Radiative strength functions of germanium from thermal neutron capture

M. A. Islam,* T. J. Kennett, and W. V. Prestwich

Department of Physics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

(Received 18 July 1990)

Thermal neutron capture gamma rays from germanium have been studied using an internal irradiation facility and a pair spectrometer. Energy and intensity of transitions in four germanium isotopes were determined and their level and separation energies inferred. The separation energies are S_n (⁷¹Ge)=7415.95±0.05 keV, S_n (⁷³Ge)=6782.94±0.05 keV, S_n (⁷⁴Ge)=10196.31±0.07 keV, and S_n (⁷⁵Ge)=6505.26±0.08 keV. The E1 reduced strength function, $\langle \Gamma_{\gamma i} D^{-1} E_i^{-3} A^{-2/3} \rangle$, of these germanium isotopes was found to be $(1.8\pm0.5)\times10^{-9}$ MeV⁻³, a value lower than the global average. The *M*1 strength function $\langle \Gamma_{\gamma i} D^{-1} E_i^{-3} \rangle$ of ⁷⁴Ge was estimated to be $(20\pm9)\times10^{-9}$ MeV⁻³ which agrees with the global average. The average $\overline{B(E2)\downarrow}$ of ⁷⁴Ge using the present thermal data and the previous resonance data from literature was found to be $18\pm10e^2$ fm⁴ MeV⁻¹ which agrees with the value predicted by the Axel-Brink hypothesis.

I. INTRODUCTION

An investigation of the electric quadrupole strength throughout the entire mass region has been ongoing here for some time.¹⁻⁷ A search has been underway for primary E2 transitions in various nuclei in order to increase the number of known E2 transitions^{8,9} in thermal neutron capture. A favorable case in which three such transitions can arise is the ⁷³Ge(n, γ)⁷⁴Ge reaction. Although there are resonance data¹⁰ on E2 transitions in ⁷⁴Ge, the thermal data¹¹ are incomplete and lack statistical and calibration precision. Measurements made with the objective of observing E2 transitions require the acquisition of data with sensitivity and precision markedly higher than that encountered in typical (n, γ) studies. The possession of such high-quality spectra permits the extraction of additional and important structure information.

The systematics associated with dipole radiative strength functions of nuclei is useful in nuclear modeling. Such information is available¹⁰ for ⁷⁴Ge but is not available for the isotopes 71,73,75 Ge. With high sensitivity, the probability of failing to observe the transitions is reduced. As a consequence, radiative strength estimation will be less biased toward high values. Recent compilations¹²⁻¹⁵ on ⁷¹Ge, ⁷³Ge, ⁷⁴Ge, and ⁷⁵Ge help in the identification of E1 transitions. The E1 strength function can be determined using these transitions in a combined way. It would be interesting to compare this value with that obtained in the resonance work¹⁰ where fewer unambiguous E1 transitions in 74 Ge were observed for several neutron resonances. The thermal data can also be utilized to explore the influence of the giant dipole resonance (GDR) and giant quadrupole resonance (GQR) on the E1 and E2 strength functions, respectively.

For ⁷⁴Ge, in the compilation of Singh and Viggars¹⁴ there are many cases in which spins of levels are given a wide range. Knowledge of the quadrupole strength might help to reduce the spin range even after considering Porter-Thomas fluctuations.¹⁶

Precise Q values of (n, γ) reactions are used to calcu-

late the odd-even energy shift and for developing more sensitive models of binding-energy systematics. For the isotopes 71,73,75 Ge, the separation energies¹⁷ lack precision and for ⁷⁴Ge, there is a discrepancy in the literature^{11,14,17} by as much as 7 keV. Increasing the precision in the separation energies and resolving the existing discrepancy was another motivation behind the present study. A recently reported calibration standard¹⁸ allowed deduction of separation and level energies with a marked improvement in precision over previous investigations as compiled in Refs. 12–15.

II. EXPERIMENTAL PROCEDURE

The present study was conducted at the tangential irradiation facility¹⁹ of the McMaster University Nuclear Reactor where the flux at the sample position was about 5×10^{12} cm⁻²s⁻¹. After collimation, the capture radiation was observed 5 m from the target by means of a pair spectrometer. The intrinsic germanium detector, centered within a quadrisected NaI(Tl) annulus displayed a resolution (FWHM) of 2.1-5.0 keV between the energy regions 2500 and 8300 keV. For acceptance, an event was required to be in time coincidence with annihilation photons observed in opposite quadrants of the annulus. and in anticoincidence with the remaining quadrants. The latter condition was included in order to suppress events which emit bremsstrahlung²⁰ thereby reducing the background continuum. Encodement of acceptable pair events was achieved through use of a NS621 8^k analogto-digital converter (ADC) with accumulation in a NOVA computer.²¹ Dual-point stabilization was used to ensure the acquisition of drift-free data over the entire counting period.

Initially a 4.0-g sample of 99.9999% pure Ge powder (Aldrich Chemical Company, Inc.) was placed within a graphite capsule, inserted into the irradiation position, and counted for a total of 260 h. This measurement was followed by irradiation of a well-mixed sample consisting of 0.761 g of melamine ($C_3H_6N_6$) and 2.050 g of germani-

<u>43</u> 1086

um in order to obtain both the energy and the intensity calibration through use of the well-studied ${}^{14}N(n,\gamma){}^{15}N$ reaction.¹⁸ This sample was counted for 140 h. Another calibration experiment with a sample of 0.859 g of melamine and 1.481 g of germanium was conducted for 130 h.

III. DATA ANALYSIS

A portion of the $Ge(n, \gamma)$ spectrum above 4700 keV is shown in Fig. 1. Initially, the distortion in the data introduced by small-angle scattering of the annihilation photons within the Ge detector was removed through use of an appropriate digital filter.²² The centroids and areas of the peaks were then determined using a nonlinear leastsquares fitting procedure in which a simple Gaussian line was assumed. The energies of photons from capture by nitrogen¹⁸ were used as primary standards to construct the relation between the energy and pulse height. Energies of prominent isolated transitions in germanium were then determined from this relation and used as secondary standards for the calibration of the pure germanium spec-

FIG. 1. The upper portion of the $Ge(n, \gamma)$ spectrum. The E2 transitions at 9600, 8992, and 7999 keV are indicated. The ordinate is the square root of the counts per channel thus yielding a constant precision.

trum. The fitting was then repeated for the pure sample in order to obtain estimates for the energies of the remaining transitions. A relative efficiency curve was constructed from the melamine data using the published nitrogen intensities.¹⁸ This was then used to calculate the relative intensities for the germanium transitions. Finally, absolute intensities were determined using the total cross sections of the germanium isotopes²³ and the recently published value for the ¹⁴N cross section.²⁴ The energies, intensities, and decay modes of the transitions observed for germanium are listed in Tables I–IV. The energy errors were estimated by combining the uncertainty in the centroid with that from the calibration. The same procedure was used for relative intensity error estimates using the area uncertainty with that of the efficiency curve. For absolute intensities, errors must be adjusted to include the additional contributions arising from the uncertainty in the germanium and nitrogen

FIG. 1. (Continued).

	2	At	osolute ^b	· · · ·	(1 11)
(keV)		In	tensity	Level	(kev)
		(per IC	² <i>n</i> capture)	From	10
7415.58	0.04	1.95 ^e	0.09	7416	0
6915.68	0.04	3.83 ^e	0.16	7416	500
6707.45	0.04	4.80 ^e	0.21	7416	708
6607.45	0.14	0.20	0.01	7416	808
6584.32	0.04	1.10 ^e	0.05	7416	831
6319.99	0.04	1.86 ^e	0.08	7416	1096
6276.25	0.05	2.62	0.14	7416	1139
6116.86	0.04	5.30	0.23	7416	1299
6037.21	0.06	5.49	0.29	7416	1378
5873.16	0.23	0.36	0.02	7416	1543
5817.15	0.04	3.49 ^e	0.15	7416	1599
5672.30	0.27	0.45	0.05	7416	1743
5450.71	0.07	3.50 ^e	0.16	7416	1965
5383.88	0.09	1.62	0.07	7416	2032
5269.60	0.04	0.98	0.05	7416	2147
5191.20	0.11	0.71	0.05	7416	2225
5158.80	0.11	0.87	0.07	7416	2258
5064 ^c		1.04	0.05	7416	2352
4900.49	0.31	0.32	0.03	7416	2515
4989 ^d		0.23	0.03	7416	2427
4951°		0.41	0.08	7416	2465
4881.81	0.06	2.09	0.13	7416	2534

TABLE I. Energy and intensity of gamma rays in ${}^{70}\text{Ge}(n,\gamma){}^{71}\text{Ge}$.

^aError in energy is due to statistics and the calibration.

^bError in absolute intensity is due to statistics and efficiency calibration. To this, a 6% error (Ref. 23) due to the uncertainty in σ_{γ} of ⁷⁰Ge has to be added.

^cCorrection of intensity for interference with ⁷⁴Ge is made with the help of relative intensities from the compilations of Refs. 12 and 14.

^dCorrection of intensity for interference with ⁷⁵Ge is made with the help of relative intensities from the compilations of Refs. 15 and 12.

^eIntensities used to determine the *E*1 strength function.

Energy ^a (keV)		Absolute ^b Intensity (per 10^2n capture)		Level (keV) From To			
6717 ^c		1.43	0.05	6783	67		
6418.60	0.04	4.80^{d}	0.09	6783	364		
6390.17	0.04	10.52 ^d	0.11	6783	392		
6227.89	0.16	1.54	0.14	6783	555		
5867.12	0.23	0.75	0.23	6783	916		
5850.97	0.08	2.21	0.11	6783	932		
5740.21	0.04	4.82 ^d	0.06	6783	1042		
5650.86	0.08	4.14 ^d	0.11	6783	1132		
5518.30	0.04	9.35 ^d	0.17	6783	1264		
4890.71	0.37	0.62	0.17	6783	1892		

TABLE II. Energy and intensity of gamma rays in ${}^{72}\text{Ge}(n,\gamma){}^{73}\text{Ge}$.

^aError in energy is due to statistics and the calibration.

^bError in absolute intensity is due to statistics and efficiency calibration. To this, a 9% error (Ref. 23) due to the uncertainty in σ_{γ} of ⁷²Ge has to be added.

^cCorrection of intensity for interference with 74 Ge is made with the help of relative intensive from the compilations of Refs. 13 and 14.

^dIntensities used to determine the E1 strength function.

Absolute ^b					
(keV)	(per 1	(per 10^2n capture)		To
		1	1		······
9599.96	0.10	0.06	0.003	10 196	596
8992.22	0.18	0.008	0.0001	10 196	1204
8732.01	0.04	1.02 ^g	0.04	10 196	1464
8498.64	0.04	0.80^{g}	0.04	10 196	1697
8030.47	0.04	1.07 ^g	0.05	10 196	2165
7998.76	0.77	0.011	0.003	10 196	2197
7659.43	0.12	0.063 ^e	0.004	10 196	2536
7626.39	0.05	0.27 ^g	0.01	10 196	2569
7526.24	0.21	0.09 ^g	0.02	10 196	2670
7501.90	0.04	0.67	0.03	10 196	2694
7367.16	0.04	0.43 ^g	0.02	10 196	2829
7359.97	0.17	0.073	0.004	10 196	2836
7269.01	0.28	0.12	0.01	10 196	2927
7260.13	0.04	2.54 ^e	0.11	10 196	2936
7222.17	0.04	0.78	0.03	10 196	2974
7161.73	0.05	0.27 ^g	0.01	10 196	3034
7147.15	0.04	0.32 ^g	0.01	10 196	3049
7114.19	0.20	0.18 ^g	0.01	10 196	3082
7091.21	0.04	1.46°	0.07	10 196	3105
7020.36	0.04	0.46	0.02	10 196	3175
6924.33	0.06	0.49	0.02	10 196	32/1
68/9.81	0.07	0.135	0.01	10 196	3316
6859.60	0.28	0.039	0.004		
6840.81	0.23	0.05	0.01	10 106	2271
6814 38	0.30	0.034 0.72°	0.004	10 190	3374
6803 39	0.29	0.72	0.03	10 196	3302
6785 64	0.04	0.04	0.01	10 196	3410
6771 31	0.44	0.04	0.03	10 196	3474
6760.45	0.40	0.04	0.01	10 196	3435
6717°	0110	0.89	0.95	10 196	3479
6692.64	0.19	0.21	0.01		
6680.18	0.07	0.72 ^g	0.03	10 196	3516
6543.76	0.04	0.36 ^g	0.02	10 196	3652
6510.50	0.23	0.11	0.01	10 196	3685
6489.03	0.08	0.36	0.02	10 196	3707
6475.13	0.09	0.089	0.005	10 196	3721
6465.61	0.25	0.048	0.004		
6419 ^c		0.34	0.05		
6405.04	0.09	0.38 ^g	0.02	10 196	3791
6383.24	2.28	0.022	0.003	10.101	
6363.98	0.08	0.45 ^g	0.02	10 196	3832
6360.75	0.10	0.36 ^g	0.02	10 196	3835
6344.00	0.22	0.10	0.01		
6286.13	1.38	0.10	0.01		
6271.19	0.11	0.57	0.03	10.106	2057
6238.36	0.32	0.14	0.02	10 196	3937
6200.19	0.04	0.14	0.03	10 190	3990
6172.07	0.22	0.14	0.01	10 196	4024
6165 54	0.07	0.18	0.01	10 196	4030
6153.13	0.37	0.003	0.001	10170	1050
6129.50	0.59	0.16	0.02	10 196	4066
6057.61	3.01	0.03	0.01	10 196	4138
6029.95	0.61	0.18	0.02		
5991.05	0.07	0.21	0.01	10 196	4205
5978.33	0.11	0.12	0.01	10 196	4218

TABLE III. Energy and intensity of gamma rays in $^{73}\text{Ge}(n,\gamma)^{74}\text{Ge}$.

Enero	v ^a	Absolute ^b Intensity		Level	(keV)
(keV	59 ()	$(\text{per } 10^2 n \text{ capture})$		Erom To	
	/			1 IOIII	
5960.93	0.05	0.33 ^g	0.02	10 196	4235
5902.41	0.07	0.33	0.02		
5884.94	0.57	0.12	0.01		
5857.49	1.21	0.09	0.01	10 196	4338
5840.38	0.57	0.13	0.01		
5827.99	0.14	0.42	0.05	10 196	4368
5787.08	0.05	0.25	0.01	10 196	4409
5782.43	0.06	0.22	0.01	10 196	4413
5755.64	0.10	0.30	0.02	10 196	4440
5745.5 ^d	0.2	0.15	0.01		
5704.29	0.41	0.082	0.005		
5697.90	0.24	0.25	0.02		
5686.66	0.16	0.31	0.04		
5667.98	0.11	0.43	0.04	10 196	4528
5639.27	0.34	0.16	0.02		
5634.75	1.00	0.08	0.01		
5624.45	0.41	0.07	0.01		
5605.31	0.41	0.03	0.01		
5594.12	0.28	0.07	0.02		
5587.47	0.22	0.10	0.03		
5577.25	0.28	0.09	0.02		
5565.45	0.04	0.60	0.03	10 196	4630
5559.84	0.04	0.68	0.03		
5546.00	0.19	0.10	0.01		
5523.29	0.19	0.41	0.04		
5507.55	0.91	0.05	0.04		
5479.79	0.10	0.15	0.01		
5472.61	0.12	0.12	0.01		
5442.95	0.33	0.30	0.05		
5398.25	0.20	0.29	0.03		
5379.02	1.06	0.13	0.01		
5368 ^d		2.45	0.18		
5354.85	0.19	0.33	0.03	10 196	4841
5348.12	0.10	0.56	0.03		
5330.65	0.07	0.17	0.02		
5316.79	0.07	0.07	0.005		
5312.47	0.10	0.06	0.004		
5300.10	0.20	0.03	0.01		
5285.34	0.13	0.12	0.01		
5255.63	0.16	0.11	0.01		
5237.10	0.04	1.42	0.09		
5221.53	0.07	0.35	0.03	10 196	4974
5209.33	0.07	0.31	0.03		
5197.75	0.19	0.22	0.02		
5184.69	0.44	0.20	0.02		
5165.18	0.08	0.61	0.04		
5148.47	0.48	0.09	0.02		
5125.28	0.41	0.03	0.01		
5120.30	0.22	0.07	0.02		
5111.03	0.13	0.10	0.02		
5075.96	0.16	0.16	0.01		
5070.23	0.16	0.20	0.01		
5065 ^f		0.35	0.02	10 196	5131
5053.82	0.18	0.11	0.01		
5049.64	0.11	0.39	0.02		
5034.38	0.14	0.18	0.05		
5025.23	0.10	0.30	0.06		

TABLE III. (Continued).

		Abso	olute ^b		
Energy ^a		Intensity		Level (keV)	
(keV)		(per 10 ² n	capture)	From	То
4972.67	0.18	0.10	0.01		
4952 ^f		0.69	0.04		
4931.31	0.29	0.19	0.03		
4914.30	0.78	0.10	0.06		
1907.82	0.19	0.37	0.05		
4858.71	0.16	0.09	0.06		
1840.78	0.06	0.20	0.02		
1833.62	0.05	0.21	0.03		
4808.84	0.08	0.76	0.25		
4803.43	0.06	0.53	0.23		
4797.80	0.06	0.39	0.16		
4788.00	0.43	0.07	0.02		
4783.69	0.50	0.07	0.02		
4775.19	0.14	0.29	0.02		
4771.03	0.10	0.37	0.03		
4755.59	0.20	0.06	0.01		
4742.36	0.22	0.05	0.01		
4728.41	0.16	0.26	0.03		
4722.22	0.13	0.32	0.03		
4693.91	0.35	0.10	0.02		
4686.25	0.04	0.77	0.05		
4676.54	0.16	0.15	0.03		
4667.62	0.24	0.13	0.02		
2331.85	0.31	0.21	0.04		
2327.82	0.16	0.39	0.05		
2313.59	0.13	0.72	0.08		
2257.74	0.14	0.45	0.04	3721	1
2215.02	0.74	0.25	0.14		
2097.77	0.07	0.56	0.09	2694	
2073.71	0.04	1.17	0.10	2670	
2014.28	0.05	0.63	0.06	3479	1
2010.87	0.30	0.11	0.03		
1971.24	0.14	0.13	0.02	3175	1
1940.48	0.04	2.96	0.18	2536	
1640.66	0.14	0.83	0.19	3105	1
1635.49	0.14	1.11	0.21		
1631.56	0.12	1.18	0.19	2228	
1617.48	0.12	1.33	0.27	3081	1
1513.85	0.23	0.54	0.10		
1509.73	0.05	2.47	0.17	2973	1
1471.61	0.05	3.60	0.29	2936	1

TABLE III. (Continued).

^aError in energy is due to statistics and the calibration.

^bError in absolute intensity is due to statistics and efficiency calibration. To this, a 14% error (Ref. 23) due to the uncertainty in σ_{γ} of ⁷³Ge has to be added. °Correction of intensity for interference with ⁷³Ge is made with the help of relative intensities from the

^eIntensities used to determine the *E*1 strength function.

^fCorrection of intensity for interference with ⁷¹Ge is made with the help of relative intensities from the compilations of Refs. 12 and 14.

^gIntensities used to determine the M1 strength function.

compilations of Refs. 13 and 14.

^dCorrection of intensity for interference with ⁷⁵Ge is made with the help of relative intensities from the compilations of Refs. 15 and 14.

cross sections. Isotopic and decay-mode assignments were made through use of previous studies. $^{12-15}$

IV. RESULTS AND DISCUSSIONS

A. Intensity of transitions

The intensity of the transitions in ⁷⁴Ge found here are, on an average, 70% higher than those reported by Magruder *et al.*¹¹ Later studies²⁵ of ⁷⁴Ge, as well as for the isotopes ⁷¹Ge, ⁷³Ge, and ⁷⁵Ge, were^{12,13,15} normalized to the work of Magruder *et al.*, and hence are not useful in resolving this discrepancy. The need to arrive at a conclusion regarding this very significant difference is clear since several isotopes are involved.

Initially it was decided to repeat the absolute calibration experiment by making and irradiating a second sample. The results of this were in excellent agreement with our original calibration. As a result it was necessary to look at other possibilities for the intensity difference.

The earlier authors¹¹ used the ¹²C and ⁷³Ge cross sections to normalize to absolute intensity while we used ¹⁴N and ⁷³Ge. A check on the cross sections used indicates that complete consistency exists between the two investigations thereby eliminating this as a possibility for the discrepancy. Examination of the spectrum shown in Fig. 1 reveals that there is a strong ⁷⁴Ge transition about 6keV higher in energy than the 4946-keV transition of carbon. If Magruder *et al.* failed to identify this interference and included it with the carbon intensity, their absolute intensity would be too low. An examination of their data suggests the system resolution and response were inadequate to reveal this interference and it seems quite possible that this is the source of the discrepancy.

B. Neutron separation energy

To determine the neutron separation energy of ⁷¹Ge, recoil-corrected energies of 12 primary transitions have been added to the corresponding precisely known energy levels.¹² In the cases of ⁷³Ge and ⁷⁵Ge, six and four primary transitions have been used, respectively, and the energies of the corresponding populated levels were taken from Refs. 13 and 15. For all these nuclei, only strong transitions with no known or potential interference were utilized. To determine the neutron separation energy of ⁷⁴Ge, the average of the recoil-corrected energies of one transition to the first excited state and three pairs of transitions connecting the capture state with this state were used. The average was added to the precisely known first excited state¹⁴ to find a value of the separation energy. This value was again averaged with the separation energies obtained from two primary transitions at 8732 and 8499 keV and the populated levels at 1464 and 1697 keV. Thus, six transitions and three precisely known levels were used in the calculation. As the energies of excited levels populated by the observed primary transitions in ⁷⁴Ge abruptly become high and the precision assigned to highly excited states is not always dependable, the aforementioned route has been adopted.

The values of the separation energies of the four isotopes of germanium obtained in this work are presented in Table V along with those reported previously.¹⁷ The present values for ⁷¹Ge, ⁷³Ge, and ⁷⁵Ge agree well with the published values, but show a marked increase in precision. The S_n (⁷⁴Ge)=10196.3±0.07 keV of this work is much lower than the 10200.0±0.6 keV from the compilation of Wapstra¹⁷ and 10203.1±0.9 keV reported by Magruder *et al.*,¹¹ but is near the value 10196.00±0.15

Absolute ^b					
(keV)		(per 10 ²	n capture)	From	То
6505.09	0.06	2.83 ^e	0.15	6505	0
6252.16	0.04	11.75 ^e	0.51	6505	253
5930.34	0.05	2.91 ^e	0.13	6505	575
5620.09	0.08	2.35	0.11	6505	885
5745°	2	0.61	0.08	6505	760
5368 ^c	2	2.45 ^e	0.14	6505	1137
5088 ^c	1	4.35	0.19	6505	1417
5003.22	0.06	2.27 ^e	0.12	6505	1502
4990 ^d	2	1.97	0.23	6505	1515
4816.86	0.11	3.06	0.85	6505	1688
4747.63	0.08	0.78	0.12	6505	1757
4707 ^c	1	7.14 ^e	0.32	6505	1798

TABLE IV. Energy and intensity of gamma rays in $^{74}\text{Ge}(n,\gamma)^{75}\text{Ge}$.

^aError in energy is due to statistics and the calibration.

^bError in absolute intensity is due to statistics and efficiency calibration. To this, a 16% error (Ref. 23) due to the uncertainty in σ_{γ} of ⁷⁴Ge has to be added.

^cCorrection of intensity for interference with 74 Ge is made with the help of relative intensities from the compilations of Refs. 15 and 14.

^dCorrection of intensity for interference with 71 Ge is made with the help of relative intensities from the compilations of Refs. 15 and 12.

^eIntensities used to determine the *E*1 strength function.

Final	Neutron separation energy (keV)			
nucleus	Present work ^a	Ref. 17		
⁷¹ Ge	7415.95±0.05	7415.7±1.1		
⁷³ Ge	$6782.94{\pm}0.05$	6782.4±0.9		
⁷⁴ Ge	10 196.31±0.07	10200.0±0.9		
⁷⁵ Ge	6505.26±0.08	6505.5±1.6		

TABLE V. Neutron separation energies of germanium isotopes.

^aBased on a ¹⁵N Q value of 10 833.30±0.02 keV (Ref. 17).

quoted by Singh and Viggars.¹⁴

The compiled ⁷⁴Ge separation energy of Wapstra was derived mainly from the resonance work of Chrien *et al.*¹⁰ The latter authors used a single transition, that to the 596-keV state, to deduce a Q value. This transition in the present work is found to be some 3 keV less than that used by Chrien *et al.* An examination of their transition energies reveals that, above 7.9 MeV, values are systematically higher than ours. In contrast, the values below this energy are in general agreement with the present work. This situation may arise from the fact that they calibrated with ⁶⁴Cu which has a maximum energy of only 7.9 MeV, a value well below the energy in question. In contrast, the present study utilized calibration energies up to 10.8 MeV, thereby encompassing the ⁷⁴Ge separation energy.

Singh and Viggars deduced¹⁴ the ⁷⁴Ge separation energy by appropriate combination of both high- and lowenergy transition values that were obtained, via private communication, from Hofmeyr *et al.*²⁵ The transition energies and separation energy, which are tabulated by Singh and Viggars, are in close agreement with the present findings.

C. Level energies

The recoil-corrected transition energies were subtracted from the separation energy of each isotope to obtain the level energies. The values are presented in Tables VI–IX. For ⁷¹Ge, the agreement with the adopted values

TABLE VI. Level energies of ⁷¹Ge.

This work energy (keV)		Ref. 12 energy (keV)		
499.91	0.04	499.904	0.006	
708.16	0.04	708.198	0.005	
808.17	0.14	808.251	0.013	
831.30	0.04	831.296	0.008	
1095.66	0.04	1095.510	0.006	
1139.40	0.05	1139.443	0.007	
1298.80	0.04	1298.737	0.015	
1378.46	0.06	1378.71	0.05	
1542.53	0.23	1542.5	0.2	
1598.55	0.04	1598.534	0.017	
1743.41	0.27	1743.425	0.016	
1965.01	0.07	1965.06	0.07	
2031.85	0.09	2031.9	1.1	

	TABLE VII. Lev	el energies of ⁷³ Ge.		
This v energy	work (keV)	Ref. 13 energy (keV)		
364.03	0.06	364.02	0.05	
392.47	0.05	392.45	0.06	
554.76	0.16	554.91	0.08	
915.57	0.23	915.5	0.3	
931.72	0.09	931.7	0.3	
1042.48	0.05	1043.17	0.19	
1131.85	0.09	1131.86	0.06	
1264.42	0.06	1264.4	1.0	
1892.05	0.37	1892.1	1.6	

is generally very good. The level energies 1095.66 and 1378.46 keV are, however, slightly higher. The precision at 2032 keV has been much improved. The agreement with previously reported values and improvement in precision for some levels of ⁷³Ge is evident in Table VI. The value at 1042 keV seems to be slightly lower than the published values. Improvement of precision in some ⁷⁵Ge levels is achieved. Two new levels at 1688.23 and 1757.47 keV are suggested. These levels are implicitly supported in the work of Groshev *et al.*²⁶ The level energies for ⁷⁴Ge for lower excitation agree with the adopted values. ¹⁴ For energies above 2550 keV it is found that the previously adopted values are systematically lower than the present values.

D. Electric and magnetic dipole strength function

The average gamma-ray reduced strength functions, \bar{k}_{E1} and \bar{k}_{M1} , as defined by Bartholomew *et al.*²⁷ are

$$\bar{k}_{E1} = \left\langle \frac{\Gamma_{\gamma i}(E1)}{E_i^3 D_\lambda A^{2/3}} \right\rangle \tag{1}$$

and

$$\bar{k}_{M1} = \left\langle \frac{\Gamma_{\gamma i}(M1)}{E_i^3 D_\lambda} \right\rangle , \qquad (2)$$

where $\Gamma_{\gamma i}$ denotes the partial radiative width of the capture state for transition *i* and D_{λ} the average spacing of accessible neutron resonances at the neutron binding energies. The partial width may be obtained from the intensity I_i by the relation

$$\Gamma_{\gamma i} = \frac{I_i (\bar{\Gamma}_{\gamma})_J}{F_J} , \qquad (3)$$

where $(\overline{\Gamma}_{\gamma})_J$ is the average total radiative width of resonances with spin J and F_J the fractional contribution from resonances of spin J to the total cross section. The values for $(\overline{\Gamma}_{\gamma})_J$, D_{λ} , and F_J for different isotopes of germanium were taken or calculated from data of Ref. 23 and are presented in Table X.

The reduced strength function \bar{k}_{E1} was determined using 24 transitions identified as electric dipole. Of these, 8 transitions are in ⁷¹Ge, 5 in ⁷³Ge, 5 in ⁷⁴Ge, and 6 in

This work energy (keV)		Ref. energy	14 (keV)	This v energy	This work energy (keV)		Ref. 14 energy (keV)	
595.69	0.10	595.852	0.006	3424.67	0.44	3423.8	0.6	
1203.50	0.18	1204.209	0.007	3435.53	0.40	3436.3	0.9	
1463.75	0.04	1463.76	0.01	3515.81	0.08	3515.45	0.02	
1697.15	0.04	1697.15	0.01	3652.24	0.04	3651.90	0.03	
2165.37	0.04	2165.26	0.01	3685.50	0.23	3685.42	0.12	
2197.08	0.77	2197.97	0.03	3706.98	0.09	3706.8	0.1	
2536.46	0.12	2536.31	0.02	3720.88	0.09	3720.79	0.04	
2569.50	0.06	2569.33	0.02	3790.97	0.09	3790.70	0.08	
2669.66	0.21	2669.63	0.04	3832.04	0.09	3831.99	0.06	
2694.00	0.05	2693.77	0.05	3835.27	0.10	3835.28	0.05	
2828.76	0.04	2828.51	0.01	3957.67	0.32	3957.89	0.09	
2835.94	0.17	2835.94	0.03	3995.85	0.04	3995.77	0.05	
2926.91	0.28	2925.46	0.09	4023.79	0.05	4023.37	0.04	
2935.79	0.04	2935.48	0.02	4030.49	0.17	4030.49	0.10	
2973.77	0.04	2973.48	0.02	4066.54	0.59	4064.68	0.03	
3034.20	0.06	3033.91	0.10	4205.00	0.08	4204.75	0.04	
3048.79	0.05	3048.56	0.03	4217.73	0.11	4217.34	0.05	
3081.75	0.20	3081.32	0.02	4235.12	0.06	4235.3	0.2	
3104.74	0.05	3104.50	0.02	4338.57	1.21	4339.71	0.04	
3175.60	0.05	3175.37	0.03	4368.08	0.14	4367.2	0.5	
3271.63	0.07	3271.25	0.06	4413.64	0.07	4413.46	0.13	
3316.16	0.08	3315.71	0.03	4440.43	0.10	4439.97	0.05	
3374.10	0.36	3372.4	0.5	4528.10	0.11	4527.85	0.05	
3381.59	0.04	3381.46	0.05	4630.63	0.05	4630.37	0.04	
3392.59	0.29	3392.62	0.02	4841.25	0.19	4841.04	0.05	
3410.34	0.04	3409.96	0.03					

TABLE VIII. Level energies of ⁷⁴Ge.

⁷⁵Ge. All these transitions are marked in Tables I–IV. The isotope ⁷⁴Ge has two possible capture states with spins 4⁺ and 5⁺ which necessitates correction for fractional contribution. The experimental value of the *E*1 reduced strength function was found to be $(1.8\pm0.5)\times10^{-9}$ MeV⁻³. This is lower than the global average²⁸ $(2.9\pm0.3)\times10^{-9}$ MeV⁻³. If one averages four *E*1 transitions in ⁷⁴Ge for each of five neutron resonances¹⁰ and then normalizes using the recent value of level density, a value of 2.5×10^{-9} MeV⁻³ is obtained. From the Porter-Thomas distribution alone, the error in this number is 30%. Thus, the present value of $(1.8\pm0.5)\times10^{-9}$ MeV⁻³ agrees well with that obtained from the reso-

TABLE IX. Level energies of ⁷⁵Ge.

This work energy (keV)		Ref. 15 energy (keV)		
252.82	0.09	252.86	0.10	
574.67	0.09	574.38	0.11	
884.94	0.11	885.19	0.10	
1137	2	1133	10	
1416	1	1417	5	
1501.86	0.10	1501.28	0.13	
1688.23	0.14			
1757.47	0.11			
1516	2	1507	10	

nance capture experiment. This agreement shows that, for determining strength function, the thermal data can be used in lieu of resonance data when the latter is unavailable.

The quantity \bar{k}_{M1} was estimated from the 17 cases that could be classified as M1 transitions in ⁷⁴Ge. The transitions used are marked in Table III. The M1 transitions used for this nucleus populate two levels with spin 3⁺, seven levels with spin 4⁺, and eight levels with spin 3⁺ or 4⁺ (exact spin is not known). In the present study, calculations were done assuming these eight levels have either spin 3⁺ or spin 4⁺. Thus two values of the M1 strength function for germanium isotopes were obtained, i.e., $(17\pm4)\times10^{-9}$ or $(23\pm6)\times10^{-9}$ MeV⁻³. (The errors quoted here are due to Porter-Thomas fluctuations¹⁶

TABLE X. Values of F, Γ_{γ} , and D for ^{71,73,74,75}Ge taken or calculated from Ref. 23.

Final Nucleus	Resonance spins	F	$\langle \Gamma_{\gamma} \rangle$ (meV)	D (eV)
⁷¹ Ge	$\frac{1}{2}$ +	1	165	930
⁷³ Ge	$\frac{1}{2}$ +	1	162	960
⁷⁴ Ge	4 ⁺	0.64	200	147
	5+	0.36	200	185
⁷⁵ Ge	$\frac{1}{2}^+$	1	195	3000

only. In ⁷⁴Ge, the width of the transitions populating 4⁺ levels were assumed to have χ^2 distributions with 2 degrees of freedom since they can arise from 4⁺ or 5⁺ capture states. For all other transitions χ^2 distributions with 1 degree of freedom were used.) The average value is taken as $(20\pm9)\times10^{-9}$ MeV⁻³. This value may be compared with the global average of the *M*1 strength function which was reported^{29,28} to be 18×10^{-9} and $(30\pm4)\times10^{-9}$ MeV⁻³. Averaging three *M*1 transitions, each corresponding to five resonances in the resonance experiment, ¹⁰ and normalizing with the current value of level density one can obtain a value of 12×10^{-9} MeV⁻³. The error in this number is 37% from the Porter-Thomas distribution alone. Thus, the present value of \overline{k}_{M1} overlaps with the resonance result.

The experimental value of the E1 strength function, $\langle \Gamma_{\gamma i} D_{\lambda}^{-1} \rangle$, was compared with the prediction of the E1 giant dipole resonance model. Assuming the validity of the Brink-Axel hypothesis³⁰ and a Lorentz shape for the GDR, one obtains

$$\Gamma_{\rm GDR}(E1) = \frac{1}{3\pi\hbar^2 c^2} D_\lambda \sigma_0 \Gamma_0^2 \frac{E_\gamma^2}{(E_0^2 - E_\gamma^2)^2 + \Gamma_0^2 E_\gamma^2} .$$
(4)

The quantities E_0 , Γ_0 , and σ_0 denote the GDR energy, width, and peak cross section. A global fit of the three parameters as a function of the mass number A was arrived at by Schumacher *et al.*³¹ who reported

$$E_0 = 31.2 A^{-1/3} + 20.6 A^{-1/6} \text{ MeV} ,$$

$$\Gamma_0 = 4.5 \text{ MeV} ,$$

$$\sigma_0 = 45.84 NZ / (\Gamma_0 A) \text{ mb} .$$
(5)

Using (4) and (5), the values for the strength $\langle \Gamma_{\gamma i} D_{\lambda}^{-1} \rangle_{\text{GDR}}$ of 71,73,74,75 Ge were computed for relevant photon energies. The average of the ratios of the experimental and predicted values was found to be 1.2 ± 0.3 . In this instance, the GDR model appears to agree well with observation.

E. E2 strength in neutron capture

A primary transition in ⁷⁴Ge populating a 2^+ or 7^+ level will be a pure E2 transition, provided that the *p*wave capture contribution is negligible. Using the data of Ref. 23, the ratio of E1 transitions arising from *p*-wave capture to E2 transitions is found to be less than 0.01 for ⁷⁴Ge. A list of three 2^+ levels in ⁷⁴Ge and the energies and intensities of the corresponding E2 primary transitions are given in Table XI. The primary E2 transitions are indicated in Fig. 1.

To compare the experimental E2 strength with that expected from giant quadrupole resonances, ^{1,32} we estimated the reduced transition probability³³

$$\overline{B(E2)\downarrow}$$
 (per MeV)=1.25×10¹² $f_{E2}(E)$
($e^2 \,\mathrm{fm}^4 \,\mathrm{MeV}^{-1}$), (6)

where $f_{E2} = \langle \Gamma_{\gamma i} D^{-1} E_{\gamma i}^{-5} \rangle$. Here $\Gamma_{\gamma i}$ is the partial E2 radiative width of the capture state for transition *i*, *D* the average level spacing of the resonances of a given spin and parity, and $E_{\gamma i}$ denotes the transition energy.

The absolute intensities of the primary E2 transitions were converted to radiative widths. The values for $\Gamma_{\gamma\gamma}$, fractional contribution F_J , and D used were calculated from the data of Ref. 23 and are given in Table X. The $\overline{B(E2)\downarrow}$ values for the transitions are presented in Table XI. The average $\overline{B(E2)\downarrow}$ is found to be 11 ± 8 $e^2 \text{fm}^4 \text{MeV}^{-1}$. The same quantity on the basis of the data of the resonance experiment¹⁰ is calculated to be $27\pm 16 \ e^2 \text{fm}^4 \text{MeV}^{-1}$. In both cases the error is derived from a combination of counting statistics, calibration, and P-T distribution. The weighted average of the $\overline{B(E2)\downarrow}$ values is $18\pm 10 \ e^2 \text{ fm}^4 \text{MeV}^{-1}$.

The quadrupole strength function, on the basis of the giant resonant model, is the sum of the contribution from the isoscalar and isovector giant quadrupole resonances:¹

$$\left\langle \frac{\Gamma_{\gamma i}}{D} \right\rangle = \left\langle \frac{\Gamma_{\gamma i}}{D} \right\rangle_{T=0} + 1.8 \left\langle \frac{\Gamma_{\gamma i}}{D} \right\rangle_{T=1} . \tag{7}$$

The enhancement of the isovector resonance is due to the effect of the exchange corrections.³⁴ Each of the contributions is given by³²

$$\frac{\Gamma_{\gamma i}}{D} \Big\rangle_{T=0,1} = 7.77 \times 10^{-12} E_{\gamma}^{4} E_{0T}^{2} C_{T} \frac{\Gamma_{T}}{(E_{\gamma}^{2} - E_{0T}^{2})^{2} + \Gamma_{T}^{2} E_{\gamma}^{2}},$$
(8)

where E_{0T} and Γ_T are the giant resonance energy and width, respectively, for isospin *T*. For T=0 and 1, $C=Z^2A^{-1/3}$ and $NZA^{-1/3}$, respectively. The E_0 and Γ_T were calculated from the mass-number systematics compiled by Bertrand.³⁵ The $B(E2)\downarrow$ values were determined using the theoretical $\langle \Gamma_{\gamma i}/D \rangle_{GQR}$ for each of the transitions. The average $B(E2)\downarrow$ is 21.6

TABLE XI. Electric quadrupole strengths in ⁷⁴Ge.

Level energy (keV)	Photon energy (keV)	Intensity (per 10^3n)	$\Gamma_{\gamma i}$ (meV)	$\overline{B(E2)\downarrow}$ expt.	$(e^2 \operatorname{fm}^4 \operatorname{MeV}^{-1})$ calc.
596	9600	0.6	0.188	19.6	21.1
1204	8992	0.08	0.025	3.6	21.5
2198	7999	0.11	0.11	8.7	21.2
		Average: 11±8			

 $e^2 \text{ fm}^4 \text{ MeV}^{-1}$, which is in good agreement with the experimental value of $18 \pm 10 e^2 \text{ fm}^4 \text{ MeV}^{-1}$.

F. Spins of ⁷⁴Ge levels

In the compilation of Singh and Viggars, ¹⁴ many levels have been assigned with tentative spins of 2^+ or 2^+ and above. If a level has spin 2^+ , the corresponding primary transition would be a pure E2 transition. From knowledge of the E2 strength and consideration of the Porter-Thomas variation,¹⁶ it is possible to exclude this spin assignment in some cases. There are some borderline cases where, although it is improbable that the transition is E2 (the transition strength is four to ten times the average E2 strength), we selected only those cases where it is virtually impossible for the transition to be E2(the strength is 15-60 times the average E2 strength). In the compilation, the spin of the levels at 2973, 3271, and 3996 keV is given as (2^+) . The spin of these levels should be higher than 2 and less than 7. The spin at 3081 keV listed as $(2^+, 3^+)$ appears to be (3^+) . The spins of the levels at 2694, 3034, 3316, 3410, 3515, 3721, 3790, 3832, and 4235 keV assigned as $(2^+, 3, 4^+)$ in the compilation should be $(3,4^+)$. The spin of the levels at 2925 and 3707 keV should be (3-5) instead of (2-5). The level at 3958 keV should have spin (3-6) not (2-6).

The level at 1379 keV in ⁷¹Ge has been assigned¹² with spins $(\frac{7}{2}^{-})$, $(\frac{5}{2}^{+})$. This level is populated by the strongest primary tarnsition which is highly unlikely to be an E2 transition. Thus, the level seems not to have spin $(\frac{5}{2}^{+})$. The $(\frac{7}{2}^{-})$ spin assignment is out of the question. Assuming a dipole transition, the possible spin is $\frac{1}{2}$ or $\frac{3}{2}$.

- *Present address: Department of Physics, University of Rajshahi, Rajshahi, Bangladesh.
- ¹W. V. Prestwich, M. A. Islam, and T. J. Kennett, Z. Phys. A **315**, 103 (1984).
- ²T. J. Kennett, W. V. Prestwich, and J-S. Tsai, Phys. Rev. C 32, 2148 (1985).
- ³T. J. Kennett, W. V. Prestwich, and J-S. Tsai, Z. Phys. A **322**, 121 (1985).
- ⁴W. V. Prestwich, T. J. Kennett, and J-S. Tsai, Phys. Rev. C **41**, 1272 (1986).
- ⁵M. A. Islam, T. J. Kennett, and W. V. Prestwich, Phys. Rev. C **41**, 1272 (1990).
- ⁶M. A. Islam, T. J. Kennett, and W. V. Prestwich, Phys. Rev. C 42, 207 (1990).
- ⁷W. V. Prestwich and T. J. Kennett, Can. J. Phys. **68**, 261 (1990).
- ⁸S. Raman, in *Neutron Capture Gamma Ray Spectroscopy*, edited by R. E. Chrien and W. R. Kane (Plenum, New York, 1979), p. 193.
- ⁹J. Kopecky, in Capture Gamma-Ray Spectroscopy and Related Topics (Holiday Inn, World's Fair, Knoxville, Tennessee), Proceedings of the Fifth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, AIP Conf. Proc. No. 125, edited by T. von Egidy, F. Gonnenwein,

V. CONCLUSIONS

Neutron separation energies have been determined with improved precision for four isotopes of germanium. There is a general agreement in values for ⁷¹Ge, ⁷³Ge, and ⁷⁵Ge with those of the literature. The separation energy of ⁷⁴Ge is 4 keV less than the value compiled by Wapstra¹⁷ and slightly higher than that quoted by Singh and Viggars.¹⁴ Level energies determined for all but ⁷⁴Ge agree well, in general, with the published values. For ⁷⁴Ge, the adopted values¹⁴ for energies above 2550 keV appear to be systematically higher than the present value. The absolute intensities of transitions in the four germanium isotopes differ significantly from the reported values.¹²⁻¹⁵

Adopted spins¹⁴ of (2^+) for some of the levels seem to be erroneous on the basis of the intensity of corresponding primary transitions. In some cases, dispersion of possible spins can be reduced.

The reduced E1 strength function $\langle \Gamma_{\gamma i} D^{-1} E_i^{-3} A^{-2/3} \rangle$ of germanium isotopes is found to be less than the global average. The E1 strength function $\langle \Gamma_{\gamma i} D^{-1} \rangle$ is, however, found to agree with the prediction of the E1 GDR model. The M1 strength function $\langle \Gamma_{\gamma i} D^{-1} E_i^{-3} \rangle$ of ⁷⁴Ge is in agreement with the global average. Both these strength functions agree with that obtained from the resonance capture experiments.¹⁰

Three primary E2 transitions are observed in ⁷⁴Ge. The quadrupole strength function of ⁷⁴Ge is found to agree with that expected on the basis of the GQR model.

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada and the province of Ontario for their financial support.

- and Bernd Maier (AIP, New York, 1984), p. 318.
- ¹⁰R. E. Chrien, D. I. Garber, J. L. Holm, and K. Rimawi, Phys. Rev. C 9, 1839 (1974).
- ¹¹A. P. Magruder and R. K. Smither, Phys. Rev. **183**, 927 (1969).
- ¹²M. R. Bhat and D. E. Alburger, Nucl. Data Sheets 5, 1 (1988).
- ¹³M. M. King, Nucl. Data Sheets **51**, 161 (1987).
- ¹⁴B. Singh and D. A. Viggars, Nucl. Data Sheets **51**, 255 (1987).
- ¹⁵L. P. Ekstrom, Nucl. Data Sheets **32**, 211 (1981).
- ¹⁶C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
- ¹⁷A. H. Wapstra and G. Audi, Nucl. Phys. A432, 55 (1985).
- ¹⁸T. J. Kennett, W. V. Prestwich, and J. S. Tsai, Nucl. Instrum. Methods A 249, 366 (1986).
- ¹⁹L. Nicol, A. M. Lopez, A. Robertson, W. V. Prestwich, and T. J. Kennett, Nucl. Instrum. Methods 87, 263 (1970).
- ²⁰A. Robertson, G. C. Cormick, T. J. Kennett, and W. V. Prestwich, Nucl. Instrum. Methods **127**, 373 (1975).
- ²¹G. C. Cormick, M.Sc. thesis, McMaster University, 1975.
- ²²T. J. Kennett, W. V. Prestwich, and R. J. Tervo, Nucl. Instrum. Methods **190**, 313 (1981).
- ²³S. F. Mughabghab, M. Divadeenam, and N. E. Holden, Neutron Cross Sections (Academic, New York, 1981), Vol. 1.
- ²⁴M. A. Islam, T. J. Kennett, and W. V. Prestwich, Nucl. Instrum. Methods A 287, 460 (1990).

- ²⁶L. V. Groshev, L. I. Govor, and A. M. Demidov. Bull. Acad. Sci. USSR, Phys. Ser. 36, 753 (1973).
- ²⁷G. A. Bartholomew, E. D. Earle, A. J. Ferguson, J. W. Knowles, and M. A. Lone, Adv. Nucl. Phys. 7, 229 (1973).
- ²⁸C. M. McCullagh, M. L. Stelts, and R. E. Chrien, Phys. Rev. C 23, 1394 (1981).
- ²⁹L. Bollinger, in Proceedings of the International Conference on Photonuclear Reactions and Applications, Asilomar, 1973 (U.S. Atomic Energy Commission Office of Information Services, Oak Ridge, Tennessee, 1973), Vol. II, p. 783.
- ³⁰P. Axel, Phys. Rev. **126**, 671 (1962); D. M. Brink, Ph.D. thesis, Oxford University, 1955.
- ³¹M. Schumacher, U. Zurmuhl, F. Smend, and R. Notle, Nucl. Phys. A438, 493 (1985).
- ³²M. A. Islam, Ph.D. thesis, McMaster University, 1982.
- ³³M. A. Lone, in *Neutron Capture Gamma Ray Spectroscopy*, edited by R. E. Chrien and W. R. Kane (Plenum, New York, 1979), p. 161.
- ³⁴M. W. Kirson, Nucl. Phys. A337, 194 (1980).
- ³⁵F. E. Bertrand, Annu. Rev. Nucl. Sci. 26, 457 (1976).

²⁵C. Hofmeyr et al., private communication.