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Some years ago, Drisko et al. suggested that the discrete ambiguity often encountered for elastic
scattering optical potentials could be understood as being due to the interior or small-l S-matrix ele-
ments for two "equivalent" potentials differing in phase by 2~, l-by-l. We point out that the absence
of this phase change for peripheral partial waves is equally essential, and suggest that a deeper un-

derstanding of the ambiguity may be achieved by viewing it as a consequence of a farside interfer-
ence between interior and peripheral partial waves. It is this interference which produces the broad
"Airy maxima" of a nuclear rainbow, and we show that a Drisko-type phase-shift increment
6&~{6&+~)for low-l phases relative to the high-l ones is exactly what is needed to shift a farside
rainbow pattern by one Airy maximum, thus providing an equivalent "rainbow-shift" interpretation
of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the
existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-l tran-
sparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why
peripheral reactions have generally not proven helpful in resolving this ambiguity.

I. INTRODUCTION

A. Forward-angle potential ambiguities
in elastic and inelastic data

Recent studies of elastic heavy-ion scattering have
identified several systems, such as ' C+' 0, whose in-
teractions are sufticiently transparent that their elastic
angular distributions alone can eliminate continuous
optical-potential ambiguities. However, if the angular
range of the data is sufficiently restricted (e.g. , to the re-
gion of Fraunhofer oscillations), the elastic data for these
systems do admit discrete ambiguities, and in the few
cases for which corresponding inelastic angular distribu-
tions are available, these discrete ambiguities are found to
persist in them, as well.

These families of equivalent or ambiguous potentials
have all been found via searches on one-channel optical
potentials, or on optical potentials supplemented by
distorted-wave Born approximation (DWBA) inelastic
calculations. Their existence strongly suggests that
equivalent discrete ambiguities would also be found by
coupled-channel searches, but as far as we are aware,
wide-ranging searches of this type have not yet been sys-
tematically attempted. The closely related question of
whether discrete potential ambiguities in elastic data
alone might be resolved by inelastic or transfer data is
currently an open one, to which we return in Sec. VIII
below. Independently of whether these ambiguities occur
in elastic or inelastic data, however, their appearance in
analyses of forward-angle data is a direct consequence of
the "thin-skinned" radial shape of nuclear potentials.

To see this, recall that direct reactions are dominated,
at current heavy-ion energies, by trajectory eAects, and

that trajectories are determined by classical-mechanics
forces, i.e., by the potential derivative dV/dr. For typi-
cal nuclear potentials, of "squarish" radial shape, this
force is largest in the surface region, r =R, and conse-
quently it is the peripheral or grazing trajectories which
are scattered to the largest angles. Hence forward-angle
data are insensitive to the r =R portion of the potential,
and can be fit equally well by two or more such poten-
tials, provided their derivatives diAer only in the surface
regions. It is exactly this insensitivity of forward-angle
data to the surface region which is responsible for the oc-
currence of discrete potential ambiguities in Vo, the po-
tential depth, since changing Vo for a squarish potential
shape changes dV/dr primarily in the surface region.
Exactly which values of Vo are admitted by specific
forward-angle data is determined by an interference or
rainbow phenomenon explained in Sec. IV below.

B. The l-space interpretation
and the (6+n m) farside ambiguity

The above trajectory interpretation of discrete ambi-
guities is clearly a semiclassical one, applicable only when
kR, the number of active partial waves, is large. The
low-energy data available when the first discrete ambigui-
ties were noticed, in the early 1960's, were not amenable
to this type of analysis, and in consequence Drisko,
Satchler, and Bassel' were at that time lead to an alterna-
tive, l-space interpretation of these ambiguities.

These authors made the important observation that the
occurrence of discrete ambiguities for a given target-
projectile system is direct evidence for an important de-
gree of "transparency" of this system, and they suggested
the criterion that potentials V& and V2 are "equivalent"
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(i.e., provide equal-quality fits to the data) if

5(l, V~ ) =5(l, V, )+ n ~

is satisfied by the phase shifts of some lou-l range of par-
tial waves which contribute significantly to the scattering.
We shall refer to this as the (5+nor) criterion. It is pri-
marily the real-potential depth Vo which distinguishes
these two potentials, and Eq. (1.1) implies that, as Vo
varies from Vo, to V02, S(l, Vo)=e ' 0 makes n loops2i5(l, Vo)

around the origin in the complex S-plane (in the
increasing-phase direction if V2 is deeper than V&). It is
precisely for the small-I waves that this is most likely to
occur, since IS(l, Vo)~ is smallest for them: they are the
S-matrix elements closest to the origin, and so can in-
crease their phases by 2m with the smallest possible loops.

For the peripheral partial waves (1+kR), however,
S(l, Vo) is near 1, and is likely to remain there as Vo
varies. The only exception to this is the case in which
deepening the potential moves a peripheral 1-wave reso-
nance downward in energy past the E, of the beam, for
this would indeed cause 5{l,Vo) to increase by n, for a
real potential. However, peripheral-l resonances in a real
potential are very narrow because they lie behind a high
centrifugal barrier, and are inevitably "absorbed away"
by the amount of imaginary potential encountered in
realistic nuclear optical potentials. Consequently the
above authors observed, astutely, that the peripheral
phase shifts do not increase by ~ as Vo varies between
two equivalent values. This raises the interesting possi-
bility that the change which occurs in an angular distri-
bution, as Vo is varied, is caused primarily by a change in
an interference between low and high partial waves.

Our present purpose is to offer evidence that this
indeed appears to be the case. We find that this interfer-
ence occurs exclusively in the farside component of the
scattering amplitude, where it produces the Airy maxima
{A„A2, etc. ) of a nuclear rainbow. We further show
that the Drisko l-space shift 5&~(5i+vr) produces, via
this interference, a farside angular shift 3 ~2 +„
which in turn causes the original angular distribution to
reappear when Voi reaches Vo2. It is precisely this "rain-
bow shift" (of one Airy maximum to the next) which ex-
plains Goldberg's important observation that the ambi-
guity can be resolved if the dark-side falloff of the rain-
bow can be observed, forward of 180. In whatever way
one wishes to view this phenomenon, its most important
physical implication is the one pointed out by Drisko et
al.: the occurrence of discrete ambiguities is direct evi-
dence of low-l transparency.

II. Li+ Ni AT 210 MeV:
A NONRESONANT EXAMPLE

We draw our first example from the angular distribu-
tions recently published by Nadasen et a/. for the elastic
scattering of 210-MeV Li by a variety of targets, which
provide a welcome addition to the growing systematics of
light heavy-ion optical potentials. Figure 1 displays the
data for Li+ Ni, which we choose to examine in detail,
and Fig. 2 shows the "deAection function" of the shal-

lowest complex optical potential which fits the data,
defined as

O(l) =—2Re d6
(2.1)

51 2IO MeV Li+ Ni
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FIG. 1. Data of Nadasen et al. (Ref. 3), together with their
discrete optical-model fits. The dashed curves were fitted only
to the data forward of 27 .

If the real part of the optical potential has no single-
particle or "shape" resonances near the bombarding ener-
gy under consideration, it is often found that this func-
tion is almost identical with the deAection function for
the real part of the potential alone. Since this holds true
in the present case, we feel confident in interpreting Fig.
2 as an accurate indication of which 1 values scatter into
a given angle. In particular, the data we are concerned
with are those forward of 35', which come, according to
Fig. 2, from a combination of the two disjoint angular
momentum ranges I &26 and 1)40. Figure 3(a) shows
the phase shifts Re[5(l)] for three (complex) equivalent
potentials ( Vo =174, 266, and 360 MeV), which fit the
IOI & 35' data equally well. Their cross sections are
shown in Fig. 4(a), a nearside/farside decomposition of
the Vo = 174 MeV case is given in Fig 4(b)., and their full
parameters are provided in Table I. We note from Fig.
3(a) that, in nice agreement with the (5+n vr) criterion,
the phases for l & 40 are nearly identical for all three po-
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0.817
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rainbow minima of their farsides which determine these
discrete Vo values, as we show in the following section.
The Nadasen data actually cover a suKciently extensive
angular range that they uniquely determine an optical po-
tential of the customary six-parameter Woods-Saxon
form, so that no potential ambiguities are found for their
full range of data. However, these authors, realizing the
importance of this uniqueness, took the unusual step of
systematically discarding part of each angular distribu-
tion, by restricting it to a smaller and smaller (forward)

angular range, in order to determine how small this angu-
lar range need be for two or more diferent potentials to
provide acceptable fits.

For all six Nadasen targets (' C, Si, Ca, ' Ni, Zr
and Pb) the unique potentials determined by the full
angular range of the data were of the weak-absorption
type in agreement with previous experience with alpha
particles and other light projectiles. Consequently when
the data were truncated sufticiently, the ambiguities
which appeared were of the discrete type (excepting

Ni 210 MeV
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FIR 3 (a) Real parts of the phase shifts for the equivalent optical potentials A, Az and A3 of Table I which diA'er by approxi
mately m at I ~ 20. Extended-source Coulomb phases are included. (b) Magnitudes of S(l) for the same potentials.
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Pb, for which the angular region measured was very
nearside-dominated), and the authors were able to locate
two or three additional potentials of this type for each
target.

However, the additional potentials found for the Ni
target were strongly absorbing ( W'0) 57 MeV), while
those for all other targets were weakly absorbing. In ad-
dition, if the angular distributions were reproduced accu-
rately for 0 forward of some 0O, then for 0) 00, the new
potentials for C, Si, Ca, and Zr produced angular distri-
butions that were higher than those of the original,
unique, potential, at angles just beyond 00, but the new
angular distributions for Ni were lower, as Fig. 1 shows.
They also correspond to values of Vo which were smaller
than that (174 MeV) of the original potential, while in all
other cases the new Vo's were larger. We consequently
felt it worthwhile to redo a search on the ' Ni data (kind-

ly provided by Dr. Nadasen). This search, done by insist-
ing on a fit out to 00=35 rather than the 27 Nadasen
employed, did in fact produce the low-g fits of Fig. 4(a);
furthermore, it did so with weak-absorption, large-Vo po-

tentials very similar to those found by Nadasen for the
other targets.

The reason behind the apparent discrepancy turned
out to be interesting and important. It is indicated in
Fig. 5, which compares three farside (8 (0) angular dis-
tributions: the farside of the original potential, that of
one of Nadasen's strong-absorption fits, and that of one
of our weak-absorption fits. Consider first the original
Vp = 174 MeV potential fit, which we have purposely
plotted out to angles somewhat beyond Nadasen's trunca-
tion at 27 . We do so to exhibit the fact that this farside
(in common with those for all other targets) shows evi-
dence of a nuclear rainbow, with a shallow Airy
minimum at about 29' and a darkside exponential decay
beyond about 40. As we shall show below, the rainbow
minimum at 29, shallow as it is, is the "driving force"
behind the weak-absorption fits for all Nadason targets,
for all of them show such a minimum, including our
V&=266 MeV fit shown in Figs. 4 and 5. In locating this
potential, in fact, it was essential that the full width of
this farside minimum be included in the angular range
searched, in spite of the fact that this minimum is "lost"
under Fraunhofer (near/far) oscillations in the data
themselves, as Fig. 1 shows. By restricting the angular
range searched to 0 (27, Nadasen by chance truncated
this farside minimum near its center. In this case, it be-
comes ambiguous whether the farside data beyond 27'
will turn up, to define a minimum (as does the original
174 MeV potential), or will simply continue on with un-
changed slope (on a log plot); this is, indeed, just the dis-
tinction between our Vo =266 MeV curve and Nadasen's
V0=55 MeV one. Furthermore, in order to achieve this
smooth farside, with no hint of rainbow, his search was
forced to employ absorption strong enough to damp out
the Airy minimum completely.

In summary, this Airy minimum in the farside arnpli-
tude is found to play a crucial role in determining optical
potential parameters, in agreement with analogous
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FICi. 4. (a) Optical potential angular distributions for the
three equivalent potentials of Table I, which were fitted to the
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MeV potential of (a) (i.e., potential A

&
of Table I).

FIG. 5. Far-side cross sections of three optical potentials
fitted to the data of Fig. 1. The solid and dashed curves (poten-
tials A& and A2 of Table I) were fitted to data forward of 35',
while the dotted curve was fitted to the data forward of 27'.
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findings on other heavy-ion systems. In fact, the impor-
tance of the farside minimum actually goes beyond that
of the systems studied previously, both because the
minimum (actually just a shoulder) itself is so shallow,
and because in this case, unlike those examined in Ref. 6,
it is hidden under the oscillations of the Fraunhofer
crossover.

is reduced to an almost-invisible shoulder at 20', shown in
the farside plot of Fig. 7; it too lies under the Fraunhofer
(near/far) interference oscillations of the data, which con-
tinue to 46 .

IV. RAINBOWS IN 1-SPACE,
AND THEIR RELATION TO (5+n m.)

III. THE RAINBOW-SHIFT INTERPRETATION
OF DISCRETE AMBIGUITIES

With the key role of the Airy minimum thus estab-
lished, we restate the discrete-ambiguity question in
terms of nuclear rainbows: Starting from the original
value VO=174 MeV, why does the fit deteriorate as Vo is
increased, and why do good fits "return" at the magic
values of 266 and 360 MeV7 The answer, fortunately, is
nearly as obvious as the question, and becomes complete-
ly clear from Fig. 6, which shows the full farside angular
distributions for these three potentials. Increasing the
depth of an attractive potential increases its rainbow an-
gle (negatively), thus shifting its farside pattern of Airy
maxima and minima to larger angles. Moving the crucial
first Airy minimum away from 29' will certainly worsen
the fit to the data, but the farside Airy pattern is semi-
periodic, and moving this pattern far enough mill bring
the next Airy minimum to 29', where it restores the fit
(though only for angles forward of about 35', of course).
Exactly this happens at VO=266 MeV, and it happens
again, with the following Airy minimum, at 360 MeV. It
is thus simply the periodicity of the farside Airy pattern
which makes the acceptable Vo values discrete, and the
Airy period is what fixes these magic Vo values. We refer
to this interpretation as the "rainbow-shift discrete po-
tential ambiguity, " and find that exactly the same
phenomenon occurs in Li scattering by the other targets
of Nadasen et a/. Perhaps the most remarkable of these
cases is that of Si, for which the relevant Airy minimum

We thus appear to have two distinct interpretations of
the discrete form of potential ambiguity, one in terms of
phase shifts and the other in terms of a rainbow shift in
angle. The central purpose of our discussion is to demon-
strate that at sufficiently high (i.e., nonresonant) bom-
barding energies, these two interpretations are in fact
identical. At low (resonant) energies, on the other hand,
we find that the rainbow-shift interpretation continues to
hold, whereas in some cases the Drisko or (5+n m) inter-
pretation fails, in a rather curious manner to be discussed
in the following sections.

The nonresonant case will be examined in the present
section, and to do so we begin with a brief review of the
l-space description of rainbow scattering, using the
Li+ Ni case as an example.

As mentioned earlier, we shall call

O(l) =2 Re d5
(4. l)

I l
k sin0 0'( I )

i [25(1)+10] (4.2)

the "deflection function" for a complex potential, if we
find it to be nearly the same function of (real) I whether
the imaginary part of the potential is present or not; this
is true in the present case. As in the example already
noted in Fig. 2, it identifies the ( values which scatter into
a given 0, and the farside amplitude of each such (addi-
tive) contribution to f (0) is given, in the semiclassical ap-
proximation, as

' 1/2

0.0

8 —2.5

b
—5.0

I

]
I ~ I ~

]
1 I

Vo (MeV)

174
. -2ss

——neo

10 0 i s s

7.5

c$
5.0

8
2.5

b

0.0

+ 28S&

210 MeV

V (MeV)
230
.350
490

~ I I
I

I I ~ ~

I
I ~ ~ 1

1

~ I I

—10.0
40 80
C.M. Angle {deg)

I, , „.I,~, , l

80 100 120

—2.5—

5 0 1 t I 1 I l i J \ I l l ~ t I 4 I

0 10 20 30
C.M. Angle (deg)

~ I s ~ a

40
t ~

50 80
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FIG. 7. Farside cross sections for three potentials fitted by
the authors of Ref. 3 to a forward-angle portion (0&30') of
their data.
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where L9 is the measured scattering angle, a positive num-
ber, and 1 is a complex number satisfying 2d5/dl = —8,
as explained, e.g., in Ref. 7. Note that although f (8)
contains 8'(1)—=2(d 5/dl ) as a factor, its magnitude

~f ~

is independent of Re[5(l)]; in fact, if Re[5(l)] changes by
m, without changing the shape of the deflection function

2 Re[5'(1)], this will leave ff„(0)entirely unchanged.
The deflection function of Fig. 2 shows that, in that ex-

ample, it is the amplitudes with l =22 and 1=40 which
contribute to the scattering at 0=29', and since an Airy
minimum (due to their interference) occurs there, they
must be 180 out of phase. Assuming the phase of each
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the circles of (a) onto the Im(S) axis, for potentials 2 l and A2 of Table I. The curves are in phase at I =40 and l =20.
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Re[5(1& )
—5(1& )] (4 4)

increase by m. In the idealized case that d6/dl is in-
dependent of Vo for I & I &, aII phase shifts for I & I & will
then increase by exactly vr. This is precisely the (5+no)
rule, applied to the small-I phases.

We have already seen in Fig. 3(a) how the Re[5(1)]

amplitude to come mainly from the exponential in (4.2),
this requires

Re[25(1& ) —25(1& )+(1& —1& )0]=sr (mod2m), (4.3)

where I & =22 and I & =40 in this case.
If Vo is increased, the deflection function curve will

deepen, moving its rainbow angle to a more negative
value. Imagine for the moment that this could be accom-
plished [via an appropriate change in the shape of V(r)]
in such a way that the wings of the deAection function,
covering the angular range 0 ~ 35', remained unchanged,
with the change occurring only in the intermediate range
26&I &40, corresponding to angles beyond 35. Even
though d5/dl remains fixed in the forward-angle wings,
5(1) itself can increase for 1 &26 by a constant (i.e., 1-

independent) amount as Vo increases. That is, under
these conditions the (1& —

1& )8 term of Eq. (4.2) will
remain constant, at a given 0 forward of 35', but 5(l) may
steepen in the intermediate I range 26&I &40, which is
responsible for angles beyond 35'. In this case,
[5(22)—5(40)] will increase with Vo, and the Airy
minimum will move from 29 to larger angles. [This can
be seen directly from Eqs. (4.2) and (4.3) by noting that
the dominant part of (4.3) is [1& 6—25(1& )], so increas-
ing 5( 1 & ) shifts any function of this argument in the
direction of increasing 8.] If the low-1's change
sufficiently that [5(22)—5(40)] increases by exactly 7r, a
new Airy minimum will have moved to 29', this happens
when Vo reaches 266 MeV, and so restores the fit to the
forward-angle data via a "rainbow shift. " The condition
for discrete rainbow-shift ambiguities is thus that Vo in-
crease just enough that

curve does in fact change for the V0=174, 266, and 360
MeV Woods-Saxon potentials. Re[5(40)], corresponding
to the surface of the interaction region, remains nearly
unchanged, but Re[5(1)] does increase with Vo for lower
I's, and the increase reaches ~ at I =19, near the I-value
corresponding to the 29 minimum. Within the con-
straints of the Woods-Saxon shape it is impossible to
maintain this increase of exactly ~ for all smaller I's,
though it could be accomplished by an appropriate
change in the shape of V(r).

Another way of viewing the same effect is to compare
the full S-matrix elements for two equivalent potentials.
For 1 & 40, the S-matrix elements are small, ~S (1)

~

& 0.04,
but as a function of I in this small-I range, they move
around small circles in the decreasing-phase direction, in
agreement with Fig. 3. Figure 8(a) displays these circles
in the complex S plane (Argand diagram), and Fig. 8(b)
shows their projection onto the Im(S) axis, for the
Vo=174 and 266 MeV potentials. In the intermediate-I
region, the "wavelength in I" is of course shorter for
VO=266 MeV, since its ~Re(d5/dl)~ is greater, but the
two curves come back in phase at I =20, corresponding
to 0=24, again close to the 29' farside Airy minimum.
Exactly the same is found for Re[S(l)], and the same
effect recurs for the Vo =360 MeV case.

In summary, these Li+ Ni data forward of 3S' are
determined by two (disjoint) 1 regions, 1 & 26 and 1)40,
and it is their interference which produces the Airy mini-
ma of a nuclear rainbow in their farside amplitude. As
Vo is increased from 174 to 266 MeV, the phase shifts for
I & 26 all increase by approximately vr, in accord with the
(5+nor) criterion, whereas those for 1)40 remain essen-
tially fixed. This changes the interference between the
semiclassical amplitudes of these two I regions in just
such a way as to shift one Airy minimum to the next (a
shift of some 18' in this case), thus showing that the
5~(5+n~) shift for low 1's (only) is entirely equivalent
to the rainbow-shift interpretation of the discrete poten-
tial ambiguity in this case. As we shall see below, the
essential physical condition for this to be true is that the
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FIG. 9. Cross sections for the three equivalent optical poten-
tials fitted by the authors of Ref. 8 to their data.

FIG. 10. Farside cross sections for the three equivalent opti-
cal potentials of Fig. 9. A11 three fit the Airy minimum at 50'.
The rainbow angle of the dashed curve is well beyond 180'.
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bombarding energy be sufficiently large that it is higher
than the tops of all potential barriers in the effective po-
tential Vt(r): i.e., the scattering must be above the energy
range of potential or shape resonances.

V. a+ Pb AT 139 MeV: THE RAINBOW SHIFT
AND (5+ n m.) IN THE PRESENCE
OF POTENTIAL RESONANCES

A classical example of discrete ambiguities is the
a+ Pb scattering measured at 139 MeV by Goldberg
et al. over the angular range 0& 80'. The three discrete
fits that they found to their data are shown in Fig. 9, and
the corresponding farside cross sections are shown in Fig.
10. By plotting these farsides well beyond the 80 limit of
the data, it becomes clear that they are also rainbow-
dominated, like those for Li+ Ni, and that in this case
it is an Airy minimum at 50 which is the principal deter-
minant of the equivalent-potential parameters.

The l-space story is somewhat more complex in this
case, because the bombarding energy is low enough to en-
counter shape resonances of the real part of the optical
potential. This is made evident by Fig. 11, which shows
the l-dependence of the phase shifts resulting from the
real parts only of the three equivalent optical potentials.
They have been calculateed in steps of 0.002 in l, in order
to locate the sharp steps of m. seen at l =43.2 and 45.2,
which mark Regge poles of shape resonances of the po-
tential.

Figure 12 provides the defiection function
O(l)=2[d5/dl] for the real part only of the weakest
( V0=110 MeV) potential. Although its central region,

corresponding to large negative deAection angles, is dom-
inated by two (overlapping) resonances and so is un-
trustworthy as a true deAection function, its wings, corre-
sponding to angles forward of 70 or so, are smooth
enough to identify the I values which scatter into these
angles. In particular, it shows that the critical 50' far-
side Airy minimum arises from a destructive interference
between /=36 and I =43.

Figure 11 shows that 5(36) increases by m as Vo is in-
creased from 110 to 155 MeV, but it also shows that this
same increase in Vo moves a resonance (it is the n =0
one) from l =42 to l =43.2, thus also causing 5(43) to in-
crease by about ~. This violates the condition of Eq.
(4.4), that the difference [5(1& ) —5(l & )] should increase
by m in order to move one Airy minimum to the
next —and indeed an inspection of the cross sections (not
shown here) for these two rea/ potentials indicates that
they are not equivalent at all.

However, these increases of m in 5(36) and 5(43), as Vo

increases, both correspond to excursions of their S-matrix
elements around the full unit circle, as they must for real
potentials. As might be anticipated, the sizes of these Vo

loops decrease drastically when realistic absorption
(NO=21 MeV) is included, since absorption makes
~S~ ( 1 and decouples resonances from this entrance
channel. The resulting Vo loops are illustrated by Fig.
13, where they are calculated by linearly interpolating ten
intermediate values of each of the six Woods-Saxon po-
tential parameters between their values for the 110 and
155 MeV potentials. For clarity, we only show the loops
for I =36, 37, and 38. All those for l & 38 do encircle the
origin and so increase their phases by 2~, while all those

He + Pb, E, b = 139 hleV, W=O

v, (u v)
ii0

~ 0 ~ 0 $55

0
30 35 40

FIG. 11. Phase shifts, including extended-source Coulomb phases, calculated using the real parts only of the three equivalent opti-
cal potentials of Fig. 9. Note that they dier by ~ for l =35. The "steps" mark resonances degenerate at this energy.
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0
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t

He + Pb, E, b
—— 139 Me

-100

FICx. 12. The deAection function O=(2d6/dl) calculated from the solid curve of Fig. 11. The dashed line at —50' marks the posi-
tion of the Airy minimum which is critical in determining the equivalent potentials of Figs. 9 and 10.

for l ~ 38 do not.
I
That for 1 =43 is centered at

(0. 10,0. 17) and so is off scale in Fig. 13.] It is via this
"dance of the loops" that the presence of absorption, to-
gether with an increase in Vo, satisfies the condition that

[5(l & ) —5(I & ) ] increase by vr, and so shifts the rainbow
pattern from one Airy minimum to the next.

VI. d +90Zr AT 11.8MeV: (5+nn)FAILS.
0.015 I I
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FIG. 13. Discrete-ambiguity loops for 1=36, 37, and 38.
The endpoints of each loop mark the value of S(l, Vo) for the
Vo =110and 155 MeV equivalent potentials of Fig. 9; the points
along the loops are calculated by linearly interpolating potential
parameters between these limits. (If the equivalence were exact,
the loops would close. ) Since the 1=38 curve does not encircle
the origin, Sc,'38) does not increase its phase as Vo increases
from 110 to 155 MeV.

The most unusual case of discrete ambiguities we have
encountered so far is the original example cited by
Drisko et al. , for which the (5+nor) criterion seems, in
fact, to fail completely.

The I dependence of the phase shifts for the real parts
only of their two equivalent potentials is shown in Fig.
14, and is seen to be entirely dominated by resonances
(Regge steps), as might be expected at an energy this low.
Between? =0 and I =9 the S(l) for the weaker potential
is seen to make three decreasing-phase circuits around
the unit circle, and that for the stronger potential makes
four.

Because the resonances present are so narrow, they are
very rapidly decoupled from this entrance channel by ab-
sorption, either reducing the S ( l) circles to very small
loops or removing them altogether. Similarly, the SI( Vo)
loops which each S& follows as ( Vo, Wo) is increased from
(59.2, 7.7) to (86.13,9.5) (the values for the Drisko
equivalent potentials) also shrink drastically. To our
surprise, we find by directly calculating these loops for
( Vo, Wo) values interpolated between these limits that, in
fact, none of the Vo loops encircle the origin, so none of
the phase shifts increase by ~ in this case; Fig. 15 shows a
few low-I examples.

What about the rainbow-shift interpretation in this
case'? At this low an energy, where kr =6, ka =1 and 5(l)
is resonance-dominated in the absence of absorption,
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FIG. 14. Phase shifts, including extended-source Coulomb phases, calculated from the real parts only of the two equivalent poten-
tials of Ref. 1, showing a difterence between them of approximately a.
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0.8 d+ Zr, Elb = 11.8 MeV

semiclassical approximations are unreliable, and we have
no trustworthy deAection function for guidance. Howev-
er, the nearside/farside decomposition of the angular dis-
tribution shown in Fig. 16 clearly shows a farside with
Airy-like structure (though of course with the rainbow
angle well beyond 180').

The farside cross section is at least a factor of 10 small-
er than the nearside one at this Coulomb-dominated ener-
gy, but even so we can ask whether the farside minima
are essential in determining the two equivalent potentials.
Figure 17 appears to give a very positive answer, for it
shows that the farside minima line up precisely for the
two equivalent potentials, and are out of phase with those
of a potential midway between them: Peculiarly enough,
the original discrete-ambiguity example fails the (5+nvr)
test, but does show a clear farside rainbow shift. This
might at first sight seem to violate the argument given in
Sec. IV, but in fact the semiclassical amplitude of Eq.

0.1

0.0

10.0

7.5

~ I
I

~

TOTAL
NEAR
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—0.3
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~ a I i s s a I ~ a s a I ~ s

—0.8 —0.1 0
Ret~(l.)l

0.1 0.8 0.3
~ I ~ i e ~ 0.0

FIG-. 15. Discrete-ambiguity loops, for I =0 through 4, for
the two equivalent optical potentials of Ref. 1. The end-points
mark S(l, Vo) for the two equivalent potentials, and the curves
show the path followed as the potential varies between these
limits. Since none of the loops encircle the origin, none of the
phase shifts satisfy 5I~(5&+~) for the two equivalent poten-
tials.

I I I k I

50 100
C.M. Angle (deg)

150

FIG. 16. Nearside/farside decomposition for the cross sec-
tion of the 86.13 MeV potential of Ref. 1. Note the Airy-like
oscillations of the farside, with a period approximately 1.7 times
larger than that of the Fraunhofer oscillations.



RAINBOW-SHIFT MECHANISM BEHIND DISCRETE OPTICAL-. . .

I I I
I

I I I I I I I

I
~ 10—

4

E}

b

C$4

8

—4
0

I I I I I I

50
I

100
C.M. Angle (deg)

150
~ . I

100
C.M. Angle (deg)

I I

50 150

FIG. 17. A comparison of three farside cross sections for
d + Zr. The solid and dashed curves are for the two
equivalent potentials of Ref. 1, and are in phase. The dotted
curve is for the arithmetic mean of these two potentials, and is
seen to be out of phase with the first two: its potential strength
is only great enough to move the Airy pattern halfway to that of
the stronger potential.

FIG. 19. Near-side/far-side decomposition of potential A
&

of
Table II; in spite of the identity of target and projectile, the
scattering amplitude has artificially not been symmetrized about
90'.

VII. IDENTICAL NUCLEI: ' C+' C AT 78.9 MeV

(4.2) is invalid at an energy this low; we know of no sim-
ple argument to explain the appearance of an Airy-like
farside pattern at this nonsemiclassical energy.

Figure 18 demonstrates explicitly that the sensitivity of
the angular distribution to Vo is entirely restricted to its
farside, by comparing the nearsides for the three poten-
tials of Fig. 17. All three curves are essentially identical,
including that for Vo =72.7 MeV, whose farside is exact-
ly out of phase with those of the two equivalent poten-
tials. This same nearside invariance holds true for all the
systems discussed in this article.

A recent study of ' C+' C elastic scattering in the
100 MeV range shows that above 100 Me V the
Fraunhofer oscillations weaken for 0, ~40', while the
oscillations arising from the identity of the nuclei do not
begin until 0, 65, and the intervening angles show
distinct indications of a farside Airy minimum, as noted
in Ref. 4. Below 100 MeV, however, the Fraunhofer and
symmetrization oscillations run continuously in each oth-
er, leaving no clear signs of the possible presence of Airy
maxima or minima. Consequently the data in this energy
range provide an interesting test case: does the rainbow
shift play any role when its Airy pattern, if present, is
buried beneath a combination of Fraunhofer and sym-
metrization oscillations?

Figure 19 provides the nearside/farside decomposition
for the non-symmetrized cross section of the shallower of
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I I
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FIG. 18. A comparison of the three nearsides for the poten-
tials of Fig. 17 I,'including the nonequivalent one). The near
identity of the three curves shows that the effect of the potential
changes is restricted almost entirely to the farside component.
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I I I I

50 150
I

100
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FIG. 20. A comparison of the two (nonsymmetrized) farside
cross sections for the potentials of Table II.
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Airy
order

TABLE II. WS parameters for ' C+ ' C, El,b =78.9 MeV.

a

311.7
383.4

0.58
0.58

0.852
0.817

9.17
9.86

1.402
1.389

0.324
0.337

the two potentials found to fit the data at EI,„=78.9
MeV (i.e., potential 3& of Table II, which is the one
found in Ref. 9 to best fit the potential systematics for
the data studied there). Its farside component shows dis-
tinct minima at 80', 52, and possibly 30, 110', and 160'.
We find analogous minima in the farside components at
the other energies studied in Ref. 9, and from their
motion with energy (not shown here), it is clear that they
are indeed Airy or rainbow minima.

Figure 20 compares the farsides of the two equivalent
potentials specified in Table II, showing that, in spite of
the 20% difference in real depth, the two farsides are re-
rnarkably in phase. This is clear evidence that the
discrete ambiguity, even in this identical-nucleus case, is
due to an underlying rainbow shift. From the systematics
of the farsides provided by the other potentials of Ref. 9
it would appear that the faint minimum at 160' is the first
Airy minimum forward of the dark side for the 2

&
poten-

tial of Table II, and the second minimum for the Az po-
tential. The 52' minimum is then the fourth for the 3,
potential and the fifth for the 3 z potential. It is interest-
ing to note that this 52' minimum does have an effect on
the unsymmetrized angular distribution of Fig. 19, which
is to make the two Fraunhofer minima at 48' and 55
shallower than the adjacent ones. This effect survives
symmetrization, and is present in the data themselves.

In this context we recall that several years ago, Row-
ley, Doubre, and Marty' called attention to the oc-
currence of an unusual 90' minimum in the angular dis-
tribution for elastic ' C+ ' C scattering at 102 MeV. It is
due to a deep farside Airy minimum occurring just at 90,
and was appropriately cited by these authors as strong
evidence for important contributions coming from low
partial waves, just as the occurrence of discrete ambigui-
ties provides independent evidence of the same effect.

VIII. POTENTIAL AMBIGUITIES
IN COUPLED-CHANNEL ANALYSES

To the best of our knowledge, all examples of discrete
potential ambiguities known to date have been found by
optical-potential searches on elastic data alone. The
rainbow-shift explanation of these ambiguities shows
them to be intimately tied to the trajectory concept, and
since trajectories are also an essential feature of other
direct reactions, two related and currently active ques-
tions suggest themselves.

(a) Can supplementary direct-reaction data, like that
for inelastic scattering or transfer, resolve discrete elastic
ambiguities?

(b) If such data are available, are coupled-channel pa-
rameter searches a feasible means of investigating this
question?

In its simplest form, the first question asks whether
Airy maxima also occur in inelastic and transfer farsides,
and whether the relative weightings of their interfering
trajectories are suKciently different from those of elastic
amplitudes that the reaction data might (in the same an-
gular range) distinguish between elastically-equivalent
potentials. In partial answer, we cite three recent studies,
whose conclusion is that inelastic scattering is too
surface-peaked to be of help, but that transfers arise in
part from more deeply-penetrating trajectories, and may
be more sensitive to potential differences.

The first such study, by Nadasen and collaborators, " is
a follow-up to the 210-MeV elastic data described above,
and was designed to ask whether inelastic data for Li on
' C, Si and Ni can, over the same angular range, dis-
tinguish between elastically-equivalent potentials. Their
answer, in this case, is no. Put more quantitatively, for
Li+ Si, their elastically-determined potentials are elast-

ically equivalent out to 0=31 (meaning that good data
beyond 31 could distinguish between them), whereas
these same potentials yield DWBA inelastic cross sec-
tions (to the 1.75 MeV state of Si) which begin to devi-
ate only at 37'. Similarly, for the ' C target the elastic
deviation angle is 30 and the inelastic one (to the 4.44
MeV state of ' C) is 32', so in both cases the inelastic
scattering is slightly less sensitive to potential differences
than the elastic.

A second example is provided by work of Bohlen
et al. ,

' who also measured inelastic scattering to the
4.44 MeV state in ' C, in this case in ' C+' C scattering
at E„b=240 MeV. Their elastic scattering showed a
shallow farside minimum at 40, followed by a broad 50'
maximum, which was sufficien to eliminate ambiguities
and determine a unique optical potential by itself. A
coupled-channel calculation of collective inelastic scatter-
ing then produced essentially this same minimum-
maximum structure for the 4.44 MeV angular distribu-
tion, thus indicating nearly the same interference between
an inner (b = 3 fm) and an outer (b =5.5 fm) trajectory as
in the elastic case. The predicted 50' maximum, howev-
er, was unambiguously missing in the data. A variety of
tests finally lead these authors to the conclusion that the
usual dV/dr collective form factor was simply wrong in
this case, and that an acceptable fit to both the elastic and
inelastic data could be achieved only by the use of an in-
elastic form factor much more narrowly peaked around
the surface, at b = 5 fm, in order to suppress the inner,
b =3 frn, trajectory. Thus in this case the inelastic data
did not aid in determining the entrance-channel optical
potential, but only in specifying more accurately the radi-
al location of the inelastic reaction.

It is perhaps worthwhile noting in passing that the
entrance-channel optical potential which resulted from
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this coupled-channel search on elastic and inelastic data
was nearly identical to the potential which gave the best
one-channel optical fit to the elastic data alone. The only
difference was a 14% reduction in the depth of the imagi-
nary potential —and this in spite of the fact that the cou-
pling of the 4.4 MeV state to the ground state is strong.
This seems typical behavior for these "transparent" sys-
tems: the success of a one-channel optical fit is clear evi-
dence that a coupled-channel fit will not change the en-
trance channel potential significantly, and so will suffer
from the same discrete-ambiguity problem as the one-
channel fit.

Finally, what about transfer reactions? Bohlen et ah. '

also measured both ' C(' C, ' C)"C to two states of ' C,
and ' C(' C, ' C)' C to two states of ' C. DWBA calcula-
tions using their (unique) elastically-determined poten-
tials, provided acceptable fits, with clear suggestions of
the same 40' minimum and 50 broad maximum as in the
elastic angular distributions, thus indicating distinctive
interference between the same b =3 fm and b =5.5 fm
trajectories as in the elastic case.

Satchler has recently also done DWBA calculations of
the ' C(' C, ' C)"C ground-state transfer, at several bom-
barding energies, and finds the greatest sensitivity to po-
tential parameters at the highest energy considered, 85
MeV/A. In particular, two moderately transparent po-
tentials, with ( Vo, Wo) =(129,48) MeV and (174,28)
MeV, both provide acceptable fits to the available 85
MeV/A elastic data out to 0=20, but produce DWBA
transfer angular distributions which differ markedly for
0& 5 . The angular distribution of the second, more at-
tractive, potential deviates from that of the first for 0& 5'

because of the appearance in it of a broad (Airy?) max-
imum centered at 8'. Transfer data at this energy are not
yet available for comparison.

The conclusion thus seems to be that one-nucleon
transfers among these "transparent" nuclei receive
significant contributions from both peripheral and inner
trajectories, and that, although they are the same trajec-
tories as in the elastic scattering, their interference may
be su%ciently different in the elastic and transfer cases to
permit transfer data to distinguish between elastically-
equivalent potentials.

As for the usefulness of coupled channel searches,
these studies suggest that inelastic scattering will be of
little help in eliminating elastic potential ambiguities, and
a coupled-channel search on elastic, inelastic, and
transfer data simultaneously would require a coupled re-
action channel search code; as far as we are aware, such a
code is not currently available.

IX. CQNCI. USK)NS

The occurrence of a farside, or nuclear, rainbow in an
angular distribution is direct evidence for low-I tran-
sparency, for its brightside Airy minima arise from an in-
terference between low-I and peripheral-I contributions to
the scattering amplitude. If only these brightside mini-
ma, but not the darkside falloff; are accessible in a given
angular distribution measurement (either because the
darkside of the rainbow is beyond 180 at that energy, or

because the measurements are restricted to forward an-
gles), more than one optical potential may be found to fit
the data. The "true" farside cross section will exhibit one
or more Airy minima in this case, and the various
equivalent or ambiguous potentials will differ according
to which ones of their Airy minima they choose to put at
the positions of the empirical minima. These different
choices provide what we refer to as the "rainbow shift"
interpretation of the discrete potential ambiguity.

In most of the discrete ambiguity cases we are aware
of, including all those examined in this study, the role of
either the Airy minima or maxima is not at all evident
without a nearside/farside decomposition of their scatter-
ing amplitudes, because they are buried invisibly under
Fraunhofer oscillations. In spite of being invisible, Airy
maxima provide the eminences grises behind discrete am-
biguities, and our essential message is simply that both
Airy maxima and minima are important even when in-
visible. Furthermore, their systematics result directly
from the low-I 5~(6+nn) shift of Drisko et al. , and
they thus serve to emphasize the unusual transparency of
certain light nucleus-nucleus combinations.

On the other hand, if the values of Z, Zz and the ener-
gy are propitious, it is possible for a farside rainbow to
occur "in full view", with its rainbow angle O~ forward
of 180 but beyond the Fraunhofer crossover. In this for-
tunate case the first brightside Airy maximum may be
clearly visible, free of Fraunhofer oscillations, and it was
Goldberg who first called attention to the importance of
its unmistakable (provided very small cross sections can
be measured) darkside falloff, using his o.'+ Ni data as
an example. The angular position of this falloff' (i.e., the
value of the rainbow angle O~) is of course uniquely
determined by the optical potential, and locating it is still
the only known means of resolving discrete ambiguities.

The importance of the Airy minima also suggests the
possible usefulness of an "Airy-order" terminology for
classifying the members of a set of equivalent potentials.
The 3

&
or order-1 potential would be the weakest poten-

tial which fits a given angular distribution, i.e., the one
with the smallest rainbow angle, which puts the first
brightside Airy maximum 3, at the position of the
largest-angle "hump" seen in the data (or in its farside
cross section), whereas the order-2 potential (stronger)
would put its second Airy maximum Az there, and so
have a larger (negative) rainbow angle. It is essentially
just this ambiguity which was recently discussed by the
Berlin group of Stiliaris et al. ,

' who concluded that
their ' 0+ ' 0 data demanded an order-2 potentiIal.

Finally, it is perhaps worth noting that the use of truly
peripheral reactions like collective inelastic scattering
generally cannot help to resolve such ambiguities, for by
definition these reaction amplitudes have even weaker
small-l contributions than do the elastic amplitudes.
Consequently they should exhibit no farside rainbow
effects at all, and to the best of our knowledge, none have
ever been seen. Transfer reaction form factors, on the
other hand, may penetrate deeply enough to aid:in resolv-
ing discrete ambiguities, if measured at angles well
beyond the grazing peak; this possibility has recently
been discussed by Satchler. '
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