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This paper intends to introduce the reader to a recent method of determining the static quadru-

pole interaction of isomers in solids: LEMS (level mixing spectroscopy). First of all, the basic prin-
ciple of level mixing is explained, and it is shown how this phenomenon can be observed in the an-

gular distribution of radiation emitted by the decaying isomer. Furthermore, LEMS is compared to
level mixing resonances and time differential perturbed angular distribution. It is shown that LEMS
is a very attractive method in cases where high spin states are involved, and for isomers with life-
times up to several milliseconds.

INTRODUCTION

If one has a quick look at a survey of quadrupole mo-
ments so far, ' it can easily be seen that there is still a
lack of experimental data in two important situations,
namely, in the ps —s lifetime region and at high spins
(I) 15k'). Several years ago, in order to overcome this
problem, our Leuven group presented the theory and
some results of LMR (level mixing resonances). Also, a
more simplified theoretical description valid for in-beam
experiments has been published. Although LMR is able
indeed to be applied at longer lifetimes, it still appeared
to be very dificult at very high spins. This problem is
now overcome by the LEMS method (level mixing spec-
troscopy), which also works at high spins, and which is
basically an extension of LMR.

In the first section, the basic principles of LEMS are
explained while Sec. II discusses the observation of the
level mixing effect. In the third section, a detailed com-
parison is made with LMR and TDPAD (time differential
perturbed angular distribution), showing the advantages
and disadvantages of all three methods. Finally, the typi-
cal experimental apparatus is described. A summary of
the formalism needed to calculate LEMS curves is given
in the Appendix.

Expressed in the ~Im ) basis, ~Im ) being the eigenstates
ofIz, it becomes

PAS

( Im Hg Im ' ) =
%cog [3m I(I +—1 ) ]5 (1.2)

gPN= —pB= — I B,
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with
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and expressed in the ~Im ) basis:

~Im IHTIIm') =
I
—&to~m+Acog[3m' —I(I+1)]Is

(1.4)

Let us now add a magnetic dipole interaction to this
Hamiltonian by applying an external magnetic field B. If
8 is parallel to Zp~s, the total Hamiltonian

HT =H&+H~ remains symmetric around the Zp~s axis:

I. LEVEL MIXING

The aim of the method is to study the static quadru-
pole interaction of isomers in solid hosts. For simplicity,
only host materials with an axially symmetric electric-
field gradient (e.g., hcp lattice) have been used so far.
The axial symmetry axis is called the Zp~s axis.

The Hamiltonian describing the quadrupole interaction
in the PAS frame is given by

1
Hg =A'cog (3Iz I)—

PAS

with

HT=Hg+H~ +H~
lI

( 3Iz I ) cott cosP Iz +ros—sinP I—+PAS PAS PAS

= "g (3I'
PAS

(1.5a)

As soon as a misalignment angle P between the Zp~s axis
and 8 is present (Fig. 12), (1.3) and (1.4) are transformed
to

eg V„
fi4I( 2I —1 )

(I+ +I )
tott cosP Iz +co~ s—inP

PAS 2
(1.5b)
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and

(Im IHTIIm ) =A'co [3m I—(I +1)]-]—A'co&m cosp,

Acog
(1.6a)

&ImlHTIIm —1)= smp[(I +m )(I —m + 1)]
i i~

and all matrix elements

(1.6b)
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II. OBSERVATION OF LEVEL MIXING
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prod ucti on and ori enta ti on
of isomeric state by nuclear
fusion reaction

I, tl/Z, Q, Vzz g, B

intermedi a te sta te perturba ti on
by combined ma gne tie dipole
and electrostatic quadrupole
interaction with small misalignment
angle

observation of the time integrated
angular distribution of
su bseq uen t radiation in
the decay of the isomer

FIG. 4. Basic scheme of a LEMS experiment.

high fields they can be calculated analytically. In the
intermediate-field range, numerical methods are needed.

A. The perturbation factors at zero magnetic field

At zero field, the only interaction being present is the
quadrupole one; so it is easy to calculate Gk7 (r) in the
PAS frame. As detection angles are described in the labo-
ratory frame, a reference frame transformation needs to
be performed.

It can be shown for sufficiently long lifetimes that
[Gkg. (r}]„~depends only on k, k' and P (see Appendix)
but not on m&, g, or w. This means that the zero-field an-
isotropy is reduced (compared to the original one), to a
value that can be calculated exactly if the angle /3 and the
relative importance of the k =2,4, . . . terms in Eq. (2.4)
are known.

For high spins, it can be shown that (see Appendix)
the initial orientation Bg.(t =0) by

Bk'(r)= g GI,"g, (r)Bg. (t =0) . (2.2) [Gki, (w, B —0) ]i»= [Pl, (cosp) ] 5kk (2.5)
k'q

The Gl,"g, (r) are called the time-integrated perturbation
factors; they contain the infIuence of the Hamiltonian on
the orientation of the levels, and have been integrated
over time, including a e ' weight function to incorpo-
rate the nuclear lifetime of the isomer. Inserting (2.2)
into (2.1), one obtains

W(O, y, r) =v'4~ g k 'A„g Gk7, (r)Bg, (t =0)Yk(9, $) .

as illustrated in Fig. 5.
For polycrystalline samples, an average over all angles

/3 needs to be made. For this case,

W(O, p, r, B =O, poly)=&4~+ k 'AkBk(t =0)Yk(8, $)
k

X g [GN(r}]pAs
q

kn k'q
(2.6a}

(2.3)

So, LEMS belongs to the so-called TIPAD techniques
(time-integrated perturbed angular distribution). The ini-
tial orientation is obtained by the nuclear reaction and is
described by the orientation tensors Bg (I, t =0). As the
orientation is axially symmetric around the beam axis,
only the q =0 components are not vanishing and as only
alignment is achieved, only k'=even can occur.

In principle, one can select all possible angles between
the beam axis and the magnetic field. In practice, one is
limited to a parallel or a perpendicular configuration, due
to split coil magnet construction requirements. In this
paper, we only deal with the parallel geometry, unless ex-
plicitly mentioned (see Sec. IV 8).

In case the magnetic field 8 is parallel to the incident
beam, the initial orientation is axially symmetric around
the Z~» axis; the ZP~s axis makes an angle /3 with it, and
the X~,b axis is chosen to be in the Z] b ZpAs plane. If
one detects y rays only, Eq. (2.3) can be simplified to the
k =even terms, and it reduces to

W(8, $,r)= g g &4rrk 'A„G~k (r)
k, k'=2, 4 n

For large spins, the GgIt(r} tend to 5 o (see Appendix),
which reduces (2.4) to

W(8, $, r, B =0,poly)

=&4rr g k ' AkBk(t =0)Yk(t =0) . (2.6b)2k+1

This means that each component in the orientation is at-
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All the information about the Hamiltonian acting as an
intermediate state perturbation is contained in the tirne-
integrated perturbation factors Gkk (r) which are a func-
tion of cuz/co&. As a function of the magnetic field they
are difficult to describe; however, at zero field and at very

P(grad)

FICJ. 5. Comparison between [GP„(r,B =0)]„b (dotted lines)
and [Pq(cos/3)] (solid lines) for k =-2,4.



43 LEVEL MIXING SPECTROSCOP Y 133

tenuated by a factor 1/(2k+1). If the relative impor-
tance of the k =2,4, . . . terms is known, one can calcu-
late exactly the zero-field anisotropy.

1. 6-
o

B. The perturbation factors at high field

G„"„'(r,high field~~bea) =5„,.5„, . (2.7)

At high field, the system is ruled by the strong rnagnet-
ic interaction which has its symmetry axis parallel to the
beam. This interaction causes a Larmor precession of the
nuclear spins around the 8 axis which is a symmetry axis
of the initial orientation. Therefore, the time-averaged
orientation equals the initial one. Analytically, one finds
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C. Perturbation factors at intermediate 6elds

D. Variation with lifetime

The zero-field values and the curves in Figs. 6 and 7
are only valid if the lifetime is sufficiently long compared
to the quadrupole interaction period (roar))1). Other-
wise, the interaction does not have a sufficiently large
period of time to reduce the anisotropy completely, and
an intermediate value between 1 and Eq. (2.5) (high spins)
or (2.6) (polycrystals) is obtained. This is discussed fur-
ther in the paper (Sec. III C 1).
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FIG. 6. Typical computer calculated LEMS curves for vari-
ous angles of P for a spin-10 isomer.

As it is impossible to calculate the Gkg (r, B intermedi-
ate) analytically, numerical calculations are necessary (see
Fig. 6). If one looks at zero-field anisotropies for various
angles P, one clearly sees that almost no attenuation
occurs at small angles /3 ([Pk(cosP)] =1); a maximum
attentuation is obtained at about 55'. At high fields the
anisotropy is saturated at a value that is the same for all
angles. This high-field anisotropy corresponds to the
completely decoupled case as described in the preceding
paragraph. In the intermediate range, one obtains vari-
ous types of curves, while for small P one can even still
find small level mixing resonances. A curve representing
the anisotropy change for a polycrystalline sample is
shown in Fig. 7.

FIG. 7. Typical LEMS curve in a polycrystalline sample

(spin 10).

E. Extraction of information from a I.EMS curve

A precise determination of the high-field value
N(0')/N(90') (N being the number of counts at 0' or 90'
with respect to B), together with the zero-field value, per-
mits us to determine the initial alignment and to estimate
the attenuation factors O, k defined by

akBk (maximum alignment) .

Describing the initial orientation after a nuclear reaction
by a Gaussian distribution of the population over the
~Im ) states (as explained in Ref. 9), the high-field value
N(0')/N(90') gives rise to only one-fit parameter o. , cr

being the width of the Gaussian curve. The zero-field
value N(0')/N(90 ) itself also contains information on
detection efficiencies (detector efficiency, y-ray absorp-
tion in the magnet, etc.).

One other difficulty may be the exact knowledge of the
Ak parameters. Indeed, if multipolarity mixing takes
place, 5 is often unknown or uncertain. This requires
that one more parameter needs to be determined. If the
initial orientation can be determined, e.g. , from other
pure, nonperturbed transitions, the LEMS method can
also be used to determine 5 values. If only one transition
is present, and if it is admixed, then care has to be taken
to use this LEMS technique. It is perhaps useful to men-
tion that 5 or Ak parameters in the literature may be
wrong if isomers are present in the decay scheme.
Indeed, a small perturbation (e.g. , by a defect quadrupole
interaction) may cause an important reduction of the an-

isotropy (as described in Sec. II A). This, of course,
yields wrong Ak coefficients and, in the worst cases,
wrong multipolarity assignments.

The Ak as well as the Bk parameters mainly determine
the amplitude of the LEMS curve, and their value is de-
cisive for the feasibility of the method as they govern the
statistical precision required to observe the LEMS curve.
If the Ak parameters are known rather accurately, and if
the ak parameters are well determined from the anisotro-

py at high and low magnetic field, then it is easy to deter-
mine co&/g numerically. This is done by performing a fit

with theoretical LEMS curves to the data. A first rough
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Quantity

TABLE I. Comparison between TDPAD, LMR, and LEMS.

TDPAD

Tlmlng
High spins
Measured quantity
Statistics
Lifetime limits

Lower
Upper

Accuracy
Radiation damage

Yes
Difficult
Q. V„
"Hard"

10-100 ns

ps
1%
Very sensitive

No
Difficult

Q V„/p
"Hard"

100 ns
ms
1%
Sensitive

No
"Easy"
Q V, ~I
"Easy"

10-100 ns
ms
5—10%
Not very sensitive

estimate can be obtained easily, as the field at which the
anisotropy is the average between low- and high-
magnetic-field values corresponds roughly to
~~ —~, /31.

III. COMPARISON TO OTHER METHODS

In this section the characteristics of LEMS are com-
pared to those of TDPAD (time differential perturbed an-
gular distribution) and LMR (level mixing resonances).
A summary is given in Table I.

A. Timing

As one measures a time-integrated curve, no timing is
required for LEMS and LMR. Nevertheless, from an ex-
perimental point of view it is often desirable to use pulsed
production. By applying beam pulsation with a frequen-
cy of the order of the lifetime of the investigated isomer,
it is possible to optimize the signal-to-noise ratio of pho-
topeaks originating from this isomer. However, the
stringent requirements of a TDPAC measurement are not
required.

The inAuence of beam pulsation on the level mixing
method can easily be calculated in the density matrix for-
malism. ' When the level mixing condition is fulfilled
(v&r/I ~ 0.6), pulsed production has no influence on the
level mixing method. In the opposite case, however, care
has to be taken when analyzing the data: The pulsed pro-
duction has a stroboscopic effect on the LEMS method.
In practice, the production of the isomer and reduction
of the background are most efficient, when T,„(beam-on
period) and T ff are of the order of the lifetime of the iso-
mer of interest.

B. Spin

diScult. As LEMS curves are almost independent of the
spin the LEMS method remains relatively easy, even at
high spins.

C. Lifetime range

1. Lower limit

The lower limit of TDPAD is governed by the fact that
one needs to be able to measure during at least a part of
one precession period. For typical quadrupole frequen-
cies, this is of the order of tens of ns. In the case of
LMR, the lower limit is higher (of the order of 100 ns
typically). This is studied in detail in Ref. 5.

In the case of LEMS, the lower limit is governed by the
fact that the interaction at zero field must be able to
reduce the initial orientation sufficiently [G2z(8 =0)

?=17/2

For high spins, many frequencies appear in the quadru-
pole interaction Hamiltonian. This often causes a cancel-
lation of all structure in the time-precession pattern of
the spins, except at multiples of the basic period. This
makes TDPAD often difficult for high spin states (Fig. 8).
LMR has the disadvantage that the amplitude of the res-
onances decreases drastically at high spins. Furthermore,
more "crossing fields" and thus more resonances are
present; therefore, even if one could measure resonances,
identification of the ~Im ) states involved would be

1=29/2

I

To

l

2To

t

FIG. 8. TDPAD curves become hard to measure at high spin
as the signal peaks become narrow if the spin is increased.
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0.5]. This gives approximately the same lower limit as
TDPAD (Fig. 9). For spins larger than ten, there is al-
most no difference between the curves Gz2(B =0) as a
function of v&r/I, with v&=eQV„/h. One sees clearly
that if v&r/I 0.6, LEMS is possible. If it is smaller,
one should also be careful if beam pulsing (see Sec. III A)
is applied, as it can introduce stroboscopiclike effects in
the LEMS curve. If v&~/I ))0.6, then beam pulsing does
not inhuence the curve at all.

2. Upper limit

For TDPAD, the upper limit is caused by a loss of
phase coherence between the spins, which introduces a
damping of the modulation function R (r). Furthermore,
one has to deal with statistical problems. This usually re-
sults in an upper limit of a few ps. For LEMS, as well as
for LMR, the limit is the spin lattice relaxation time. In
practice, certainly at low temperatures, this is often of
the order of several milliseconds or even seconds.

D. Measured quantity

TDPAD directly measures v&, while LEMS and LMR
determine v&/g, The g factor of isomers suitable to
LEMS or LMR is usually known by TDPAD (magnetic
case) or NMR. (A wide range of externally applied mag-
netic fields is available to fulfiH the condition of a
TDPAD experiment. ) For example, in the trans-lead re-
gion the g factors of high spin states up to —", A are known
in Bi (Ref. 12), At (Ref. 13), and Fr (Ref. 14) isotopes. It
was possible to determine the quadrupole interaction fre-
quency of several of these isomers by using the LEMS
method. A discussion on these experimental LEMS re-
sults will be published in separate papers.

K. Target

LMR requires good-quality single crystals. LEMS and
TDPAD can both use single crystals and polycrystalline

materials. In practice, the single-crystal experiments
often give more precise and reliable results in both cases.
Polycrystals are mainly used if enriched targets are need-
ed.

F. Precision

The LEMS method is not a resonant method as are
LMR and TDPAD. Therefore a LEMS experiment will
be less accurate than a TDPAD or LMR experiment
where precisions of 1% or better can be realized.

The accuracy on the quadrupole moment extracted
from a LEMS curve depends on many parameters such as
the g factor of the isomeric state, the knowledge of the
electric-Geld gradient, the mixing ratio 6 of the investi-
gated transition, and so on. Therefore it has never been
the purpose of a LEMS experiment to reach precisions
better than 5%, which could be possible if we measured
long enough.

By using a single-crystal host instead of a polycrystal,
the accuracy of the experiment can be improved. When
choosing the misalignment angle P around 40', which
correspondence to maximum change in anisotropy (see
Fig. 6), an error of +2% on P will have no effect on the
extracted quadrupole frequency.

One uncertainty always present is the relative impor-
tance of the A 2GzzBz, A z G2484, A 4G4z82, and
A4G4484 terms, which all behave differently as a func-
tion of the magnetic field (Fig. 10). Usually, A2)) A4
and 82 &&84, but exceptions may occur. It can also be
shown that the Gz4 components are negligible for high
spins.

If there is doubt on the mixing ratio 6 of an admixed
transition, even more care about the relative importance
needs to be taken. Usually, however, the zero-field and
high-Geld values are sufficient to determine the relative
importance of the (k =4/k =2) components with satis-
factory precision. Knowledge of the absorption and
detection efficiencies by normalizing to y lines from ra-
dioactive decay can be useful.

1.0

0.8
1.0

0.8-

0.4 0.6-

0.2 0.4-

O. a
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 9. The zero-field perturbation factor G»(~) for a poly-
crystal as a function of v&~/I. If v&~/I is small, G22(~, B =0)
tends to 1, and the amplitude of the corresponding LEMS curve
is strongly reduced.

0. 0 I

0.0 1.0 1.5 2.0 2.5 3.0

4JB/3 IUJo
3.5

FICx. 10. Behavior of Gzz(w) and G&4(~) as a function of B.
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G. Radiation damage

With TDPAD, and to some extent with LMR too, one
can obtain valuable information on radiation damage
efFects [e.g. , the presence of distributions on the electric-
field gradient (EFG)]. In TDPAD measurements, a
spread on the EFG value causes a damping of the rnodu-
lation as a function of time. In LMR, the narrow reso-
nances are broadened and reduced in amplitude; howev-
er, one can reobtain the full resonance amplitude by tun-
ing the misalignment angle P in such a way that the level
mixing resonance linewidth is larger than the inhomo-
geneous broadening. This gives information about
electric-field-gradient distributions.

A LEMS curve is virtually insensitive to this kind of
effect: It is not possible to determine whether a Gaussian
distribution on the field gradient is present or not. If
there is a field-gradient distribution, the effect of it will be
compensated: The LEMS curve for a larger EFG mill

compensate the one for the smaller EFG. A possible
problem that could arise is radiation damage due to recoil
of the beam into the target. However, in an hcp lattice
the EFG felt by a nucleus on a substitutional site, free of
defects, will be much lower (factor of 2 or more) than an
electric-field gradient created by a defect in the near
neighborhood of the investigated nucleus. Such
difFerence in electric-field gradient can indeed be observed
in our LEMS curves. Such effects' were seen in the ex-
periments on the ' ' Fr isotopes in a Tl host and
will be discussed in another paper. The accuracy on the
quadrupole frequencies extracted from these experiments
is of the order of 20%.

IV. EXPERIMENTAL SETUP

A. Parallel geometry

A schematic view of the LEMS setup as it is used by
the Leuven group at the cyclotron Cyclone at Louvain-
la-Neuve is shown in Fig. 11. This corresponds to the
parallel geometry that has been described above. The
beam impinges on a target which is mounted in the
center of a superconducting split coil magnet. The target
is either a polycrystal or a single crystal with its c axis
making a large angle P (mostly around 40') with respect
to the beam axis. The magnetic field is parallel to the
beam. Typical field strengths needed are of the order of 5

T, with a homogeneity of 0.5% or better over the beam
spot. The excited nuclei recoil into a host providing an
EFCx (often the target itself). Radiation is measured both
parallel and perpendicular to the beam. If one does not
have an annular y-ray detector, the beam has to be
stopped in the target. The ratio N(0')/N(90') is mea-
sured as a function of B, in order to cancel beam intensity
fluctuations. Experimental results will be published sepa-
rately.

Advantages of this geometry are the fact that the larg-
est amplitudes can be obtained this way; it is also the sim-
plest one concerning beam optics. Disadvantages are the
large background, x ray, and n Aux as the target also
serves as a beam stop.

It is worth mentioning that not all Ge detectors will
work in the stray field of a magnet. This can sometimes
be improved by reducing their bias voltage or by using a
shielding but peak shape changes or even a detector
breakdown as a function of the magnetic field may occur.

B. Perpendicular geometry

It is also possible to use a geometry in which the beam
direction is perpendicular to the magnetic-field axis. This
has the advantage that both the 0' and 90' detectors can
be placed outside the beam direction. This can drastical-
ly clean the spectra.

At zero field, and for polycrystals, the beam axis is still
a symmetry axis. This implies that W(0')= W(90') (all
angles refer to the magnetic-field system). So, the zero-
field value works as a relative efficiency determination.

The main problem in this situation is the fact that the
beam deviates in the magnetic field. For symmetric su-
perconducting split coil magnets, the beam always im-
pinges on the center of the target if everything is adjusted
well. ' (The deviation in this stray field of the magnet
compensates the deviation due to the central field. ) For
typical beams such as ' C +, ' N + (E=80—90 MeV) the
maximum deviation of the beam (at 8 =5 T) is about 12
mm; the angle of incidence on the target is 18 . The in-
cident angle varies as a function of the applied field B,
which causes a change in initial orientation as a function
of B. This certainly should be taken into account very
precisely. In principle, it should not induce any further
uncertainties, but only makes analysis more complex. It
may be that this geometry is favorable in many cases.
This needs to be explored further more carefully.

V. CONCLUSION

p,

/

Cr) otal

gll~dnet COilS

FIG. 11. Experimental setup in a parallel geometry.

If one can determine the orientation that originates
from the nuclear reaction suSciently well and if the iso-
mer decays through at least one known transition (pure,
or 5 known), LEMS is a very good method to determine
the quadrupole interaction strength of isomers in a solid
host.

Its main advantages are that it works in a broad life-
time range, without restriction on the spin, and it is fast
(the statistical precision required is less than that for the
TDPAD method). Less favorable is the reduced pre-
cision (5 —10%%uo) and a relative insensitivity to small
electric-field-gradient distributions.
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Thus LEMS is to be preferred in the ps —ms lifetime re-
gion and if spins larger than 10k are involved. Even if
both TDPAD and LEMS are applicable, LEMS is often
useful as it is a very fast method (runs of 30 h) which can
rapidly give a good estimate of the quadrupole frequency
v in many cases.
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APPENDIX:
FORMALISM NEEDED TO DESCRIBE LEMS

Although it may be easier for numerical calculations to
work directly with the density matrix (as is done in Ref.
5), it is preferred here to use the orientation tensors and
perturbation factors to describe LEMS. The time evolu-
tion of a density matrix is given by"

LAB

For static Hamiltonians H, a solution for (Al) is

(Al)

(A2a)

PAS

FIG. 12. Definition of the angles used in this paper.

with with x = i 2x + 1, and the inverse relation

A(t) =exp( iHt /iit'—) .

The orientation tensors Bi",(I, t) are given by

(A2b) &Im~p(I, t)~Im'&=I ' g k( —)
+

k

I I k
—m m' n

B"(I) .

(A4)

I k
&Im)Z(I)(Im' &

(A3)

By inserting (A4) and (A3) into (A2), one finds

Bi",(I, t)= g G„"gBg (I, t =0),
k'q

with

(A5)

—m m' n

The exponentials take into account the nuclear decay of the isomer. One can easily derive that

I I k
Gi",g. (t)=k k ' g g (

—) (A6)
mp NN'

with ~m &, ~m'&, ~p&, ~p'& being the eigenstates of the I, operator with respect to some axis, ~X&, ~X'& being the eigen-
states of the Hamiltonian, co» = (E~ E~ )/irt, and k =V2k —+ l.

If a time integration is performed, one defines

Gi",g. (r)= f "e '~'Gi", g. (t)dt f "e '~'dt . (A7)
0 0

GPg (r)=k k 'g g (
—)

mp NN'

I I k
—m m' n

k'
, &m~N&&&~@&&m'I&'&'&&'Ip&* .

1+(co».r)2

(A8)

In the case of LEMS, three axes are very important: (a) the Zp~s axis, corresponding to the symmetry axis of the elec-
tric field gradient; (b) the magnetic-field axis, called Z&» axis; the detection positions are described with respect to this
axis; 4=0 can be taken to correspond to the (Zp~s, Z~») plane; (c) the initial orientation (i.e., beam axis), called Z„.
Throughout this paper, it has been assumed that Z„=Z„b, which simplifies the method. If this is not the case (see,
e.g. , Sec. IV 8), the angle between them must be taken into account.

The most general case is shown in Fig. 12. The transformation lab~or is described by (a,P, O); it is possible to take
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a=0 due to the axial symmetry of the magnetic field and the electric-field gradient. The angle c, needed to transform
the Z„axis into the Z&,b axis, equals 0' in the geometry described in this paper, or 90 for the perpendicular geometry.

With the angles chosen as in Fig. 12, one can show that

and

[Bg (t)]p~s=&4rrk ' ' g d", ( P—)e'~ Yg (E,O)[Bk (t)]„
q'

(A9a)

[Bg'(t)]PAS X d '( p)e [Bg'(t)11 b (A9b)

[(A9b) is the simplification of (A9a) if 8=0 ]. The inverse relation of (A9b), which is

[Bg (t =0)]),b= g d ~ (+p)e 'q [Bg, (t =0)] ~
q

is necessary to express the [Gkg (t)]~,b as a function of [Gkg ( r)]p As..

(A10)

[Gkg (r)]„b= gd„" (P)d". ~ ( —P)e' '
[Ggg (t)]p~s .

qq'

The same relation (Al 1) holds for the Gkg (r).

(A 1 1)

Calculation of the Gkk (r, B =0) in the laboratory system

(This is also the orientation reference frame as the beam axis coincides with the magnetic field. )

At zero field, only the quadrupole interaction is present, and the perturbation factors are very simple in the PAS sys-
tem. With axial symmetry, the I ) and ~X) states coincide, and the energies are degenerate in m.

The time-integrated perturbation factors for an axially symmetric quadrupole interaction in the PAS frame have been
calculated by Steff'en and Alder. In general, the result is rather complex, but under the assumption that co&w)) 1, they
simply reduce to

qq
or q —0,

[Gkk (B =0) ]PAS= I I k I I k)k+k' —q/2 —q/2 q
—q/2 —q/2 q

for qAO .

(A12a)

(A12b)

For high spins, all terms (A12b) vanish, and the

I Ggg «» =0)]PAS ~kk'~ '~, 0

for high spins.
Using Eqs. (A13) and (Al 1), it is easily shown that

[Gkk (r, B =0)]|,b=6kk [Pk(cosp)]

for high spins. In the polycrystalline case, the [Ggg (r, B =0) ]p~s are given by (if ~&r ))1)

(A13)

(A14)

[Ggg'(r B 0 Poly) ll b fi, '~, O~k, k'
k I

+
2k +1

I I k
Pal 201

2

(A15)

[G ( Br=O, poly)]„b= —,
'

for high integer and for half-integer spins.

(A16)

It can be shown that for k =2, (A15) reduces to —,
' for

half-integer spins, and to a larger value for integer spins.
However, as spin increases, this hard-core value ap-
proaches —,

' too, and one can conclude that

For high spins, it was shown that G24(r)=G42(r)=0
[Eq. (A14)] at zero magnetic field; in the opposite case,
when the magnetic interaction is sufficiently strong to
decouple the quadrupole one, also G24(r) =G~2(r) =0 is
obtained. In the intermediate-field range, it is preferable
to use numerical calculations; they reveal that G24(r) =0
for all magnetic-field values for sufficiently high spin.
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