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The free two-nucleon W matrices are studied for a number of two-nucleon channels, including
coupled channels, and over a range of laboratory energies to 250 MeV. For realistic interactions
these W matrices are shown to be simple, smooth, and real functions of (half-on-shell) momenta.
The free two-nucleon t matrices are expanded in separable form by the W matrices and the (fully
off-shell) remainder matrices left thereby should have a negligible effect in any (low-energy) few-

body calculation.

I. INTRODUCTION

Microscopic theories of the structure of and reactions
from nuclei are predicated upon two-nucleon interactions
occuring within the nuclear medium. For bound-state
studies the relevant quantities are the two nucleon G—
matrices while for scattering conditions the (complex)
two-nucleon t matrices are required. Ignoring nuclear
medium modifications those matrices are solutions of
Lippmann-Schwinger (LS hereafter) equations. Medium
modifications due to Pauli blocking and an average back-
ground field in which those nucleons propagate are very
important, and there the G and t matrices are defined by
variations from the LS equations; for example, the Bethe-
Goldstone equations. Such medium corrections are not
expected to be severe for few-body systems whence the
LS solutions are appropriate as input to the Faddeev
equations for three- and four-body problems. ~ Therein,
however, one needs those solutions for a range of energies
that spans both the negative (bound) and the positive
(scattering) regimes. This causes the technical difficulty
of having a homogeneous equation whenever the relevant
energy is less than zero and inhomogeneous ones with
poles in their energy denominators whenever the rele-
vant energy is positive. ~ 3 Of course, the conventional
approach makes this of no consequence since by using
principal-value integration to obtain the (purely real) re-
action matrices (R matrices hereafter) one needs only
to use unitarity and the Heitler equation to specify the
(complex) t matrices. But this technical difTiculty can
be removed by a recently developed formalism in which
the LS equation is modified so that both bound and con-

tinuum cases involve solutions of nonsingular, real but
inhomogeneous integral equations, the solutions of which
are the 6' matrices.

Of possibly greater significance however, is the fact,

that the t matrices required in few-body calculations
are defined as a separable product of (half off' shell) W
matrices4 plus remainder (X) matrices. Those X ma-

trices are exactly zero half oft' shell. Thus if conditions
permit one to ignore the X matrices, the separable rep-
resentation of t matrices that result by approximation is
very convenient to use in few-body calculations.

In this study we have extended previous work to in-
clude the coupled two nucleon channels and consider the
W and X matrices for a select set of energies and for
the Reid soft core potential, the more realistic param-
eterized Paris interaction, s and for the (S-wave) model
interactions of MalAiet and Tjon. A brief review of the
defining integral equations and of the interrelationships
between the various two nucleon matrix sets is given in
the next section and our calculated results are presented
and discussed in the ensuing sections.

II. DERIVATION OF W AND X MATRICES

In momentum space and after angular momentum pro-
jection, the LS equations reduce to a set of (coupled)
channel equations in the magnitudes of momenta. With
L* designating a complete XN channel set of quantum
numbers (i.e. Jl 'ST) whenever necessary, the 1D LS
equations are

(2
tI.I (p', p; E) = VI.I. (p', p) —

l

— ):i, vr

q2dq
Vl.t(p', q)tel. (q, J; E),

q~ —E

for any pair of momenta p and p'. The energy E may be positive or negative with the former giving a pole via the
denominator at the on-shell momentum, k, where

/Ei = k~. (2.2)
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A conventional approach to the scattering problem is then to solve the reaction matrix equations

R«(p', p;E) =V«(p', p)-
I

—I).P, V«(p', q)R«(q, p;E),
q'&q

4&) , 0
(2.3)

wherein P denotes the principal value integration. These reaction matrices (for real VL, I, ) are purely real and relate
to the positive-energy, t-matrices by unitarity and the Heitler equation, viz. ,

$LL' (p 1 pi E) = RLL'(p, pi E) —Rk ) RL/(p i ki E)tlL' (k) pj ). (2 4)

In the W-matrix formalism, one considers a momentum scaled interaction term, viz. ,

LI
UL, L,I(p', p) = p VLL~(p'& p)

to define W-matrix equations

(2.5)

(2bW«(p', p;E) = U«(p', p) ~

——~)
q'+'dq

(UL, i (p', q) —Ul, i (p', k) ) Wil. (q, p; E) . (2.6)

Therein there is no divergence in the integral as the kernel goes to zero as q approaches k. The f'V matrices are
real and solutions can be found by the same methods of integration irrespective of whether the energy is positive or
negative. In terms of these W matrices, it can be shown that

t L,r. (p', p; E) = p W«(p', p; E) —
~

—
~ ) Wr, i (p', k; E)O' '

Fi, ,
' (E)p

ll'

i'+ 2dq
Wi l, (q, p; E)

q2 —E (2.7)

in which Fi&, (E) is the inverse of the Jost type function which satisfies

Fii(E)=bii +
~

—ik Wii (q, k; E).
q2

(2 8)

The t-matrix equation [Eq. (2.7)] can be recast into the convenient form

/LL (p ~pjE) = XLL (p ~pi ) + ) L/(p, i ) {Wii, (» j ) i I (E)) WL 1 (p, kjE)~ (2.9)

in which

Aii (E) = k'F, , '(E)
and the remainder matrix is given by

(2.10)

XL,L,i(p', p; E) = p i WL, L, i(p', p; E) —) WL, i(p', k; E)W&iI (k& k; E)WiIL, I(k, p; E) (2.11)

Details are given in the Appendix. This remainder term
vanishes identically half on the energy shell whence the
t-matrix equation [Eq. (2.9)] is then simply

tive and negative energies, with the latter having the ad-
ditional requirement that when determining the bound-
state energy (Ell ( 0), we must find the zero determinant
of

tlL&(p, k; E) = ) WLi(p, k; E)AiL, (E)1.
j

(2.12)
detlFii (Ea) I

= o (2.13)
Thus since R'- and X-matrix elements are both real, the
complex nature of the t matrices is fixed by the 3ost
solutions and with half-on-shell conditions. Finally, we
note that both the t matrices and the X matrices defined
by Eqs. (2.9) and (2.11) involve the reciprocals of the on-
shell 6' matrices. The singularities that occur at energies
where the W matrices vanish nevertheless cancel as they
must since the t matrices are always finite.

All the above derivation is equally valid for both posi-

with /, l' = J + 1.
One of the purposes of this study was to see whether

or not the W-matrix formalism justifies a form of separa-
ble approximation to realistic t matrices. This is justified
if the remainder matrices are small in comparison to the
actual t matrices themselves at least in an appreciable re-
gion around the on-shell value momentum. We therefore
consider the purely real "correction factor"
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Note that we are concerned with a ratio to the abso-
lute magnitude of the t matrices and with that value at
the specific fully ofI'-shell point in the momentum plane.
Contour plots of these correction factors in contours of
5% of the rnoduli of the t matrices will be given later.

III. RESULTS AND DISCUSSION

From the structure of the integrand in Eq. (2.6) it is
clear that, for large values of the integrating variable and
as the second term has a scale factor of (q/k), there may
be slow convergence in numerical evaluations of the W
matrices. We have used the matrix inversion procedure
as specified by Haftel and Tabakin to evaluate both the
W and R matrices and our investigations do reveal a
much slower convergence in evaluating the former com-
pared to evaluations of the latter. Nevertheless, with a
manageable number of quadrature points, stable values
of the W matrices were achieved for all starting inter-
actions. The number of quadrature points required was
dependent upon the angular momentum (I ) channel also,
so care must be exercised in choice of quadrature points
even with a given starting interaction as one makes eval-

uations for increasing channel quantum numbers.
The half on shell W, R, and t matrices obtained for

the Su, Pq, and St channels at a laboratory energy of
50 MeV and for the Reid and Paris interactions are given

for a set of oA shell momenta in Table I. Those t matrix
values were calculated using both the Heitler equation
and W matrix relations to ensure that the W matrices,
in particular, were correct. Noting that 0.7764 fm is

the on shell momentum value, this table shows clearly
that the 6' matrices can be very large. When that is so,
the Jost-like functions must also be very large to produce
the known (small) values of the f matrix. Therein lies a
second numerical problem when use is to be made of W
matrices; namely that accurate calculations of Dost-like

functions are necessary. The Reid interaction in partic-
ular gives very large values for R' matrices and this is

very evident in the sSq (coupled) channel. The Reid and
Paris W matrix elements are very diA'erent but their cor-
responding R and t matrices are quite similar as they
must be since both interactions give reasonable agree-
ment with the measured phase shifts in these channels
and at 50 MeV (laboratory) energy.

The on-shell values of various 4' matrices and in a
number of uncoupled two-nucleon channels for a range
of energies are given in Table II. The results pre-
sented were calculated starting with the MT-1 and MT-3

TABLE I. The half on shell W, 8, and t matrix values for the Reid and Paris interactions at 50 MeV (laboratory) energy
(k = 0.7764 fm ). The number in parentheses is the power of ten that scales the given value.

g
Sp

Reid Pa.ris
8

0.0098

0.7764

1.4488

2.8801

P
0.0098

0.7764

1.4488

2.8801

S
0.0098

0.7764

1.4488

2.8801

—6.047(3)

—4.738(3)

—1.821(3)

2.744(3)

0.045

2.482

2.137

0.878

—3.805(7)

—1.159(7)

—7.571(5)

3.654(4)

—1.307

—1.024

—0.394

0.593

0.003

0.184

0.158

0.065

—3.198

—2.435

—1.013

1.010

—0.801
—0.636i
—0.627
—0.499i
—0.241
—0.192i

0.363
+0.289i

0.003
—0.000i

0.180
—0.026i

0.155
—0.022i

0.064
—0.009i

—0.680
—1.331i
—0.530
—1.005i
—0.223
—0.416i

0.223
+0.414i

—5.871

—4.615

—1.796

2.387

0.135

6.878

5.137

3.058

2.037(Z)

5.708(1)

—0.385

0.933

—1.276

—1.003

—0.390

0.519

0.004

0.196

0.146

0.087

—2.466

—1.117

0.835

—0.794
—0.619i
—0.624
—0.486i
—0.243
—0.189i

0.323
+0.251i

0.004
—0.001i

0.191
—0.029i

0.143
—0.022i

0.085
—0.013i

—0.655
—1.291i
—0.527
—1.011i
—0.242
—0.456i

0.181
+0.341i
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TABLE II. The on shell values of the R' matrices, for various uncoupled two body channels and the Reid, Paris, and MT-1
interactions. The number in parentheses is the power of ten that scales the given result.

E(lab)

1.0 MeV
MT-1
Paris
Reid

50 MeV

MT-1
Paris
Reid

100 MeV

MT-1
Paris
Reid

200 MeV

MT-1
Paris
Reid

400 MeU

MT-1
Paris
Reid

1000 MeV

MT-1
Paris
Reid

—21.586
—8.370
—8.599(3)

—9.936
—4.615
—4.738(3)

—4.941
—2.729
—2.766(3)

—0.664
—0.485
—5.620(2)

1.880
1.686
1.241(3)

2.488
3.088

—2.oo6(3)

5.561
2.347(l)

6.232
2.318(1)

4.445
3.37O(1)

3.060
3.815(1)

2.116
3.018(l)

1.574
1.275(1)

-0.163
—2.315

—0.557
—7.850

—0.436
—5.986

—0.314
—4.207

—0.174
—2.342

0.047
—0.270

3 p

—2.877
3.683(6)

—3.656
5.020(6)

—1.826
2.609(6)

—0.060
—1.940(4)

1.132
—1.981(6)

1.444
—2.234(6)

3 p

4.737
1.526

6.878
2.482

5.482
2.095

4.436
1.599

3.717
1.042

2.706
0.447

3 D

—0.397
—0.056

—1.562
—0.221

—1.137
—0.148

—0.730
—0.806

—0.387
—0.036

—0.025
—0.009

400

300

I
I

I
I

I

200

100

bJ

CL

I I I I i l

a l s l i I

1 2 3
il s l l i I

2 3

(fm j

FIG. 1. The half on shell W matrices as functions of the off shell momentum anrl with (laboratory) energies of 0.5, 50,
and 200 MeV given by the continuous, dashed, and dotted curves, respectively. These results were all obtained using the Paris
interaction and have units of fm + . The large dots identify the on shell momentum values.
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interactions for the So and Si (uncoupled) channels,
respectively, and with the Reid and Paris interactions
as well. Again, in select channels, the g matrices deter-
mined using Reid's soft core interaction are very large.
The energy variations, and with the exception of the Po
channel, the actual signs of the R' matrices, are very sim-
ilar. Coupled-channel calculations have also been made
and the on shell results for just the sSi + Di coupled
equations case are displayed in Table III. The results are
asymmetric in the channel coupling. Again the Reid in-
teraction values are abnormally large, being many orders
of magnitude greater than those found using the Paris
interaction. The results obtained from the P2 + I"2

coupled channel show similar characteristics.
Half on shell W matrices obtained using the Paris in-

teractions and for laboratory energies of 0.5, 50, and 200
MeV are shown in Fig. 1 by the continuous, dashed, and
dotted lines, respectively. The large dots indicate the
on-shell momentum values. A selection is shown therein
for a range of oA' shell momenta to 5 fm . The chan-
nel quantum numbers are as indicated in the figure. It
is evident that the overall magnitudes of these W matri-
ces decrease in the low momentum range with increasing
laboratory energy but show little change with energy at
the higher oA shell momentum values. Indeed above 2—

3 fm the W' matrices, to a good approximation, can
be taken to be energy independent. The magnitudes
in these channels are quite large, especially in the sSi
(deuteron) channel, stressing again the significant role of
the Jost-like solution in the definition of the t matrices
per Eq. (2.7). Interestingly, these half off' shell variations
are of a structural form that leads to a possibility of their
representation by simple function combinations, e.g. , two
or more Gaussians, with which the use of phenomenolog-
ical, separable t matrices in few-body calculations~ may
be justified. But the remainder matrices must be small,
at least in the regions of off shell momenta that are im-

portant in any application. That region we shall assume
to be a circle of radius 0.5 fm i in the off shell momen-
tum plane and centered about the on shell point at each
and every energy.

The correction factors, as defined by Eq. (2.14) and for
the four two-nucleon channels whose half on shell 6' ma-
trices were presented before, are given in Figs. 2 through
5. Those correction factors are displayed as contour plots
in the fully off shell momentum plane and for six labora-
tory energies between 1.0 and 250 MeV. In each plot the
energy is identified as is the on shell momentum value

(by a large dot). Contour lines of 5, 10, 15, and 25% for
the correction factors are displayed and recall that the

TABLE III. The on shell values of the W matrices, for the Sq + Dq coupled channels and
the Reid and Paris interactions. The MT-3 interaction represents the uncoupled S~ channel. The
number in parentheses is the power of ten that scales the given result.

E(lab)

].0 MeV
MT-3
Paris
Reid

50 MeV

MT-3
Paris
Reid

100 MeV

MT-3
Paris
Reid

200 MeV

MT-3
Paris
Reid

400 MeV

MT-3
Paris
Reld

1000 MeV

MT-3
Paris
Reid

—1.566(l)
4.svv(2)

—3.924(4)

—8.814
s.vo8(2)

-1.1s9(v)

—5.603
1.96O(1)

—7.966 (6)

—2.538
4.708

—8.371(6)

—0.294
1.675

—8.848(6)

0.962
2.564
1.ovv(v)

3D

0.303
-0.000

1.416
—3.473

0.970
—3.982

0.520
—6.669

0.213
—1.465(1)

0.064
—3.ovs(1)

Sg- Dj

—1.768(1)
—0.003

—2.409
5.771

—0.914
3.967

—0.251
4.175

—0.292
4.418

0.035
—5.369

3 3Dg- Sg

—8 ~ 077
2.460(2)

—3.820(1)
6.9S4(6)

—2.654(1)
v. 9v3(6)

—1.478(1)
1.336(V)

—6.822
2.935(7)

—2.797
6.125(7)
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remainder matrices, and therefore the correction factors
are exactly zero half on shell.

The correction factors for the i' channel are shown in
Fig. 2. For laboratory energies of 100 MeV and less there
exist minimal zones of about 0.5 fm in radius about
the on-shell momentum point, whence a separable (W
matrix) approximation to the t matrix in this channel is
reasonable in that energy regime. At energies of 200—250

MeV this is clearly not the case but in that energy region
the iSo t matrix itself is very small (the free NN phase
shift changes sign therein). A similar anomalous effect
is observed with Kowalski —Noyes f ratios whenever they
are used to assess the significance of off-shell properties
of t matrices. Therefore the So channel contribution to
calculations involving that 200-250 MeV energy region
should be small whence use of a convenient separable

1.5—

150 M

0.5— 1.0—

1.0 MeV

1.0—
50 MeV

15——

0.5 1.0—

100 MeV

1.0—
250 MeV

0.5— 1.0—

I

0.5
t

1.0 1.0
t

1.5

&ontonr plots of the correction factor to the separable approximation for the (Paris interaction) go t matrices at
a variety of laboratory energies. The contours shown are 5'70, 10', 15+0, and 25Fo.
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In contrast the 3
, the Pi channel results that are

Fig 4 are all well behav d A ege ave . At all ener ies the

radius about th
oo an small within a circle of 0.5 fm

ou e on-shell momenta. I
free NN hase sh'

a. n this channel the

p ase s ifts are negative and increas
nitude smoothl Th

n increase in mag-

results.
y. e Pi channel ivgives almost identical

Finally, we show in Fi . 5 t
sSq channe

ig. 5 the correction factor for the
c annel. At all energies to 200 MeV the

o p i mall within the 0.5
m selected circles. Only at 25O M

ase s i t is quite small on the energe energy

43

approximation suitably sc l d t
tt t' th hf

sca e o give the stren
oug ormally problema ',

representing small eAects.
y p ematic, is only

Tlhe correction factor for the 3P c

Fig. 3. The
or e o channel is shown in

e results are ver simi a
with the 'S ch

up to 100 MeV. B
un e on s ell momenomenta for energies

e . But in this channel the free NN ha
sma an, as with the So channel,

all then in e
e energy axis in the vicinity of 200 M V 0e . ver-

ew body calculations th' hs, is c annel may not

e oo significant whence a separable a repara e approximation (ne-
e remamder matrices) would be reasonabl .e reasonable.

1.Q— 1.5—
150 Me

0.5— 1.0—

1-0 Me

1.Q—
200MeV

1.0—

1.0 —: 1.5— 250 MeV

0.5— 1.0—

0.5 1.0
p(fm

1

1.Q

FIG. 3. A s for Fig. 2 but for the Po channel
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ontributions to few-body calculations from the
S t matrix for energies aroun e] Hl

hence a separable approxima-be of minor significance wiience a s p

er ies of —2.27, —25, and —50 e

hie. Bartni et a . in
d n-d scattering found minimum in ing entriton an n- sca

d this value and k =for k = 0.655 fm We have use i

m i in our calculations. ln all cases, the negative
energyr results were very muc i e

t 'butions of the remainderener results. The contri u ions

Thus the W-matrix separable approximation o e
interaction is a so val valid at negative energies.

IV. CQNCLUSION

ree two-nucleon interac-The R' matrices of realistic ree
l l ted and are found to be smoothtions have been ca cu a e an

1.0—

0.5— 1.0—

10 MeV

1.5—

0 5— 1.0—

250 MeV

1.0 1.5—

1.0
l

1.0 1.5

th P h lFIG. 4. As for Fig. 2 but for the Pq channel.
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and well behaved in all important (for low energy prob-
lems, i.e. , E ( 250 MeV) two-nucleon channels. The W
matrices are real and defined half on the energy shell and
in terms of which the free two-nucleon t matrices fully oA'

of the energy shell and in each channel are separable; each
to within a remainder matrix.

If the zone of importance in momenta for any use to
be made of these (low-energy) f matrices is a circle of ra-
dius 0.5 fm about the on-shell momentum value, then
we have found that the remainder matrix for the Paris
interaction at least, can be ignored. There are circum-

stances where the correction factors that reflect the rel-
ative size of the remainder matrices are not small in the
selected momentum zone but there the free NN t ma-
trices themselves were very small on shell (the free NN
phase shifts changed sign in the energy region). Thus
we believe that a separable approximation to the t ma-
trices, made channel by channel and therefore retaining
the inherent nonlocality of the fully ofF shell t matrices, is
vindicated. Further the W matrices are in fact the sep-
arable interactions and one should construct convenient
combinations to match them rather than just fitting the

1.0—

05— 1.0—

1.0 Me

1.0— 1.5—

0.5— 1.0—

105

1.0—

l

0.5
l

1.0

P(fm j

l

1.0
I

1.5

FIG. 5. As for Fig, . 2 but for the Sq channel.
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two-nucleon phase shifts. This leads one to believe that
the separation of the t matrices via W matrices is useful

for three-body calculations for which energies above 100
MeV are often unimportant.

APPENDIX
With the state-dependent modified interaction, UI.L,I,

the Lippmann-Schwinger equation, Eq. (2.1), can be re-
expressed as

oo 1+2d
[Ur, i(p', q) —Ur, i(p', k)] ter, (q, p; E)

—(-) )

(2&t«(p', p; E) = » U- (p', p) - I

-
I ):4&) , o

oo I+g d
Ur, i(p', k; E)tir, (q, p; E).

o
(Al)

Then by using the prescription of W given in Eq. (2.6), one obtains

LI (2t«(p J E) —p Wr. r. (p, p;E) = —
I

— ) qi+2dq
U«(p" q) ter, (q, p; E) p%—1. (q, p; E)

q2

k'UL, l P', k; E
l

q
i+2 dq

k 'Wir. (q, p; E)p
q2

(A2)

and we define the integral as
I

This is convenient for use in recasting Eq. (A2) to a form

I«(p;E) =—
I

—
I

q'+2dq
k 'Wii (q, p; E)

q2 —E (A3) +LL (p, p, E)

so that by using the half on shell conditions with Eq. (2.6)
we have

k Ur, r, (p', k)—:k Wr, r, (p', k; E) + k Jr, r, (p', k;E)
—) k' Ur, i(p', k)Iir, (k; E), (A4)

(2b—= -I —I)( ir)

wherein

q'+'dq

E)
U (p' q) & (q, p; E),

q2

(A8)

wherein

Jr.r. (p', k; E)

ql+2dq
Ur, ((p', q) W(r (q, k; E).

q2

(A5)

Using the definition of the Jost functions, Eq. (2.6),
Fq. (A4) can be reordered to the form

&- (p', p;E) =t- (p', p; E) W- (p'—, p;E)p'
+ ),W»(p', k; E)k'F; , ,'(E)—

ll'

xp Ii rl(p; E)
=0 (A9)

for Eq. (A8) to be true for any momentum. Then, as the
integrals Illl. I are independent of the variable p' matrix
inversion again gives

—p Ir, r, l(p; E) = ) Fr, i(E)k W&&i (k, k; E)

) Ur, i(p', k)k Fir, i(E)

= k~ Wr, r, (p', k;E)+ k Jr, r, (p', k;E) (A6).
Matrix inversion enables this to be recast as

Ur, r, (p', k)k = ) Wr. i(p', k; E)k'F~, (E)

since

x tr, i (p, k;E)

—p Wir, (k, p;E),

tr, r, I (p, k; E) = tr, lr (k, p; E)

(A10)

(All)

+ ) k'F, , (E)Jr,&(p', k; E). (A7) Eqs. (A10) and (All) can then be used in Eq. (2.7) to
deduce Eq. (2.9) given in the text.
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