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Through the example of the nucleus Li taken as an a+p+n three-particle system, we show that
the description of the disintegration of a multicluster system in terms of solely intercluster variables
{"macroscopic" description) cannot be maintained. The cluster internal structure enters into the
spectroscopic amplitudes of macroscopic models through norm operators. The form in which these
appear depends on how the macroscopic model is related to the underlying microscopic formalism.
We assert that the treatment of the Pauli eftects in the commonly used o;+p + n models implies that
these models are related to the six-nucleon problem via a transformation mediated by the square
root of the a+p +n three-cluster norm operator. The spectroscopic amplitudes will then contain
this operator and, in general, the norm operator of the two-cluster fragment involved. Using
e+p+n wave functions available from the literature, we show that the inclusion of the norm
operator required enhances the a+d spectroscopic factor by more than 30%. This reconciles the
three-particle models with the microscopic models and improves the reproduction of experimental
data. We point out that a smaller enhancement is expected in the spectroscopic factor of nucleon
removal as well.

I. INTRODUCTION

In the description of complex physical systems, it is
often desirable to treat the composite constituents as
structureless. The most obvious nuclear constituent
amenable to such a "macroscopic" treatment is the o.
particle, because of its remarkable stability and inertness.
This treatment implies an obscure point, however, in that
it apparently assumes the nucleons of the a particle to be
distinguishable from those of the nuclear environment.
A most simple system that lends itself to a test of this as-
sumption is Li.

The success of the e+p+ n three-particle model' ' in
reproducing the measured energies and ground-state (g.s.)

properties of Li puts the soundness of this assumption
beyond doubt. Nevertheless, there is still a discomforting
discrepancy in the a+d spectroscopic factor, not so
much from the experimental values as from the predic-
tions of the fully microscopic cluster model. The three-
particle estimates put this spectroscopic factor at
0.54—0.75; ' ' ' ' ' ' the high-energy quasifree
knockout experiments yield 0.73—1.3 (Refs. 19—22) with
0.73 looking the most reliable ~al»e, while the micro-
scopic cluster models give 0.93—1.07 (Refs. 23 —25) with
0.93 being the most realistic one.

Considering the overall similarities between the other
predictions of these two families of models, there is a
challenge to understand this particular discrepancy. As-
suming that both models are realistic at their own levels,
we are inclined to conclude that their disagreement is to
be ascribed to the inherently different ways in which they
treat the o. particle. In Ref. 25 we criticized the treat-
ment of the Pauli principle in the three-particle formula
for the spectroscopic amplitude. We argued intuitively in
support of a different formula for the spectroscopic am-

plitude and pointed out that this would probably recon-
cile the three-particle model with the microscopic model.
In Ref. 26 we reported on preliminary results that
confirmed this conjecture.

In this paper we shall tackle this problem at a deeper
level. We shall show that the ambiguity in the definition
of the spectroscopic amplitude can be removed by care-
fully relating the three-particle wave function to the mi-
croscopic wave function. As we shall see, the correspon-
dence between the macroscopic and microscopic wave
functions can be firmly established once the potential in
the three-particle model is taken, as usual, to be the sum
of the three Hermitean interactions assumed to act in the
two-body subsystems. In the derivation of such a three-
particle Hamiltonian, the huge Pauli nonlocalities are re-
moved by a transformation applied to the intercluster
wave function. The wave function resulting from this
transformation is the wave function proper: the one that
carries probability information. Such a three-particle
wave function can, in general, be used as a wave function,
regardless of its microscopic foundation. Thus this rein-
terpretation underpins the validity of the cx+p+n model.
The microscopic origin of the intercluster wave functions
comes into play only when it is used together with sub-
system wave functions, such as in the spectroscopic over-
lap amplitudes. As we shall see, in the a+p+n model
the correct formulas of the spectroscopic amplitudes con-
tain the integral operator that mediates the transforma-
tion involved in the derivation of the three-particle mod-
el. It is the kernel of this operator that contains informa-
tion on the cluster internal structure. These considera-
tions bear on all applications of macroscopic ingredients
in the description of the fragmentation of a system of
identical fermions. (In fact, a trivial departure from the
macroscopic spectroscopic amplitude formula appears in
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the description of the fragmentation of a two-cluster sys-
tem into the two clusters, too. )

We shall focus our attention on the a+d spectroscopic
amplitude. We establish our formula for the spectroscop-
ic amplitude by reconsidering the problem of eliminating
the internal structure of the n particle from the descrip-
tion of Li (Sec. II). We then present numerical compar-
isons between the new and conventional formulas using
a+p+n models formulated in two different approaches.
The variational approach will be represented by the wave
functions of Voronchev et ah. and of Kukulin et al'. ,

'

while the three-body approach based on the Faddeev
equations will be represented by the wave function of
Lehman, Rai, and Ghovanlou (Sec. III). In conclusion,
we extend our considerations to the He+p spectroscopic
amplitudes and discuss our results in a broader context
(Sec. IV).

II. MACROSCOPIC VERSUS MICROSCOPIC
SPECTROSCOPIC AMPLITUDE

A. Microscopic
and conventional macroscopic formulas

So far as we believe that the n particle is composed of
nucleons, the spectroscopic amplitude of the o:+d frag-
mentation is to be defined at the microscopic level:

g g(R)=(A g[qI 4„5(R rz)—I l%', )
1/2

where 4' (g ),

(la)

(lb)

W„(gp, g„,rp„) =Ap„['Pp(gp )q „(g„)+~(rp„)I,
and 46(g, g, g„,r„„,r & ) are the (antisymmetrical and
normalized) wave functions of the a particle, deuteron,
and Li g.s.'s, respectively, each being a function of the
respective intrinsic coordinates. We formulate the prob-
lem of Li and of its subsystems in the respective intrinsic
frames throughout so that there will be no need to carry
the center-of-mass (c.m. ) coordinates. The %' (g ) and
'Il„(g„) are just nucleon spin-isospin eigenfunctions. The
angular momentum and isospin couplings are suppressed.
The operators A, b are antisymmetrization operators act-
ing between clusters a and b. We define them so that
they contain a statistical factor n ', where n is the
number of permutations involved. In (lb) we used

o.+p+n three-particle system, belonging to 4 ~ and +, ,
which may differ from 4 and +, in the spin projections.
[If the angular momentum coupling were explicit, (3b)
would be a sum over different angular momentum
values. ] For simplicity, in the following we shall suppress
all terms of the Li wave function but the one containing
O' O'„. Equation (3) would indeed be the amplitude that
enters into the description of the 0.+d fragmentation if
the a particle were really structureless. Since the intrin-
sic degrees of freedom of the a particle are not involved
here, in this formula the nucleons that are outside the a
particle seem to be distinguished from those that are in-
side. Indeed, the same formula [Eq. (3b)] would be ob-
tained if we inserted 4 (g ) both in the bra and in the ket
of (3a) so long as no intercluster antisymmetrization is in-
cluded. To see whether this treatment complies with the
Pauli principle, one has to go back to the derivation of
the three-particle model from the six-particle problem.

B. Derivation of the three-particle model

The three-particle model to be derived should be simi-
lar to the ones actually used. It should thus comprise a
structureless o, particle, a proton, and a neutron interact-
ing via Hermitean, energy-independent two-body interac-
tions that describe the behavior of the three two-particle
subsystems correctly. The structureless a particle of the
three-particle approach implies a nonexcitable a particle
in the corresponding microscopic approach. In such a
microscopic approach, the Li wave function can be ex-
panded as

%6= Jdr J dR@(r,R)'P, tt, (4)

where, for each value of r and R, the function 4, z is the
element of a basis, labeled by the continuous indices r
and R,

+r, R(kar kp kn pn, arj )

=A „['0 (g )%' (g' )%'„(g„)5(r—r „)5(R—r z)I,

and y(r, R) is the corresponding expansion coeScient.
Since this is the standard cluster-model ansatz, in the en-
suing exposition we can follow the cluster-model formal-
ism. ' Projected onto this subspace, the six-particle
Schrodinger equation II%'6=E+6 reduces to

a' =n'"a
ab ab &&p(r, R) =EJVip(r, R), (6)

(gp)%'„(g'„)@6(r „,r q))
p'n'6'

dry& r C6 r, R

(3a)

(3b)

where @6 are relative wave-function components of the

The overlaps in (1) involve integrations over all intrinsic
variables involved in Li, viz. , [g'„,g, g„,r, , r z].

The formula of the three-particle model identified con-
ventionally with Eqs. (1) is

G q( R)=( q (pg )p'P„(g„)&bq(r p) (5R —r ~)l

where & and JV are double-integral operators whose ker-
nels are

(7a)

(7b)

[E.g. , JVf(r, R)= Jdr' JdR'X(r, R;r', R')f(r', R').] In
Eq. (6) we had to have recourse to operators acting on the
parameter coordinates r and R. In this way we managed
to introduce relative variables without violating the Pauli
principle. The effect of the Pauli principle is incorporat-
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ed in the definitions of the kernels.
The appearance of JV on the right-hand side requires

Eq. (6) to be rewritten in some way before it can be
identified with a three-particle Schrodinger equation.
One possibility would be to write

[A+(1 A'—)E ]y(r, R) =Ey(r, R),

y(r, R) =IV'/ p(r, R),
~—1/2~~ —1/2

with the result

hy(r, R)=Ey(r, R) .

(9a)

(9b)

(10)

with the operator in the square brackets considered a
redefined Hamiltonian. This, however, can by no means
be identified with the three-particle Hamiltonian either,
because it is energy dependent. Alternatively, one can
multiply Eq. (6) from the left by JV ' and regard A'

as the Hamiltonian. For the inversion operation to be
correct, one should exclude the subspace Iy,' '] of Iy}
for which JVy', '=0. This is not an actual restriction be-
cause JV1pI '=0 implies A „I4 %'~'P„p'; '(r~„,r d)] =0,
and thus y and p+ g,.c;yI ' describe the same six-particle
state. (The exclusion of the subspace I y'; '] implies that
JV, having no zero eigenvalue on the restricted state
space, can be inverted. ) The Hamiltonian JV '&, howev-
er, is not Hermitean, although both JV ' and & are Her-
mitean, because they do not commute. Thus, again, this
is not the proper reduction.

One can obtain a three-particle Schrodinger equation
with Hermitean Hamiltonian by multiplication of (6)
from the left by JV ' and redefining the wave function
and the Hamiltonian as

It is this transformation that implies, for the three-
particle wave function, the same normalization as is valid
for 46..

where the parentheses denote matrix elements involving
integrations over the parameter coordinates.

This transformation is the only one that produces a
Hermitean e6'ective Hamiltonian, apart from unitary
transformations U applied to g and h. The function g is
distinguished from the other possible functions y= Ug
not only by aesthetical merits. An example shows that
in matrix elements the many-particle wave function is
represented faithfully just by y.

It remains to relate the Hamiltonian h of the three-
particle model to those of the two-body subsystems. To
this end, let us write the microscopic Hamiltonian, in
self-explanatory notation, in the asymmetric form

where E is the g.s. energy of the o. particle and
1/2

(4' %'~%„5(r—r~„)5(R—R „)~V ~~%', ~ )V ~(r, R;r', R')=

H=H (g )+T d(r d)+T„(r „)+V (g, r )+V „(g,r „)+V„(r„) .

Substituting (5) and (12) into (7a) and using (2), we arrive at

H(r, R;r', R') = [E + T d(R)+ T „(r)+V „(r)]N(r,R;r', R')+ V (r, R;r', R')+ V „(r,R;r', R'),

(12)

(13)

=(A „Iqj qi qi„5(r —r „)5(R—r d)V ~] ~%,, R, ) (N=p, n) .

Denoting the integral operators belonging to the kernels by the corresponding script letters, we can express h as

(14)

h =E +JV ' (T +T + V )JV' +JV ' (V +V )JV (1 )

Except for E, the terms of h are all three-body operators, and there seems to be no obvious way of reducing them to
sums of two-body terms unless approximations are introduced. In particular, neglecting the exchanges between n and
the rest of the system in V (r, R; r', R'), we can integrate over („,and after a coordinate transformation from I r „,r d ]
to I r „,r ], whose Jacobian is unity, we can also integrate over r „:

V ~(r, R;r', R')=(A Iqi qi %'„5(r—r „)5(R—r d)V „]~A Iq/ 4 %„5(r'—r „)5(R'—r d)] )

=5(r —r')(A Iql ql 5(R—
—,'r —r )V ] ~A j% q/ 5(R' ——,

'r' —r )] )

=5(r —r') V (R—
—,'r;R' —

—,'r') . (16)

The kernel V (x;x') is the one that appears in the Hamiltonian kernel, of the type of Eq. (13), of the a+p two-cluster
problem. By neglecting certain exchange terms similarly, one can also obtain

V „(r,R;r', R') =5(r —r') V „(R+—,'r;R'+ —,'r'),

N(r, R;r', R')=5(r —r')N (R —
—,'r;R' —

—,'r')

=5(r —r')N „(R+—,'r;R'+ —,'r') .
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Here the kernels N &(x;x') (N=p, n ) are two-particle
analogs of N(r, R;r', R'). Since this decomposition can
only be achieved at the expense of neglecting exchange
terms, the three-body nature of the microscopically de-
duced Hamiltonian is obviously seen to be a consequence
of the Pauli principle.

Such exchange terms are always very important in mi-
croscopic cluster-model calculations, and so these ap-
proximations seem to be very rough, at least for small
values of the arguments. Detailed analyses for several
three-cluster systems, ' including 0, +p+n, have re-
vealed that the three-body potential term of & is indeed
strong, but that of h is very weak. More precisely, it was
shown that the matrix elements of the residual term V„,
of h, written in the form

h=E +T d+T„+V„„+JV ' V JV

that involves h.o. interactions V"„"(r) and V"d'(R) be-
tween p and n and between a and d, respectively:

H„, (r, R)=E"'+T„(r)+T d(R)

+ V"„'(r)+V" '(R), (24)

with E"' being the model a energy. With (23) multi-
plied from the left by JV, its right-hand side will be identi-
cal with that of (22). Equating the left-hand sides, we ob-
tain

AP( r, R) =JVH„, (r, R)g(r, R)

=JV'~2Hh, (r, R)JVil2p(r, R) . (25)

In the second step we exploited the fact that P(r, R) is an
exact eigenfunction of not only Hh, (r, R), but also of

With (25) used in (22), one obtains

+~an +an~an ++res & (18) JV' Hi, , (r, R)JV' g(r, R)=Eh, JVitr(r, R) . (26)

is virtually negligible. Here JV '~ V JV '~ and
JV „'~ V „JV „'~ are the potentials appearing in the two-
body analogs of Eq. (10), with JV ~ and JV „being the
operators whose kernels are N „and N „of (17). This
finding not only shows that the three-particle approach to
Li is reasonable, but also confirms that it must be con-

sidered an approximation to Eq. (10).
The reduction of the three-body term as a result of the

transformation (9) can be made plausible by studying a
physically important limiting case. To come to this case,
let us identify %' with an intrinsic harmonic-oscillator
(h.o.) state composed of Os orbits. In cluster models this
is a most usual approximation. Furthermore, let us
represent the relative motion by

The Hamiltonian JV'~ H„, (r, R)JV'~ contains the large
three-body Pauli terms implied by JV, but the transforma-
tion (9) applied to it results in h =Hz, (r, R).

Thus, within the validity of the h.o. cluster model, the
six-particle Schrodinger equation exactly reduces to a
three-particle equation, of the type of (10), which con-
tains no three-body Pauli term. At the same time, the
equation of the type of (6) is contaminated with a large
three-body Pauli term. In these considerations we had to
resort to the h.o. cluster model because the norm opera-
tor and the Hamiltonian have a complete set of common
eigenfunctions only in that model. But, as is shown by
the numerical tests mentioned earlier, ' the realistic
models tend to mimic this behavior.

g(r, R)= gc)P, (r)P (R), (19)

C. Conflicting interpretation

HA, {%' + +„itj(r „,r d)I

(21)

Projecting this equation onto O', R, we can cast it in a
form analogous to (6):

&g(r, R) =E„,JVitj(r, R) . (22)

where P, and P, are h. o. single-particle states belonging
to the same oscillator quantum Ace as is involved in 4,
and itj carries a definite number N of A'co's and definite
SUi labels (A, , p), ~,L. The wave function

f dr f de(r, R) iIrit=A „{'Il 0' iIr„gI (20)

may be considered to represent a state of Li in the h.o.
cluster model. Since this is a reasonable approximation
for the first few states, A ~„{%' 'p 0'„QI approximately
satisfies the Schrodinger equation with an eigenvalue

We have now established that the three-particle model
can be derived from the microscopic approach with a
good approximation, and that the three-particle
Schrodinger equation is to be regarded as an approxima-
tion to Eq. (10). There is a consensus on the first part of
this statement, but there is none on the second part. On
the contrary, the three-particle wave function 46 is usual-

ly believed to be an approximation to y(r, R) of Eq. (6) or
(8) (see, e.g. , Refs. 1, 6, and 36). Since the correct micro-
scopic interpretation of @6 is crucial from the point of
view of the spectroscopic amplitude, we should revise the
arguments, for this alternative identification, which were
expounded by Wackman and Austern. '

This identification hinges on the hypothesis that the
Hamiltonian in (8), &+(1 JV)E, can be reduced, w—ith a
good approximation, to an energy-independent Hermite-
an Hamiltonian that contains no three-body term. Let us
cast this Hamiltonian into a form resembling (18):

The eigenvalue Eh, in these approximate equations may
be identified with the exact eigenvalue, belonging to the
exact eigenfunctions g, of the model problem

&+(I JV)E=E +T d+T „+—V „+V p

+V „+V„,, (27)

Hh, (r, R)itj(r, R)=E„,g(r, R) (23)
where V and V, are the potential terms that appear
in the two-particle analogs of (8),
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A'+( ~ N)E N]9 N( )=[+ N++ N]P N(

=E ~p ~(r) (N=p, n ),
(28)

and V„, is a residual three-body term. The last three
terms on the right-hand side of (27) are obviously nonlo-
cal and energy dependent.

The conventional arguments are as follows. ' The +-
nucleon phase shifts are well reproduced by local and
energy-independent phenomenological potentials. From
this it can be inferred that the nonlocal and energy-
dependent terms of V & have little effect, at least on the
phase shift. It has also been recognized, however, that
these terms must inhuence the wave functions in the in-
teraction region so as to remove the Os state, which is
Pauli forbidden. By eliminating this state separately, e.g. ,
via a projection operator, the effect of these neglected
terms seems duly allowed for. The residual three-body
term, whether large or not, looks negligible because it is
of short range, and in Li all three constituents are not
likely to stay too long within its range simultaneously.

While some of these statements hold for equations of
both types, some are only valid if they are dissociated
from Eqs. (8) and (28) and are associated with (10). Thus
reinterpreted, these arguments will still serve as a
justification of the a+p+n model, but come to be in full
accord with our derivation proposed here.

To be more specific, one should note the following.
Since the equations of the two types differ only in an
inner region, the phase shift fits only imply the existence
of well-behaved potentials without telling which equation
they belong to. The reasoning ceases to be valid for (8)
and (28) when the inner region is referred to. Indeed,
there is no general reason to prevent the solution y ~(r)

of Eq. (28) from being of Os character. E.g., in the h.o.
limit of 4, the function y z(r) may have an arbitrarily
large Os component y since & &y =JV &p =0.
[Cf. the discussion following Eq. (8).] This component is,
however, suppressed by A'g in the two-particle analog of
Eq. (9a), and that is why the equation with Pauli projec-
tion should be likened to Eq. (10), rather than to Eq. (8)
or (28).

A similar statement can be said about the last argu-
ment. As is shown by the normalization equation (11),
probability interpretation ' can only be attributed to y.
So y(r, R)~ is bound to be small in the region where
both r and R are small. For ~y(r, R)~, however, there
being no probability argument, there is nothing to forbid
it to be large in regions where all relative coordinates are
small, and so the three-body term V„, in the operator
may have a significant effect.

In short, the reason why the three-particle Schrodinger
equation is related to Eq. (10) rather than to (6) or (8) is
that (6) and (8) incorporate the Pauli principle in the
operators only, whereas (10) contains the Pauli effects in
the solution, too. The function &p(r, R) need not obey the
Pauli principle because it is to be written behind the an-
tisymmetrizer, which will project out its Pauli-forbidden
component. The function y(r, R), on the other hand, is
like a wave function in its own right, amenable to proba-
bility interpretation. On these grounds the identification
of 46 with y is to be rejected.

D. Well-founded macroscopic formula

Having established the correspondence of N6 to y, we
can express the spectroscopic amplitude in (la) in terms
of 46. First, %z =A~„ I%'~%'„Nz I and %'6 of Eqs. (4) and
(5) are to be substituted in (la):

g z(R)= fdr fdr' fdR'+z(r)(A zA „I+ + +„5(r—r „)5(R—r z) I

X ~A „I4 4 'P„5(r' —r „)5(R'—r z)I )y(r', R')

= f dr f dr' fdR'4&(r)N(r, R;r', R')y(r', R')

= f dr@q(r)JV@(r, R) .

(29a)

(29b)

(29c)

In the second step we used A. &A, =A, as well as Eq.
(7b). Now, inverting (9a), we obtain y=JV '~ y. Insert-
ing this in (29c), we arrive at

g z(R)= f dr@&(r)JV' y(r, R) (30a)

= f dr@&(r)A'~ %6(r, R) . (30b)

This differs from (3b) just in JV' and agrees with the re-
sult of the intuitive derivation.

Since JV differs from the unity operator due to antisym-
metrization, the appearance of JV'~ in the formula for
g z(R) is a consequence of the Pauli principle in the
effective three-particle Schrodinger equation (or Faddeev
equations). This JV' is an extra requirement of the Pau-

li principle, which appears even though one uses the solu-
tion y(r, R) of the exact microscopic approach [see Eq.
(30a)]. Thus the appearance of JV' is not a compensa-
tion for any violation of the Pauli principle in the three-
particle dynamics, nor does it imply a double counting of
the Pauli effects. It will always appear provided the
a+p+ n wave function is derived from an energy-
independent Hermitean Hamiltonian with no (or little)
three-body potential.

From (29c) it is immediately seen that the alternative
interpretation of the three-particle wave function, +6-cp,
would lead to g z(R)= Jdr 4&(r)JV@6(r,R), which
departs from the conventional formula (3) even more.
Equation (3) would only be consistent with this if JV were
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a mere projector, and the Pauli principle were taken into
account just by imposing A'(I)6=@6. Then Eq. (3) would
also coincide with Eq. (30b). In the next section we shall
show that the effect of Ã differs from that of a projector
appreciably.

III. RESULTS

We have seen that the intrinsic structure of the a parti-
cle, eliminated though from the dynamics, reappears in
the spectroscopic amplitude, embodied in the operator
JV'~ . We had shown, however, that the effect of the
norm operator depends only slightly on the actual
description of the a particle. It thus suffices to use, for
0, the simplest h.o. Os shell model with a realistic size
parameter. We used m m/A=O. 528 fm . The operator
JV is tractable through its spectral representation:

~ WN(), p, )«L ~ N(h. , p.
)( PN(), p)«Li.

Xk,pKLE

(31)

g d(r)=r 'g(r)FQQ, G d(r)=r G( )FrQQ (32)

with g d(r) and G d(r) given by (30b) and (3b), respec-
tively, and the corresponding momentum-space intensity
functions, the so-called "momentum distributions, "f(q )

and F(q ) defined as

1 1f(q )( &QQ )' = Idre' 'g d(r)
47r (2~)

F(q )( 1'QQ )
1 1 Jdre'~'G d(r)4~ (2~) ~

(33)

We have, furthermore, calculated the spectroscopic fac-

With this choice of 'p, the eigenfunctions of JV are of the
form of Eq. (19), where (() are h.o. single-particle func-
tions carrying the same oscillator quanta %co. The eigen-
values can be calculated by diagonalization of JV in each
subspace characterized by the set of quantum numbers
N(l, ,p))~L.

The matrix elements of JV between products of h.o.
functions were calculated with a technique that is based
on the generating function of the h.o. eigenfunctions.
This technique requires the analytical calculation of the
overlap of multicenter Slater determinants of normalized
h.o. single-particle functions as functions of the positions
of the potential centers. With all h.o. wells chosen to
have the same parameter, the c.m. wave functions can be
factored out, so that the overlap will also be a c.m. factor
times a factor coming from the internal motion. This
latter factor depends solely on the relative positions of
the h.o. wells. Its Taylor expansion in terms of these rel-
ative positions can also be performed analytically. It has
been shown that the expansion coeScients, for which ex-
plicit formulas can be obtained, are nothing but the re-
quired matrix elements of the norm operator of the corre-
sponding multicluster problem formulated in the intrinsic
frame

We have calculated the radial spectroscopic amplitudes
g(r ), G(r ), belonging to ad relative orbital momentum 0,
defined as

tors belonging, respectively, to the two amplitudes,

sad dr g~d r Sad dr Ga (34)

We have made calculations with the a+p+n wave
functions of Voronchev et al. , Kukulin et al. ,

' and
Lehman, Rai, and Ghovanlou. These are composed of
terms that carry various total orbital momenta I. and
summed nucleon spins S. Since the relationship between
g d(r) and G d(r) cannot depend on the small com-
ponents of 4d and N6, we treated these terms in a some-
what simplified manner. In the models of Voronchev
et al. and Kukulin et al. ' the weights of the LAO, 5&1
terms of N6 add up to 0.5% and 4.5~o, respectively, and
we simply omitted them, renormalized 46 and combined
it with a deuteron wave function of no d-wave admix-
ture. As for the model of Lehman, Rai, and Ghovan-
lou, we used the version called "full model with I'd =0,"
which includes all ++X partial waves, but excludes the
tensor term of the nucleon-nucleon interaction both in N6
and in 4d. We furthermore disregarded the 0.28%%uo d-
wave component of the a+d spectroscopic amplitude.

The n+ p +n radial wave functions of Voronchev
et al. and Kukulin et al. ' are given in terms of com-
binations of I „(r „)I"„,(r d ), where I „and I"„. are
Gaussians of diverse sizes. The deuteron wave function
used in combination with them is also a sum of such
Gaussians. The overlaps of the Gaussians with the h.o.
functions involved in JV' were calculated analytically.

The Li state of Lehman, Rai, and Ghovanlou is given
in momentum representation as a sum over the three par-
titions a(pn ), (ap )n, and (an )p, each to be denoted by
@6bearing a partition superscript. The deuteron state is
given like the p+n wave function in the a(pn) com-
ponent. In calculating the overlaps of these with

the functions (tjN(z „)„L were transformed
to momentum representation. The integrations over
the angular part k „of the relative number k „
in ((I&d ~p'N(z „),L ) and over k„„and k d in

( pN()„„) I ~

C&6(~" ') reduce to Kronecker deltas. The
integrations involved in (pN(~ „),I ~(I&6 "'") and in

(gN(~ „),L ~(I)6 "'") were performed via transformation of
the integration variable k, to k& and k5„. , respective-H~ Lln '

ly. The spherical harmonic Y'( (k „) is then expressible
in terms of the new angles with the use of rotation ma-
trices. The angular integrations were thus performed
analytically. The integrations over the radial wave num-
bers and the Fourier transformation to coordinate space
were carried through numerically.

It is clear from Eq. (31) that A' differs from the unity
operator through its eigenvalues v&~&„~%1 and differs
from a projection operator through its eigen values
v&~& „~%1,0. The three-cluster norm operator is a non-
compact operator with an infinite number of eigenfunc-
tions belonging to eigenvalues substantially different from
unity, among which there are an infinite number of eigen-
functions belonging to v&~& „~=0 as well as to v&~& „~WO.
The a+p+n wave functions, however, have appreciable
overlaps with only a finite number of these eigenfunc-
tions. The overlap of N6 with the ~Nb~ subspace of



43 SIGNATURE OF CLUSTER SUBSTRUCTURE: cx+d. . . 1207

0.5- 0.5-

0.3-

I

E
0 1-

0.3-

0.1—

C

~ -0.3-

-0.5-

- 0.7
I+

r {fm)
10

- 0.7

r {fmj
10

FIG. 1. Alpha + deuteron spectroscopic amplitudes g(r)
(solid line) and G(r) (dashed line) with the a+p+n wave func-
tion of Voronchev et al. (Ref. 8). The deuteron wave function is
from Ref. 39.

eigenfunctions can be characterized by (46~P~~I@6),
where P~ is the projector onto this subspace. We have
found that (%6~P~ ~@6)= (4&6~4&6) within 0.01% for
N = 100 and within 2 —3 % for N =14. We have solved
the eigenvalue problem for %~ 14 and approximated
JV'~ by P, 4JV' P,4+1 P,4. We —estimated the error of
this approximation for the spectroscopic factor s d to be
within 1%.

The three pairs of spectroscopic amplitudes are shown
in Figs. 1 —3, and the spectroscopic factors are collected
in Table I. To illustrate the difference implied for the
momentum structure, in Fig. 4 we depict f(q ) and F(q )

for the case of the wave function of Lehman, Rai, and
Ghovanlou. These two functions compare with each oth-
er in much the same way in the other cases as well. Our

FIG. 3. Alpha + deuteron spectroscopic amplitudes g(r)
(solid line) and G(r) (dashed line) with the a+p+n and deute-
ron wave functions of Lehman, Rai, and Ghovanlou (Ref. 5).

results for the conventional spectroscopic amplitudes and
factors should be very close to those published original-
ly. ' ' This is indeed so except for a minor disagreement
in S d with Voronchev et al. , the origin of which is ob-
scure.

We see that in the inner region the microscopically
well-founded amplitudes g ( r ) are substantially larger
than the corresponding conventional amplitudes G(r).
This is understood by noting that in the N=2 (i.e. , 2%co)

subspace, which dominates the g.s. of Li according to
the shell model, JV has just one nonzero eigenvalue,
v= —", . This shows that its effect on 46 is indeed sub-
stantially different from that of a projector. In the N )2
subspaces there still are eigenvalues 0, eigenvalues small-
er as well as greater than 1, and they inhuence g(r ) main-
ly for large r The net eff. ect iss d/S d =1.31—1.34.
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FIG. 2. Alpha + deuteron spectroscopic amplitudes g(r)
(solid line) and G(r) (dashed line) with the cz+p+n wave func-
tion of Kukulin et al. (Ref. 14). The deuteron wave function is
from Ref. 39.

FIG. 4. Alpha-deuteron relative "momentum distributions"

f(q) (solid line) and F(q) (dashed line) with the a p+n+and
deuteron wave functions of Lehman, Rai, and Ghovanlou (Ref.
5).
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TABLE I. Alpha + deuteron spectroscopic factors.

Source of N6

Voronchev et al. '
Kukulin et al.
Lehman, Rai, and Ghovanlou

'Reference 8.
Reference 14.

'Reference 13.
"Reference 5.
'Reference 9.

S
(original)

0.66'
0.7487"
0.632'

(present work)

0.757
0.738
0.632

Sad
(present work)

0.991
0.970
0.847

IV. DISCUSSION AND CONCLUSION

First of all, it is appropriate to note that the idea of in-
corporating the Pauli principle in spectroscopic ampli-
tudes through norm operators, as was first proposed by
Fliessbach, was subsequently widely disputed.
That issue, however, does not bear on the present one.
The norm operators involved in that controversy were
those which should represent the Pauli effects in a distort-
ed wave describing the motion of a fragment of Li with
respect to a partner, which contains the other fragment,
in a direct reaction, whereas the norm operator invoked
here is an inherent ingredient of the description of the
structure of Li itself. The subject of the dispute was
whether it is correct or at least acceptable as an approxi-
mation to shift those distorted-wave norm operators onto
the spectroscopic amplitudes. If it is, the definition of the
spectroscopic amplitude should be modified. In accord
with our view expounded elsewhere, ' in this paper we
stick to the conventional definition of the spectroscopic
amplitude. [Otherwise, the modification would involve
JV«', where A'~d is the a+d norm operator. This

G5~(R) = f dr +5 (r)iIi6(r, R), (35)

where 45 is the e+n analog of 46. The wave functions
involved in the microscopic approach are

'lj, =A 5„ I 4 ( g )%', ( g, )cp „(r, ) ),
+6=Aapn I'pa(ka)'pp(4p)'pn(kn )V' (ran r5p) I

(36a)

In (36b), y'(r „,r5~ ) =—y(r~„, r d ), so that this %6 is identi-
cal to that given in (4) and (5). It is convenient to intro-
duce the kernel

would have a much smaller effect than A', missing
from the definition of G d(r), for the dominant eigenval-
ues of JV d and A' are —,

' (Ref. 43) and —", , respectively. ]
Our finding for the a+ d spectroscopic amplitude poses

a similar question concerning the description of the other
possible disintegration of the u+p+n system, the one
that involves nucleon removal. To see this point explicit-
ly, let us consider the amplitude of proton removal ~ In
the three-particle model the conventional spectroscopic
amplitude is defined, like in (3b), as

(37)

(38a)

(38b)

(38c)

(38d)

X'(r, R;r', R')=(A, I+ 4 %,5(r —r „)5(R—
r~ )I ~A „I~II 'll %'„5lr' —r „)6(R'—r~ )I ),

which defines an operator A". The spectroscopic amplitude is then calculated after the pattern of Eqs. (29) and (30):

g,~(R)= fdr fdr' f dR'y*„(r)X'(r, R;r', R')q&'(r', R')

= f dry*„(r)A'y'(r, R)

= fdry* (r)A' ' JV' y'( R)

= fdrC,*(r)JV '~ JV'~ @'(r R)

&56(r, R)6(r —r „)5(R—r5 )

=d&6(r, R)6(r —r „)6(R—r d) . (39)

where g, =—A'~
cp „and g' =JV' cp'. The function

&6(r, R) is defined so as to have the same values as
@6(r,R) with the argument transformed like the physical
coordinates in the transformation Ir „,r d I ~ Ir „,r5

Thus the parameter coordinates involved in all primed
functions X', p', 4&', and g' correspond to I r „,r~
(Note that the Jacobian of this transformation is unimo-
dular. ) Such a transformation applied to the eigenvalue
equation of JV shows that the eigenvalues of JV' are iden-
tical to those of JV and the eigenfunctions of JV' are relat-
ed to those of JV via a Moshinsky transformation. Thus
JV' in (38c) and (38d) must have an e8'ect similar to
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JV'~ in (30). This effect, however, is partly compensated
for by JV „' . tin Eq. (30) no operator corresponding to
A, ' appears because p and n are treated as elementary
particles; at this level JV „=1.] The extent of this com-
pensation may be estimated, again, from the leading
nonzero eigenvalue of JV „,which is —,', in contrast with
—", of JV'.

A more precise estimate of the joint effect of A', '

and JV'~ can be obtained from the fact that the micro-
scopic sum-rule limit of the removal of a proton from
outside the a core of Li is —', , while the three-particle
picture interpreted according to Eq. (35) gives unity.
The departure from unity in the microscopic picture
arises just from the normalization rule formulated in
(38). Thus the appearance of JV „' JV"~ in the ampli-
tude causes a 20% enhancement, on an average, in the
proton spectroscopic factor.

Knowing the tendency of the behavior of the micro-
scopically well-founded spectroscopic amplitudes with
respect to the conventional amplitudes, we are in a posi-
tion to put their relationship into a broader perspective.
We should state, first of all, that the modifications im-
plied by the microscopic considerations change the pre-
dictions of the e+p+n model so as to approach those of
the microscopic models. As regards the o.+d fragmenta-
tion, the two models seem fully reconciled. Not only do
the a+ d spectroscopic factors (Table I) come close to the
microscopic estimate (0.93, Ref. 25), but also the corre-
sponding amplitudes. The remaining differences could be
presumably accounted for by differences in details. In
particular, the models of Voronchev et al. and of Kuku-
lin et al. ' use local interactions with Pauli projection,
while that of Lehman, Rai, and Ghovanlou employs se-
parable interactions with Pauli repulsion. Using the Fad-
deev approach, the model of Lehman, Rai, and Ghovan-
lou describes the three-body dynamics more perfectly
than the others, but it is the only one that neglects the
Coulomb potential. Where there still is some disagree-
ment is in the asymptotic normalization constant. '
From Figs. 1 —3 it is clear that the inclusion of A' does
not change the value of this constant.

With the a+a spectroscopic amplitude increased, the
agreement with experiment has also been improved in

general. The only experiment requiring extra discussion
is that of Ent et al. , which produced s d=0. 73+0.09.
Comparing the curves of Fig. 4 with the experimental
"momentum distribution" of Ent et al. , we would find

that the inclusion of JV' improves the agreement for
momentum values below the diffraction dip, while it may
worsen beyond. Since, however, the latter region is in-

fected by wave-distortion effects, whose description in-

volves an amount of uncertainty, we do not assign too
much significance to this region.

In the He+p spectroscopic factor, the 20%%uo increase
would also help to bring the predictions of the three-
particle model closer to those of the microscopic ap-
proach. In the Li(e, e'p ) He reaction, the final state is
the He continuum, and the three-particle model may
only be appropriate for He energies below the t+d
threshold. In the region of the peak belonging to the —',
g.s. of He, the correction JV „' JV'~ could bring the
two models in fu11 harmony, with the experiment slightly
overshot. But in the smooth continuum beyond this
peak, the microscopic prediction overshoots experiment
with a factor of 1.2 —2, due apparently to deficiencies in
the particular version of the microscopic model,
whereas the predictions of the three-particle model agree
with experiment reasonably. Nevertheless, A' „'~ JV'~
may still improve the performance of the three-particle
model here, while slightly reducing the disagreement
with the microscopic model.

From the example of the cx+p+n system, one can con-
jecture that deviations should be observable from macro-
scopic descriptions of cluster removal from (or addition
to) other multicluster systems as well. The most obvious
candidates for showing such effects are Be described as
a+0.+p and ' C described as a+a+a. Similarly to the
case of proton removal from Li formulated in (38c) and
(38d), these effects must be governed by the interplay of
the norm operator of the full system with that of a sub-
system. For that matter, such efFects should also appear
one level lower as a signature of nucleon structure. For
instance, the spectroscopic factor of proton removal from
triton should also differ from unity, the value obtained
with the nucleons treated as structureless.

In conclusion, we have demonstrated that the cluster
substructure does show up in nuclear processes that in-
volve the splitting of the nucleus into clusters or the in-
verse process. The a+d spectroscopic factor of Li has
been shown to be enhanced by more than 30% owing to
the nonelementary nature of the o. particle. This
enhancement improves the agreement of the predictions
of the a+p+n models with experiment and restores the
accord with the results of the microscopic models. The
effect is caused by the Pauli principle. This particular
Pauli effect is bound to appear as an extra deviation from
the macroscopic models, however perfectly the Pauli
principle is simulated in the formulation of the macro-
scopic dynamics.
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