of choosing
appropriate impact parameters for each fragmentation
channel is then described. Next, calculations of momen-
tum downshifts for fragments produced by oxygen nuclei
colliding with various targets are made and compared
with experimental data. We also compute widths of
momentum distributions for ' La fragments and com-
pare with recent experimental measurements. ' In Sec.
IV we propose a method for using the momentum-
transfer model to estimate collision impact parameters.
Finally, in Sec. V we conclude by summarizing the
current status of model development and discuss future
directions for research.
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the projectile and target eigenstates, I is the nucleon
mass, 3 and AT are the mass numbers of the projectile
and target, k is the incident projectile momentum relative
to the center of mass, and x is the projectile position vec-
tor relative to the target. In terms of the nucleon-
nucleon scattering t matrix t, and the internal state vec-
tors of the projectile gp(g'„) and target g„(gr ), it was also
demonstrated that the potential matrix is expressible as

at relativistic energies is

I

%(x,gp gr)=(2m) exp ——' f '
V,~, (x, gp, g'r)dz'

XgP(gp)g„(gr)e'"',

V„„„„(x)= (g„g„~V,„,(g'p, gr, x) ~gP g„),
where

(2)
where U is the velocity. The total momentum of the pro-
jectile is then given by the matrix element involving the
sum of the projectile single-nucleon momentum operators
as

V, , (gp, gr, x) = gt (3)
(6)

This same formalism can be used to investigate relativis-
tic heavy ion collision momentum transfers. Within the
context of eikonal scattering theory, the solution to the
Schrodinger equation

H%(x, gp, gr)=E%(x, f„fr)

where the subscript P on the gradient operator denotes
that the gradient is to be taken with respect to the projec-
tile internal coordinates gp. Equation (6) actually
denotes a potential matrix P„„„., in analogy with (2).
Therefore, substituting (5) into (6) yields

A

P g T ~P, g ' P g ' T
,a=1

where

—oo

given by

P T P T
Qnpn'p, '=P

, p, nn'p' PO= gngp g ~p, a~ gn gp'
0!

Using the chain rule for diff'erentiation, Eq. (7) can be fur-

ther expressed as

P

P,„„,„,=Po+ g,g„— TP S g„g„

where the incident projectile momentum before the col-
lision is

For high-energy collisions, dominant scattering processes
occur near the forward directions, since the momentum
transferred is small when compared to the incident
momentum of the projectile; hence, couplings between
excited states are small and can be neglected. ' The total
momentum transfer to the projectile is then approximat-
ed by

Q=Qoo, oo= gogo g ~p, a gogo
P T P T (12)

' X ~pa gn'g '
P T

+=1

The total momentum transfer to the projectile is then
I

In terms of projectile and target number densities, and
the constituent-averaged two-nucleon transition ampli-
tude' t, Eq. (12) becomes

Q(b)= /lp ~r f d happ(k )f d krpr(kr) Vp f t(b+z'+gp gr) "'—'=Qb, (13)

where the integration limit in the longitudinal direction
has been extended to infinity. The transverse momentum
transfer in (13) is therefore only a function of the impact
parameter of the collision. The projectile and target
number densities (pp and pr) are normalized to unity as

fp(x)d x =1 . (14)

The constituent-averaged two-nucleon transition ampli-

tude is obtained from the impulsive first-order t matrix
used in our previous studies' of nucleus-nucleus col-
lisions as

t (e, x) = —(e /m )
' cr(e) [a(e)+i]

X [2vrB (e) ] exp[ x /2B (e)], (15—)

where e is the two-nucleon kinetic energy in their center-
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of-mass frame, o(e) is the nucleon-nucleon total cross
section, a(e) is the ratio of the real-to-imaginary part of
the forward-scattering amplitude, and B (e) is the
nucleon-nucleon slope parameter. Values for these pa-
rameters taken from various compilations are listed in
Ref. 18.

The dynamical transverse momentum transfer to the
projectile, given by Eq. (13), results from interactions
with the target. Note that it is a complex quantity which
is consistent with the use of a complex optical potential. '

The real part of the momentum transfer, which comes
from the real part of the complex optical potential, is the
contribution arising from elastic scattering. The imagi-
nary component, which comes from the absorptive part
of the complex optical potential, arises mainly from ab-
sorption and inelastic-scattering processes. At high ener-
gies the latter are mainly breakup (fragmentation) reac-
tions, since these account for over 95% of the total reac-
tion cross section. Physically this imaginary component
represents attenuation of the incident wave front in anal-
ogy with the usual discussions for a complex index of re-
fraction in an absorptive medium. ' Concomitant with
this attenuation of the incident wave by these absorptive
processes, there is a loss of momentum from the wave
front in the beam direction. This beam longitudinal
momentum transfer (loss) is interpreted as arising mainly
from the imaginary component of Q. To see this
kinematically, we note that the final momentum of the
projectile is
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FIG. 1. Momentum transfer to the ' 0 projectile, as a func-
tion of impact parameter, for 2, 1A GeV oxygen colliding with a
beryllium target.

Pf =Po+Q, (16) usual decay width. '
j Associated with the loss of projec-

tile kinetic energy is a momentum loss
where the incident momentum Po is in the beam direction
and the momentum transfer Q is transverse to it. The as-
sociated kinetic energy is Pf /2M, where

P (Q2 Q2 )1/2 Q ( 1 Q2 /Q2)1/2

From Eqs. (13) and (15), we note that

(19)

P=P+Qf 0

For a complex momentum transfer,

Q QR Qr + 2'QR Qr

(17)

(18)

QR =a(e)Qr,

yielding

P —
Q ( 1 2)1/2

(20)

(21)

where the subscripts denote the real (R) and imaginary
(I) components of (13). For inelastic collisions, the pro-
jectile loses kinetic energy such that Pf &Po. Therefore,
the loss in kinetic energy is (QT —

QR )/2M. [The imagi-
nary part of the right-hand side of (18) is related to the

At Bevelac energies, a(e) =0.35 giving

10ss
=0 Qr =Qr (22)

Therefore, from Eq. (13), the real transverse component
is

I

QJ Ap dr f d gppp(gp )f d (TpT(gT )Vp f Ret(b+z +g'p gT ) (23)

and the momentum loss component is

I

P1o» —
Q~~

—— ApAT f d gpPp(gp) f d (TPT(gT)Vp f Imt(b+z'+gp —gT) (24)

Calculated momentum transfers obtained using Eqs.
(23) and (24) are displayed in Fig. 1 for ' 0 at 2.1/1 CieV
colliding with a beryllium target. These calculations uti-
lize the harmonic-well nuclear densities from our previ-
ous work. ' ' From the figure, two features are readily

apparent. First, the longitudinal momentum transfer
(loss) is larger than the transverse indicating the primari-
ly absorptive nature of the nuclear collision at this ener-
gy. Second, the predicted momentum transfers decrease
rapidly with increasing impact parameter. This will be a
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subject of further discussion in subsequent sections of this
paper, but its occurrence is not surprising since the nu-
clear optical potential decreases rapidly with increasing
separation of the colliding nuclei.

III. RESULTS
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The collisional momentum transfers computed using
the model described in the previous section can be related
to experimentally measured, heavy ion fragment momen-
tum downshifts-widths through considerations of energy
and momentum conservation. As has been formulated
elsewhere, ' a momentum transfer in any direction Q~
modifies the width h of the fragment momentum distri-
bution in that direction by

P 2Q2
(h') =h + (25)
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(26) Fragment mass number

From the latter, the longitudinal momentum downshift is
given by

(27)

where
Q~~~

is the magnitude of the longitudinal momentum
transfer Iobtained from Eq. (24)], F is the fragment mass
number, and A is the initial mass number of the frag-
menting nucleus. Recalling that

Q~~~~
is a function of im-

pact parameter, an appropriate method for choosing the
impact parameter for each fragmentation channel is
necessary. Recently, a semiempirical abrasion-ablation
fragmentation model, NUCFRAG was proposed. ' Al-
though it assumes simple uniform density distributions
for the colliding ions, and a zero-range (delta-function)
interaction, it does include frictional-spectator interac-
tions (FSI) and agrees with experimental cross-section
data to the extent that they agree among themselves.
Also, and most importantly for this work, it is easily
modified to yield impact parameters for each fragmenta-
tion channel. Hence, the procedure for evaluating Eqs.
(25) and (27) is to extract impact parameters from
NUCFRAG for each nucleon removal corresponding ex-
actly to 6 A = 1,2, 3, . . . . These "most probable" impact
parameters are then inserted into Eqs. (23) and (24) to ob-
tain the corresponding momentum transfers for use in
evaluating Eqs. (25) and (27). Because NUCFRAG uses
uniform densities, uniform densities are also used in
evaluating (23) and (24). In addition, the zero-range in-
teraction in NUCFRAG is simulated for numerical in-
tegration purposes in (23) and (24) through the use of a
very narrow Gaussian form for the t matrix given by Eq.
(15). This narrow Gaussian is the same width for all col-
lision pairs and therefore is not an arbitrarily adjusted pa-
rameter. We have checked the validity of using the
"most probable" impact parameter in the calculations by
actually computing the momentum transfers averaged
over a range of impact parameters from NUCFRAG cor-
responding to AA —0.5 to AA +0.5. The differences be-

FIG. 2. Target-averaged longitudinal momentum downshifts
as a function of projectile fragment mass number for 2. 1A GeV
' 0 colliding with Be, C, Al, Cu, Ag, and Pb targets. The exper-
imental data, taken from Ref. 2, are averaged over isotopes for
each fragment mass.

tween the estimates using averaged and "most probable"
values are negligible.

Representative calculations for momentum downshifts
as a function of fragment mass number are displayed in
Fig. 2 for ' 0 projectiles at 2.1A GeV colliding with tar-
gets of Be, C, Al, Cu, Ag, and Pb. These momentum
downshifts are target averaged using simple arithmetic
averaging. For comparison, the target-averaged experi-
mental data from Ref. 2 are also displayed. For display
and comparison purposes, the latter are also averaged
over all isotopes contributing to each fragment mass
number using

(28)

where o.
, is the experimental production cross section for

the ith fragment isotope. Comparing the theoretical esti-
mates to the experimental data, reasonable agreement is
obtained considering the simplified form of the nuclear
fragmentation model used in the calculations and the
overall sensitivity of the calculated momentum transfer
to the choice of impact parameter. Improved agreement
is expected if impact parameters from a fragmentation
model using realistic nuclear densities and interactions
were available. This is especially true for collisions in-
volving lighter ions, such as carbon, oxygen, and berylli-
um, which are poorly represented by simple uniform nu-
clear distributions.
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The collision impact parameter can then be estimated
from Eq. (24) by computing Qii as a function of impact
parameter (e.g. , in Fig. 1) and using Qii from Eq. (29) as
the entry. To illustrate, consider a collision involving
2.1A GeV oxygen colliding with a beryllium target. The
calculated momentum transfer using realistic nuclear
densities is displayed in Fig. l. If the measured (hy-
pothetical) momentum downshift for the ' N fragment is
35+7 MeV/c, then Eq. (29) yields a longitudinal momen-
tum transfer of 40+8 MeV/c. From Fig. 1, the corre-
sponding range of impact parameters is 6. 1 —6.4 fm. A
similar procedure incorporating measured momentum
distribution widths and Eqs. (25) and (23) or (24) could
also be used to estimate collision impact parameters.
Note that these proposed methods for estimating col-
lision impact parameters are similar in concept to the use
of heavy fragment yields in the quantum molecular-
dynamics approach of Aichelin and collaborators.

V. CONCLUDING REMARKS
Fragment mass number

FIG. 3. Transverse momentum widths as a function of frag-
ment mass number for 1.2A GeV "La colliding with a carbon
target. The experimental data are taken from Ref. 15.

Figure 3 displays transverse momentum widths as a
function of fragment mass number for 1.2A GeV ' La
fragmenting in carbon targets. The experimental data
are taken from Ref. 15. Again, impact parameters from
NUCFRAG are used as inputs into the momentum-
transfer expressions [Eqs. (23) and (24)j. For consistency
with the use of these impact parameters, a narrow Gauss-
ian t-matrix and uniform nuclear densities were again uti-
lized in the momentum-transfer calculations. From Fig.
3, it is clear that the agreement is much better than in
Fig. 2 and probably reAects the fact that a uniform nu-
clear density distribution is a more reasonable approxi-
mation for a heavy nucleus like lanthanum than for a
light nucleus, such as oxygen.

IV. ESTIMATING COLLISION IMPACT PARAMETERS

Q = AP—F (29)

Thus far in this work, we have used collision impact
parameters as inputs into a momentum-transfer computa-
tional model which, in turn, has yielded estimates of
heavy ion fragment momentum downshifts-widths for
comparison with experimental data. However, this pro-
cedure can be reversed and the model used to estimate
collision impact parameters from measured momentum
downshifts for relativistic collisions. Let F be the frag-
ment mass number with measured longitudinal momen-
tum downshift AI'ii produced in a relativistic collision be-
tween a projectile nucleus (mass number A) and some
target. Then, from Eq. (27), the longitudinal momentum
transfer to the projectile from the target is

Beginning with composite particle multiple-scattering
theory, an optical model description of collision momen-
tum transfer in relativistic heavy ion collisions was de-
rived. General expressions for momentum transfer,
which utilize a finite-range two-nucleon interaction and
realistic nuclear densities, were presented. The theory
was used as input into the Goldhaber formalism to esti-
mate heavy ion fragment momentum downshifts for rela-
tivistic oxygen and transverse momentum widths for rela-
tivistic lanthanum projectiles. The novel feature of this
work was the relating of the imaginary component of the
momentum transfer to the longitudinal collision momen-
tum loss. Finally, the use of the model as a mechanism
for estimating collision impact parameters was described.

The present theory is mainly applicable at intermediate
or high energies because of the use of eikonal wave func-
tions and the impulse approximation. At lower energies
(below several hundred MeV/nucleon), the validity of
straight-line trajectories and the assumption of a constant
projectile velocity is questionable. Therefore, to compare
theory with experiment at lower energies revisions to
the model are necessary. In particular, deceleration
corrections to the constant velocity assumption are being
developed. For incident energies greater than 13 GeV,
first-order deceleration corrections are small ( ( 1%). As
the incident energy decreases, however, the first-order
corrections increase significantly (over 50% at 1004
MeV), indicating that higher-order terms must be includ-
ed. Work on this is in progress and will be reported
when completed.
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