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We demonstrate the construction of an exact sd-boson realization of the Sp(6) fermion dynamical
symmetry model (Ginocchio model) from an application of the generalized Dyson mapping and sub-

sequent truncation. This realization is an illustration of the validity of the procedure initiated by
Geyer and Hahne and analyzed in full generality by Kim and Vincent. We discuss the connection
of the Sp(6) model with the SU(3) limit of the interacting-boson model and the implications for the
interpretation of its parameters.

I. INTRODUCTION

Models which address collective nuclear properties in
terms of a specific and manageable algebraic structure
have recently had a major impact on nuclear structure
physics, both as a result of their ability to correlate
known data and to predict new nuclear properties. Al-
though there have been precursors which also relied on
algebraic structure, the major new drive behind the im-
plementation of algebraic structure has come from the
interacting-boson model (IBM), pioneered by Arima and
Iachello. ' Although many variants of this phenomeno-
logical model (with various degrees of microscopic input)
have since been used, they all share one tenuous link to
the underlying shell model, namely, the loose association
made between bosons and correlated fermion pairs. On
the phenomenological level this association is quantified
by normally taking the number of bosons for a specific
nucleus to be half the number of valence nucleons. '

In the wake of successful phenomenology there inevit-
ably follow attempts at clarification in terms of a more
fundamental microscopy. In this particular case the im-
plied link between the phenomenology and the underly-
ing shell model has given rise to and facilitated two relat-
ed developments. On the one hand, there have been
numerous contributions aimed at making the association
between bosons and fermions more precise on the general
bifermion operator level (as opposed to association on the
number operator level only) or, alternatively, on the level
of association between boson and fermion states. ' At
the same time there have been efforts, initiated by Ginoc-
chio, to construct a model on the fermi. on level with the
same physical input of dominance by S and D pairs and
with an algebraic structure which could be exploited as in
the case of the IBM. These efforts have lead to
Cxinocchio's SO(8) and Sp(6) models and their
refinement, the fermion dynamical symmetry model
(FDSM) 6'7

From the phenomenological point of view Ginocchio's
construction of a fermion model with the above proper-
ties at first did not seem to be successful, because the
Sp(6) &SU( 3 ) branch of the model, which represents its
rotational limit, does not contain the required and phe-

nomenologically well established SU(3) representation as-
sociated with the ground-state rotational band. Never-
theless, many instructive formal studies, concerned with
the fermion-boson association referred to above, have
been carried out within the framework of this model,
especially within its SO(8) branch. ' ' Moreover, in the
form of the fermion dynamical symmetry model '

(FDSM) the above unwelcome restriction on allowed
SU(3) representations has been circumvented by essential-
ly a reinterpretation of parameters, namely, by restricting
"active" nucleons to the normal parity levels and consid-
ering the abnormal parity levels in a given major shell as
a "sink for excess nucleons. " ' This simple, but
significant, measure has lead to numerous successful ap-
plications of the FDSM on a phenomenological level and
to the interpretation of some novel nuclear structure
properties. ' '

In the present paper we construct an exact boson ana-
log of the Sp(6) branch of the FDSM in terms of s and d
bosons only. This construction is presented as an illustra-
tion of the method introduced by Geyer and Hahne for
the SO(8) branch of the FDSM (Ginocchio model in the
original context) and vindicated in full generality by
Kim and Vincent. ' Hereby the connection to the tradi-
tional SU(3) limit of the IBM becomes quite transparent,
as do the implications of interpretation of shell-model pa-
rameters.

It should be pointed out that an sd-boson realization of
the Sp(6) algebra has been constructed and discussed by
Bonatsos and Klein' (see also the comment by Wy-
bourne' ), albeit from the point of view of a boson reali-
zation of p-shell fermion operators. Furthermore, their
construction is based on enforcing of commutation rela-
tions within a given algebra. We view the present con-
struction and discussion as complementary to that in Ref.
18.

The paper is organized as follows. Section II contains
a resume of the generalized Dyson mapping and the con-
siderations that allow the construction of a boson realiza-
tion of a particular collective subalgebra of the complete
fermion shell-model algebra. In Sec. III we briefly intro-
duce the Sp(6) branch of the FDSM and in Sec. IV we
proceed to construct the promised sd-boson realization of
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this algebra. In Sec. V we discuss some implications of
this model and the present construction for the interpre-
tation of shell-model parameters that play a role in the
IBM. We conclude in Sec. VI with a summary and some
final remarks. In the Appendix we demonstrate the
inadequacy of a class of similarity transformations to
Hermitize the general Sp(6) sd-boson Hamiltonian.

II. THE GENERALIZED
DYSON-MALEEV BOSON MAPPING

the bifermion operators:

bo. ~o. hap
apb:—yPb p,

p aS.=k.—.b p

with
xcr (xap)s

0 C7

+ap = +pa '

(3)

(4)

For the case of an even fermion system with only one
distinct type of fermion, the generalized Dyson-Maleev
(GDM) mapping of the bifermion operators is defined
by (we use the notation of Ref. 8 with the usual summa-
tion convention)

b P=c cP R P=B P B'—BP&B
Op )

b p=cpc ~R p =B p (=— Rp ),—

bp
——c cp —+R p =8 Bp@ .

Here the operators c and c denote the usual fermion
creation and annihilation operators, respectively. The in-
dex a denotes the quantum numbers j,I, i.e.,a—=(j,m ).

The ideal boson creation (annihilation) operators
B P (B p) satisfy

B P=(B )", B P= BP—
ap

[B p, B"']=o"5p 6(P-
[B p, B„,]=[B P,B" )=0,

while the ideal boson vacuum state ~0) is defined by the
requirement B„„~0 ) =0.

It is well known (see, e.g. , the paper by Okubo ') that
the bifermion operators close under the SO(2n ) algebra,
where n denotes the number of single-particle states. By
construction the mapped operators R p, R p, and R p
constitute an exact realization of this SO(2n ) algebra.

Clearly any shell-model problem for an even number of
fermions can be formulated in terms of the SO(2n ) alge-
bra spanned by the bifermion operators. However, when
the dynamics dictate the existence of a collective sub-
space which is decoupled from the rest of the fermion
space, the degrees of freedom associated with collective
motion can be expressed in terms of only those generators
which span this "collective" subalgebra of the complete
bifermion algebra. For a restricted class of models a col-
lective subspace may be defined by the Tamm-DancoA
approximation (TDA). However, in transitional and de-
formed nuclei the important ground-state correlations are
not taken into account by the TDA and a more general
method is required to identify a collective subspace. In
this respect Klein and Klein and Vallieres have dis-
cussed criteria, based on variational considerations, for
identifying and obtaining a collective subspace. A more
recent contribution in this direction is presented by
Kuchta. The notion of collectivity is incorporated in
the boson description by introducing coherent bifermion
operators through the following linear combinations of

b, ~(b, ) =B, ,

P, (P, ) =CpX.', XpeB 'B.,

(8)

Here [x p] forms a complete set of two-particle wave
functions which includes the wave functions associated
with the collective subspace. The set [X p] can be chosen
as the two-particle TDA wave functions, or a set of wave
functions determined from variational considerations, as
already alluded to. Whatever their origin, we adopt a
normalization for the wave functions which is expressed
by

x.px„p=»„,
xo+PO gPg6 gP@9

The coherent transition operators p can be ex-
pressed' ' as Hermitian linearly independent combina-
tions of the commutators [b,b ~ ], which determine the
functions Pp in terms of the functions X p.

In further discussions we distinguish between the truly
collective modes (denoted by c;, i =1,2, . . . ) and the
noncollective modes (denoted by n, j=1,2, . . . ). For
instance, in the TDA solutions of some schematic mod-
els, the (single) collective TDA state is referred to as the
truly collective mode (a =c ) while the other states are re-
ferred to as the noncollective modes (o = n ).J

Collective-type bosons are introduced by the transfor-
mation

pe I +0 gap
ap

B = ,'X PB p=(B )t, —

with X p taken from Eqs. (3). The orthogonality and
completeness relations (S) ensure that the collective-type
bosons satisfy the boson algebra

[B,B"]=6'g,

[B,B„]=[B,B"]=0 .

The collective subalgebra of the complete bifermion
algebra (denoted by A ") is spanned by a subset of the
coherent bifermion operators (3), which is singled out by
the collective index o. =c. In general, c may represent
more than one collective mode, but in order to keep the
notation simple, we use c rather than c, .

The GDM mapping (1), followed by a transformation
to collective-type bosons (6), may now be used to obtain
an exact boson realization (denoted by 2 ) of the collec-
tive algebra 2 ", namely,
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It is clear that not only truly collective bosons, but also
noncollective bosons, are required in the Dyson images of
the collective bifermion operators. It is therefore not
trivial to determine a priori if the truncation to truly col-
lective bosons will retain the isomorphism between A
and A . That this is the case when A =SO(8), has
been proved and demonstrated by Geyer and Hahne.
Subsequently, Kim and Vincent' ' have shown that this
result holds much more generally. Their demonstration
rests on properties of the collective algebra A ", the
most significant of which is the self-conjugacy of A
This condition requires that g =(g ~).* The truly col-
lective boson realization of A ", obtained by truncating
to truly collective bosons in A, will be denoted by A
We note that all those requirements identified by Kim
and Vincent which conspire to validate the above trunca-
tion are mostly satisfied by the generators of shell-model
algebras. (See Ref. 26 for an example where self-
conjugacy does not hold. )

It is furthermore noteworthy that isomorphism be-
tween algebraic structures alone does not guarantee
equivalence, in particular not as far as physical conse-
quences are concerned. In the context of boson mappings
one also requires that the boson space carries the proper
spinor representations. On a more pedestrian level this
is guaranteed if the boson images of operators, which an-
nihilate the fermion vacuum, annihilate the chosen boson
vacuum —a situation fulfilled for Dyson-type mappings.
On a more formal level, Kim and Vincent' ' also prove
this equivalence between the realizations A "and A

We now proceed to implement the program outlined in
this section in the case of the FDSM (Ginocchio) Sp(6)
collective subalgebra.

III. THE FDSM (GINOCCHIO) Sp(6) MODEL

Ginocchio originally introduced two fermion models
with SO(8) and Sp(6) symmetries, respectively. The
FDSM is essentially the same model, but with different
roles assigned to nucleons in normal and abnormal parity
levels. ' (See also the subsequent discussion. ) The con-
struction of these models is based on the preselection of a
set of single-nucleon angular momenta j which can be
separated into a pseudo-orbital angular momentum k and
a pseudospin i, i.e., j=k+i, with either k or i fixed. (k
takes on integer values and i half-integer values. ) The
single-nucleon creation and annihilation operators in this
k-i coupling basis are related to the normal shell-model
operators by

k+i —
m&

—m, -ak, =( —1) ' 'ak (10)

We define a special class of fermion pair creation
operators within the k-i basis by

FJM(KI'k ):— —(
k, ia k, i](»I)JM1

with

(a 'a"')' ' = g (kmkkmk ~KM» ) (im, im, '~IM&)

I

X(KM IM ~JM)a " 'a

(12)

Alternatively one has

k

F (KI;ki)= —KI g j,j 2 k

l Ji
, [

(13)

I '(KI;ki) = i+iak 'a„, ](»'"—

with J=&2J + 1. The partitioning ofj in terms of k and
i is now explicitly contained in the Wigner 9-j symbol.

The Pauli principle restricts %+I to even values only.
If we set k =1 then the only angular momenta allowed
for I=0 in Eqs. (12) and (13) are J=K =0,2. This choice
of k and I defines the Sp(6) model. The pairs with J=0
and J=2 are called S and D pairs, respectively, and play
the role of collective pairs with respect to a general Sp(6)
Hamiltonian. In other words, when the model Hamil-
tonian is written in terms of Sp(6) generators, the states
with S and D pairs only, decouple from states which con-
tain pairs of the type (13) with IWO. This property can
be traced to the orthogonality of the Wigner 9-j symbols
which appear in Eq. (13).

The So(8) model, with i =—', and K =0 in (13), presents
an alternative way to obtain collective S and D pairs. In
both cases, the repeated application of the pair creation
operators (11) with J=0 and J=2 onto the vacuum state
~0) yields a collective S Dsubspace. -

Together with the pair creation operators F (KI;ki ),
we also introduce the operators

'= g (kmkim, ~ jm )c
jm

(9)
kikI g J,g~ k-

J1J2

l Ji
Jz -[c 'cJ ]M,

I J

with covariant components of the annihilation operators
given by

with cJ~ = (
—1)J cJ . Following Helmers, ~s the

Sp(6) generators are now identified as
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S =F (00'lt)= 1

2&n
1)j—m jm j—m

D~=F "(20; li ) = ——1 3

2 0,

' 1/2 J1 J2+ r J 1 J2 ~2@Jtjz 1 1
[c

P„" =P„—"(rO; li ) =&3 g (
—1) ' j,j 2

J1J2

S—:(S )

r
. '[c 'c ]„" (r=0, 1,2), (15)

D —= (D/')
)M

Here 0 is the usual measure of the size of the fermion space,

2Q= g (2j+1)=3(2i+1) .

The operators (15) close under the Sp(6) algebra

(S,D"]= [S,D„]=0,

[S S]=—(c™c—0)=—S1 2
n J- =n ''

2 5 2 2 t
[D„,D ]=——5„'So——&3 g ( —1)"(2 p2v~tv p)—'1

1 1
—'P,'

t =1,2

[D",S ]= P„, —1
(17)

[P„",S ]=2505„S +252D",

2 2 r[P',D ]=2( —1)"5&5 „S +2&15r(rp2v~2p+v) '1
1 1

D"+', '

r s t
[P„",P', ]=&3r s g [(—1)'—( —1)"+'](rpsv~ttp+v) '1

1 1
'P„'+

f =0, 1,2

Note that in our definition of the Sp(6) generators a
diA'erent normalization than the one given in Ref. 7 is
used. This dilference is refiected in Eqs. (17) above as a
slight modification of the commutation relations given in
Ref. 7.

The operators S and D" denote the monopole (S) and
quadrupole (D ) pair creation operators, respectively.
The S-D subspace is spanned by the states

J1
l J2&2J,J,ki k—

J1JP JlJ2

represents a general example of such a Hamiltonian. The
first two terms are the monopole and quadrupole pairing

teractions, respectively, followed by a quadrupole-
quadrupole and a dipole interaction.

The two-particle wave functions

~NNdy; JM) =(S ) "(D )rJM~0), (18) K I J

sp{6) G0S S + G2D
.
D + b2P .

P + b 1 P
' P (19)

where N denotes the total number of pairs and Nd the to-
tal number of D pairs. The S and D pairs in the states
(18) are coupled to angular momentum J and projection
M. Any additional quantum numbers necessary for a
complete labeling are represented by y.

The closure of the algebra (17) implies that any Hamil-
tonian written in terms of the Sp(6) generators (15) will
leave the S-D subspace invariant. The S-D subspace
therefore represents a collective subspace as discussed in
the preceding section. The schematic shell-model Hamil-
tonian

(20)

with I=O, appear in the Sp(6) generators (15), which in-
dicates that these generators are in fact collective bifer-
mion operators. The wave functions with I=0 are there-
fore, in conjunction with our discussions in the preceding
section, termed truly collective, while those with IWO are
termed noncollective. In the notation of the preceding
section we therefore have that 3 "=Sp(6). Further-
more, the Sp(6) algebra satisfies all the requirements
identified by Kim and Vincent' for the truncated Dyson
boson images of the generators (15) to constitute a reali-
zation A of the Sp(6) algebra.
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IV. COLLECTIVE BOSON REALIZATION
OF THE Sp(6) MODEL

properties of the Clebsch-Gordan coeKcients, imply

BJMa
( 1)2k +2i +I+KBJMo

7 (27)

A. The collective boson framework

Since the Sp(6) generators (15) are given in the coupled
angular momentum representation, the collective frame-
work of the preceeding sections must be modified in or-
der to accommodate bosons with good angular momen-
tum. This modification simply requires the introduction
of the coupled boson operators

s =Boo

d~=d t =B2pc
p

(28)

which again shows that I +K must be even.
The s- and d-boson operators are identified as the truly

collective boson operators

BOoc

B ' ' = g (g, m, J2m2IJM)B '

mlm2
B2pc (29)

(21) For subsequent use we note that inversion of expres-
sion (22) by means of the completeness relation leads to

and then collective-type operators, as in Eqs. (6), by
m, lJM &B™

JMo.
(30)

J1J2

B =(BJMa)t

Here Iyi J ) is the complete set of two-particle wave

functions defined by expression (20). In view of the previ-
ous discussions, o —= (KI) represent the collective index,
with c—:cJ —= (J,O) the truly collective index for the Sp(6)
algebra.

The orthogonality relation and symmetry properties of
the 9-j symbol can be used to obtain the normalization
and completeness relations of the wave functions as

y ~Ja' ~JiJ2 2go'

J1J2

y +Jo +J3J4 gJ(gJ2+ ( 1 )t))gJ I gJ2
J4 J4

with /=2 k+2i j+) +j 2+I+K+J. The above normali-
zation ensures the boson commutation relation

B. The mapping procedure

The GDM mapping of the Sp(6) generators and the
subsequent truncation to the truly collective indices are
now discussed. From

1/2 j2 J
1 i (31)

we may rewrite D" in expression (15) as

j1j2m1m2

(32)

The GDM mapping (1), applied to the operator D", gives

D"~(D4) =
—,
' g y ' (j,m, j2m2I2p)B '

jl J2m 1 m2

y,", (j)m) j2m212p &

IB BJ'M'O'
I

gJ'gM'ga'

The wave functions also satisfy the symmetry relation

(25)
J1 '''J4

ml m4

XBJ I 1J3 3 J2m2J4 4
J3m3J4m4

(33)

Symmetry of the wave functions, together with symmetry and from the transformation (30) we obtain

(D") =B "'—
—,
' gy ' yJ' ' yJ' y ' '( j(m) j2m2I2(u)( j,m, j3m3IJ, M, )(j2m2j4m4IJ2M2)

x (j 3m3j4m4l J3M3)B B BJ (34)

The angular momentum coupling of the boson operators introduces two additional Clebsch-Gordan coeKcients
which, together with the four appearing in Eq. (34), can be combined into a 9-j symbol. This gives

J)
(D") =d~ ,' g ( —1) 'J, J2J—3J4 J2

J4

j& J3
~ ~ 2c J1J3 J2J4 3 3 ~ 1 1 m 2 2 4 R 2pj 4 XJ...XJ...XJ...X,„,. I:I:B

2 J3

Here BJM are the covariant components of the collective-type boson annihilation operators, namely,

BJM. =—(
—1)J ™BJ—M. . (36)
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The above expression for (D") represents the most general realization of D" in terms of collective-type bosons. These
bosons are characterized by a collective index o. , including collective indices other than c.

A truly collective boson realization of D" in terms of s and d bosons only, can now be obtained from (35) by simply
truncating to the truly collective indices, i.e., by restricting the indices o in Eq. (35) to c. From the expression (31) we
obtain this truncated form of (D") as

2 J2 2 J& J3
i 1 1 i

J2 J4 J2 J3 J4 J
1 i 1 1

J1
3

J2

J4

J3

J3 2

(37)

~e carry out the summation over jz and j4 by using a sum rule for four 6-j symbols and a 9-j symbol. Expression (37)
then simplifies to

2 J
i ii z— 2

-2 J4 J,
J2

J~ 1 1 [[B 'B '] 'BJ,]i'.
2 1 1

(3&)

In obtaining the above equation we have also used the fact that J& J2 and J3 must be even, since K+I is restricted to
even values. Using orthogonality of the 6-j symbols and the definition (16) of f1 we finally obtain

J4
(D") =d" — g —J,J~J~J4 J~

Jl J~J3J4

J, J2

1 1 [[B 'B']'B ]"
1 1

(39)

The triangle conditions of the 9-J symbol above restrict the J values of the boson operators to J=0,2. The truncation
to the truly collective indices therefore automatically ensures that only s and d bosons enter the expression.

The GDM mapping of the operator D„ is straightforward. From Eqs. (15) and (32) we have

D„=—,
' g yz,

' '( jimi j~mz~2p)c c
j) jpp71mp

%'ithin the collective framework, the GDM mapping of D„ is simply

D„~(D„) =(D„) =B~,=d„.

(40)

(41)

By using the same procedures as described above for the operators D" and D„, the following truly collective realiza-
tions for S, S, P„', and So are obtained:

Jc JcJ-
(S ) g i Q 3 1 1 1 [[ ] J 1

J J J
1 2 3

(S)Tc

(42)

(43)

1 2J J
(P„") =2&3 g ( —1)"J,J~

'

1
Jl J~

I"

1
'[B ' BJ,]„", (44)

(S )Te ~ ~B&McB
J=0,2 M

(45)

As in the case of the operators (D") e and (D„) only s- and d-boson operators appear in the above realization of
the operators S, S, P„, and S0—a direct consequence of the truncation to the truly collective indices. This truly col-
lective boson realization of the Sp(6) generators, written explicitly in terms of s and d bosons, is then

(So) =s s+ g d"d„——,'A—:n, +&d —
—,'Q,

P

(46)
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(St)ro=st ——(8', —1)s — —n„s ——[d d ]s — &35[[d d ] d]fee y 1 y 2 y 1 t y 1 —
t g2- (o)

A 0 " 0 2Q
(47)

(S)Tc—s (48)

1 1 2

(D") =d" ——s s d„— &—,d" —&—7s "[d d] "— &7[d d ] "s — &5 g L 1 1 2 .[[d dt] d] ",

(49)

(D )Tc—d (50)

(P' ') =2(n, +n„),

(P') =&15(d d)' (52)

(P~ P'c=2(d"s+ tsd„)+&7[dtd ] (53)

Note that up to a normalization factor the quadrupole
operator (P ) is identical to that IBM quadrupole
operator in the SU(3) limit which is associated with a pos-
itive quadrupole moment (oblate deformation). We show
below that a similarity transformation on the above bo-
son images can be found such that the quadrupole opera-
tor corresponds to prolate deformation, i.e., has a relative
negative sign between the (d d )„ term and the other two
terms. (In the IBM context the minus sign is associated
with a prolate shape, the positive sign with an oblate
shape. )

As described above, the realization (46)—(53) follows
from a truncation to the collective indices defined after
expressions (22). Based on the self-conjugacy of the Sp(6)
algebra (which can be verified in a trivial manner), the
general results of Kim and Vincent, ' however, guarantee
that this drastic measure will result in an exact realiza-
tion for Sp(6), namely, the one given explicitly in expres-
sions (46)—(53). [Confirmation of this result by explicitly
establishing the various commutation relations (17) from
the realization (46)—(53) is given in Ref. 25. Although
this leads to some instructive intermediate relations, we
refrain from discussing these algebraic manipulations
here. ]

In Sec. V of Ref. 18 an exact sd-boson realization is ob-
tained for the fermion pair and multipole operators in the
neutron (proton) p shell, which close under commutation
to form the Sp(6) algebra. ' The Ginocchio Sp(6) model
is in fact restricted to the p shell if in the expressions (15)
i =

—,. For this choice of i the sd-boson realization given
by Bonatsos and Klein' must clearly be isomorphic to
the collective sd-boson realization A =Sp(6) given
above. In fact, the two realizations are identical up to a
factor &3 in (P„" ) due to a difference in the normaliza-
tion of P„".

In Sec. VII of Ref. 18 an alternative sd-boson realiza-

tion of the Sp(6) algebra is discussed, differing from the
one above in that the terms (d"s+s d„) and (d d )& in
the quadrupole operator appear with opposite signs. We
can obtain this boson realization by performing a similar-
ity transformation on the collective sd-boson realization

The required similarity transformation is accom-
1 7TA

plished by the unitary operator T = e '. We note that
TsT '= —s and Ts T '= —s, while T commutes with
d-boson operators. It is therefore clear that T induces
the change of relative sign in the quadrupole operator re-
ferred to above. In fact, the two sd-boson realizations,
obtained in Secs. V and VII of Ref. 18 by the commutator
method, are simply related by the similarity transforma-
tion T.

We finally refer to the work of Chen et al., which
discusses the relationship between the Sp(6) branch and
the IBM for the SU(3) limit. [The mapping of the opera-
tors (46)—(50) does not enter that discussion. ] They point
out that the choice of the positive sign in Eq. (53) (oblate
deformation) leads to a simple one-to-one correspondence
between the basis vectors of the (A, , p, ) = (20) representa-
tion of SU(3) when expressed in the FDSM and IBM
frameworks, respectively. For the choice of a negative
relative sign in the IBM quadrupole operator, a different
(permuted) correspondence exists where some of the sim-
plicity is lost. [See Eqs. (5.12) and (5.13) of Ref. 30.]

V. Sp(6) AND IBM-LIKE STRUCTURES

The collective sd-boson realization of the operators
S, S, D, D, and P„" can be used to obtain a mapping
of the shell-model Hamiltonian Hs ~6~ given in Eq. (19).
The boson Hamiltonian thus obtained is given by
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TC G
(Hs ~6~)

= [An, —n, (n, —1)—2Rdn', ]+ (And 2—ndn, )

——&5[GO[[d'd']'[ss]']'"+G2l [s's']'[dd ]']"']

——V35P(Go+6~)[[d d ] [ds] ] '+G2[[d s ] [dd] ]' 'l

1 1 2

l. 1 1 2 [[d dt] [dd] ]' '+ g b„(P") (P")
L=O24 r =1,2

(54)

This is a one- plus two-body sd-boson Hamiltonian which
is Hermitian only when Go =G, . In the Appendix it is
shown that no simple similarity transformation (of a cer-
tain class) exists which can transform (Hs ~6~) into a
Hermitian form while retaining the one- plus two-body
operator nature of (Hs ~6~ ) . This contrasts with the sit-
uation for SO(8) where such a simple similarity transfor-
mation can in fact be constructed. '

The general non-Hermiticity of (Hs ~6~ ) does of
course not invalidate the proof by Kim and Vincent' of
equivalence between the collective bifermion realization
and the truly collective boson realization as applied to
the Sp(6) algebra. Consequently, the diagonalization of
(Hs ~6~ ) in the basis.

lN, Nd, y;J, M)=—[(S ) ] [(D ) ]~JMl0) (55)

will necessarily produce real eigenvalues. [These states
are the truly collective boson images of the states (18).]

Furthermore, in the case of Go =62, the Hamiltonian
has SU(3) symmetry, i.e. , it can be written in

terms of SU(3) Casimir invariants. Since all the SU(3)
generators map (up to normalization) onto the standard
IBM SU(3) generators (46), (52), and (53), (Hs„&6& )

reduces to a Hermitian SU(3) IBM Hamiltonian with
IBM strengths parametrized by O. On face value it
therefore appears that the Sp(6) model provides direct
microscopic support for the SU(3) limit of the IBM.
However, based on the observation that the SU(3) irre-
ducible representations (A. , O) are not allowed when

or Ad & —,
' 0,Nd being the number of D pairs,

Ginocchio rejected the Sp(6) model as a microscopic
foundation of the SU(3) limit of the IBM.

In the IBM, for nuclei with SU(3) dynamical symme-
try, the states in the highest SU(3) representation lie
lowest in energy. When the nucleon pair number
N & —,'A, the highest SU(3) representations and thus the
ground-state rotational band are not allowed in the Sp(6)
model. However, many deformed nuclei with rotational
spectra are in fact found near midshell, i.e., cV = —,

' A. As a
consequence, the Sp(6) model, in its original form, is not
compatible with the SU(3) limit of the phenomenological
IBM.

The rejection of the Sp(6) as basis for the SU(3) limit of
the IBM therefore seems to be justified. However, this
conclusion depends inherently on the interpretation of
the parameters N and A. In the Ginocchio Sp(6) model,

N is interpreted as the total number of nucleon pairs in
the valence shell, while 0 is seen as the pair degeneracy
of the full valence shell. This interpretation corresponds
to the usual IBM interpretation. However, the fermion
dynamical symmetry model (FDSM) of Wu et al. '

adopts a difFerent viewpoint of the Sp(6) model, in partic-
ular as far as the interpretation of X and 0, is concerned.

In the FDSM the total number of nucleon valence
pairs, %, is taken to be the sum of pairs in the normal
parity levels (denoted by N„) and the pairs in the abnor-
mal parity levels (denoted by N, ), with corresponding
pair degeneracies 0,, and 0, . The only difterence be-
tween the Ginocchio Sp(6) model and the Sp(6) limit of
the FDSM is that the allowed SU(3) irreducible represen-
tations are difFerently determined. In the FDSM they are
determined by X, , in the Ginocchio model by X. Furth-
ermore, nucleons in the abnormal parity levels are essen-
tially spectators as far as the dynamics is concermd.
Similar to, but difFerent from, the Ginocchio model, is
that the highest SU(3) representation (2N„,O) is not al-
lowed in the FDSM when X„&—,'0„. However, since
N=N„+N„ the highest SU(3) representation (2N„,O)
may still be realized even if N= —,'Q. Therefore, the ab-
normal parity states, which act as a "sink" for excess nu-
cleons in the normal parity states, provide a mechanism
in the FDSM for allowing the rotational ground band in
nuclei near the midshell (i.e., N = —,

' A ).
We note that the truly collective boson realization of

the Sp(6) algebra, parametrized in terms of N and A, may
simply be introduced on a phenomenological basis. The
parameter iV can then be treated on the phenomenologi-
cal level as a label for the SU(3) representations. When it
comes to the physical interpretation of these parameters,
the interpretation provided by the FDSM seems to be ap-
propriate. We have already mentioned that this interpre-
tation associates the (microscopically linked) parameters
with the norma/ parity levels. The usual tendency in
IBM analyses has been to take all levels into account
whenever parameters such as the total boson number or
degeneracy are involved, but this need not necessarily be
part and parcel of the model.

Geyer et a/. ' ' have in fact demonstrated that the
SO(7) symmetry, first analyzed in the framework of the
FDSM (Ref. 15) and shown to be appropriate for the Pd-
Ru region, can be accommodated within the framework
of IBM dynamical symmetries. The parameters that cor-
respond to the Pd-Ru data are, however, clearly those
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suggested by the FDSM.
From the present work, it follows that the same point

of view may be adopted for the SU(3) limit of the IBM,
namely, to link allowed representations to the number of
valence nucleons in the normal parity states only. It
should be emphasized, however, that the restrictions on
the allowed representations reAected in X„(O,, /3 can
only be inferred from the full Sp(6) algebra. On the fer-
mion level this can be deduced by considering the
stretched state (D ) lp), which is a state in the highest
SU(3) irreducible representation (2X&,0), and using m-
scheme counting in the k-i basis.

On the boson level the same information is of course
guaranteed to be retained by the fact that we are dealing
with an exact mapping of Sp(6) in the expressions
(46)—(53). Explicitly this can be seen in the simplest way
by rewriting (D") in expression (49) as (see also Ref.
33)

Q(Di') =d"(II —2n& 2n, )+—(d d '—s s )d„

—&7s [d d ] "— [dtd ] "s
2

+ 7 [[d"dt]2d ] &—' [d "[dtd ] ]~& (56)

and to consider the state [(D ) ] 'lp). For n&=2 we

simply have

[(D2)r&]&lp) =(D&p'cd& p) (57)

A simple analysis of expression (56) shows that only the
first and last terms will contribute to the state (57). In the
other terms either the Clebsch-Gordan coem. cient
(2A2 —2l22) ( =0) appears, or n, gives zero because no s
bosons are created. Inserting the numerical values for
the remaining Clebsch-Gordan coe%cients one finds

[(D ) ] lp)=n '(n —3)(d ) lo) . (58)

For stretched states [(D ) ] "lp) with larger values of
n& the above considerations simply repeat themselves and
one finds in general

[(D')"]""lp) =0 " (Il —3)

X (0—6) . . [II—3(nz —1)](d ) "lp),

(59)

which explicitly demonstrates that the stretched state
[(D ) ] "lp) will vanish when 0/3 (nz. [Remember
that 0=3(i+—,') takes on the values 3, 6, 9, . . . ]. One
now simply uses Ginocchio's original argument that this
result implies that all the states in the associated (2n&, 0)
representation of SU(3) vanish.

It should be emphasized, however, that this informa-
tion will not be available to the IBM practitioner who
only has the SU(3) generators at his disposal. The ap-
pearance of SU(3) Pauli effects are specifically linked to
the Sp(6) &SU(3) embedding and their role has been vi-
vidly demonstrated by Wu et al. '

At the same time it should be pointed out that the
FDSM view of 5 and D pairs can lead to difficulties.

Halse ' has, e.g. , demonstrated that in the sd shell the
low-lying states of a realistic interaction are almost or-
thogonal to the FDSM candidate states. Whereas one of
course still has to interpret such a result against the back-
ground of effective interactions, it does suggest, as point-
ed out by Halse, that a successful phenomenology (in this
case the FDSM) may not in itself imply that the impor-
tant degrees of freedom have been isolated. (See Ref. 31
for further discussion. )

Since the IBM can be viewed as being on a "more"
phenomenological level than the FDSM, since it is less
committed to a particular microscopic structure, it can,
however, still adopt the interpretation of parameters as
suggested by the FDSM, independently from the FDSM
structure as such. Further work, however, is needed to
determine where and when this interpretation of parame-
ters in the IBM will be appropriate.

VI. CONCLUSION

We have demonstrated how the generalized Dyson
mapping and subsequent truncation to a set of collective
degrees of freedom can be utilized to construct an exact
sd-boson realization of the Sp(6) branch of the FDSM.
This serves as a further explicit demonstration of a gen-
eral result by Kim and Vincent. ' The SU(3) limit of the
FDSM is thereby compared with, and shown to be identi-
cal to, the SU(3) limit of the IBM as far as SU(3) genera-
tors are concerned, although in the FDSM the allowed
representations are determined differently as a result of
the Sp(6)&SU(3) embedding. We suggest that the inter-
pretation of shell-model linked parameters in the phe-
nomenological IBM can be taken over from the FDSM,
with hindsight of course even independently from other
implications of the FDSM. To what extent this should be
done universally in the IBM, requires further investiga-
tions.

Note added. After completion of this work we became
aware of the work of Prochniak and Szpikowski, who
construct the mapping (46)—(53) using the generalized
coherent-state method introduced by Dobaczewski.
They do not, however, discuss any connection with the
FDSM.

We gratefully acknowledge numerous helpful discus-
sions with Fritz Hahne and with Frikkie Scholtz who has
drawn our attention to the construction in the Appendix.

APPENDIX: A CLASS OF SIMILARITY
TRANS FORMATIONS

We illustrate that the simplest generalization of the
similarity transformation employed by Kim and Vin-
cent for the general SO(8) Hamiltonian cannot trans-12

form the Hamiltonian (Hs ~6~) of Eq. (54) into a Her-
mitian one- plus two-body form.

For this purpose we consider the most general trans-
formation f(n„n&) which is a function of the s- and d-
boson number operators only. It sufFices to consider the
effect of this transformation on the non-Hermitian part of
(Hs ~6~ ) in Eq. (54), namely,
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(H" ) = ——&5[G [(d d ) (ss) ]' (x+1)f (n„nd)=2f (n, +l, nd —1) (A4)

+G [(s s ) (dd) ]' 'I

+35[—,(Go+Gz)[(d d") (ds) )' '

=2xf (n, —l, n d+1), (A5)

where x = Go/G2 and where Eq. (A2) has been used in
the last step.

Next, rewrite Eq. (A4) in the form

+6~[(d s ) (dd) ]' 'I . (A 1) (x+1)f (n, —l, nd+1)=2f (n„nd), (A6)

It is clear that the requirement, that
f(n„nd )(Hs„i&i ) f '(n„nd ) be Hermitian, leads to two
equations which f has to fulfill simultaneously. Straight-
forward manipulation gives

x+1
2

(A7)

and combine this result with Eq. (A5). This finally yields

and

Gof (n„nd)=G2f (n, +2, nd
—2)

—,'(Go+Gz)f (n„nd )=Gzf (n, + l, nd
—1) .

Equation (A3) can be rewritten as

(A2)

(A3)

with x = 1 as only solution.
However, when this condition holds, (Hs i6i) is al-

ready Hermitian. The simplest class of similarity trans-
formations which depend on n, and nd only, can there-
fore not transform (Hs i&I) into a one- plus two-body
Hermitian form. Whether any other transformation with
this property exists, remains an open question.
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