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Inclusive electrodisintegration of the deuteron with polarized beam and target is investigated
in detail. The additional polarization form factors are derived and their decomposition into
multipoles is given. The sensitivity of these form factors to the potential model, to subnu-
clear degrees of freedom, and to electromagnetic form factors is studied in difFerent kinematical
regions.

I. INTRODUCTION

The development of new experimental techniques and
facilities will lead in the near future to more scattering
experiments utilizing polarized electrons and/or polar-
ized targets. Such experiments ofFer the possibility of
new insights into the structure of nucleons and nuclei. In
fact, the use of polarization observables in order to de-
termine the neutron electric form factor G~„ in electron
scattering from light nuclei has already been extensively
discussed. However, apart from the question of de-
termining Gs„or from formal discussions of the nuclear
response functions, a detailed study of the dynamical
properties of these polarization responses is still missing.
In other words, there exists no study on how the vari-
ous polarization observables are afFected by the potential
model, by meson and isobar degrees of freedom and if
such observables would allow one to investigate the dy-
namical features of the nuclear system in much greater
detail t}lail is possible without the use of polarization.

4Vith this work we will begin such a study for deuteron
electrodisintegration utilizing polarized electrons and/or
polarized targets. In a previous paper we have al-
rea, dy presented the general formalism for the exclusive
reaction. However, there we were concerned only with
the influence of G@„on various polarization observables
and considered the deuteron merely as a neutron target.
Here, however, we want to study the more general as-

pects and physical properties of the two-body system,
e.g. , NN potential model sensitivities and the impor-
tance of subnuclear degrees of freedom. Vfe initiate this
study by considering inclusive deuteron breakup which
depends on only 10 form factors instead of the much more
complex exclusive process 2H(e, e'N)N with its 41 indi-
vidual structure functions. The latter will be studied in
the future.

In Sec. II we derive the formulas required for describ-
ing the H(e, e')np process starting from the general for-
malism of Ref. 3. The above-mentioned 10 form factors
will become apparent in the derivation. Explicit expres-
sions in terms of the electromagnetic multipoles will be
given, and we show how each of these form factors can
be experimentally separated by choosing appropriate ex-
perimental conditions. Finally, we study in Sec. III the
various form factors in three kinematical regions which
are selected to represent difFerent areas of sensitivities
to the final-state interaction and to interaction currents
mediated by meson exchange and A-degrees of freedom.

II. FORMALISM

The difFerential cross section for the coincidence reac-
tion which includes both beam and target polarizations
is given in Ref. 3 as
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The scattering geometry is illustrated in Fig. 1. Note
that only longitudinally polarized electrons are consid-

ered. The quantities PI,
l [primed and unprimed quan-

tities, p~„and p&„, are here referred to collectively as

pz„', a similar convention is used for fz and Fz ]
(s) ~ 4 {I)IM

Ap Ap
describe the virtual photon density matrix [(Ap) = (00),
(11), (01), and (—11) correspond to L, T, IT, and TT,

respectively], 6 is the degree of longitudinal electron po-
larization, k1 and k2 denote the laboratory frame mo-
menta of the initial and the scattered electrons, respec-
tively, while q2 is the four-momentum transfer squared

(q = ki —kq). The structure functions f&„(f&„{I)IM {i)OO

f&„) are all calculated in the final n pc.m. sys-tem to
which also 0'„„=(0, P), the spherical angles of the rel-
ative n-p momentum, refers. EAects of the boost from the
laboratory to the c.m. system are included in the virtual
photon density matrix which thus has to be evaluated in
the c.m. system leading to

PI = P 0 ~, PLT = Pg„
(+n

27k 9
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FIG. 1. Geometry of exclusive electron-deuteron scatter-
lIIg &vl th p ol ariz ed electIons aItd GI'IeII ted deu teI oil t aI get.
Relative n-p momentum is denoted by k„„characterized by
angles 8 and P and deuteron orientation axis by d character-
ized by angles Hd and Pq

1):KRI1 )
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qc. m. I 9(ab 2

where P expresses the boost from the lab to the c.m. sys-
tem. The deuteron target is characterized by vector and
tensor polarization parameters P1" and P2", respectively,
and by the angles 0~ and Pd. The latter describe the di-
rection of the orientation axis d of the polarized deuteron
target with respect to the coordinate system associated
with the momentum transfer q (see Fig. 1). d is the
axis with respect to which the deuteron density matrix is
diagonal. Note that, the deuteron density matrix under-
goes no change in transforming from the lab to the c.m.
system, since the boost is along q.

(I)IMThe functions f&„are proportional to either the real
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where t, &, is the reduced transition matrix (i.e. , the

P dependence has been separated) for the process d+e ~
np+ t '. In detail one has

an explicit dependence on the azimuthal angle p in (1).
We define the inclusive form factors F for the re-

Ap
maining terms by
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The introduction of the v~„rM of (9) leads to
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Reference 3 should be consulted for a detailed description
of all the terms in (1).

The inclusive cross section is obtained by integration
over the solid angle 0'„„which eliminates all terms with

F~p
= —~~r, i R'(IA'p ) —(1 —~r, i) lm(IA'„) j,

with
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We will now use the explicit multipole expansion
for the t matrix as given essentially by Fabian and
A renhovel

&8~ I m, = (—)"Q1+ &I o ) =(1mdI p~gm, .)(losm, ~gm, )O "(Aj ls)d& (0),
Llj m~A ~

where

O'&(&~ts) = /4~e"'V&, ,XL(pj),
and

~„'()j) = s~„~,(E'(xj)+ pM'() j))+ &„,c'(&j) .

The only diA'erence to Ref. 9 is that in (16) the deuteron quantization axis is taken along
The integration over 0 can be performed explicitly and one finds

(16)

the momentum transfer q.

The resulting expressions for the multipole decomposition of the form factors are listed explicitly in the Appendix.
We would like to point out that the above result only contains interference terms between transitions which lead

to the same partial wave Aj of the final state. The radial integrals N„(Aj) are real below pion threshold. This is a
reHection of time-reversal invariance. Notice, therefore, that in this case all quantities IA„are real. A collsequellce

of this is that the two form factors FLT and FLT, which survived the integration over p, must vanish. However,
they do not vanish above pion threshold since N, (Aj) can become complex because of 4- and real pion degrees of
freedom.

The inclusive cross section for a polarized beam and target is then given explicitly by
2 0 d 1—1 ~ 1

dk' dO'
= Gc{ pr. Fr. + pTFT + Pi pLTFLT sin pdd io(0d)

+P2 [(pLFL + pTFT )doo(0d) + pLT FLT cos 4'dd i o(0d) + pTT FTT cos 2pdd zo(0d)]

+hPi" [pTFT' doo(0d) + pLTFrT
' cos pdd', o(0d)] + hP2pLT FLT 'sin gdd io(0d) )

= cr(h, P,",P,") (20)

and it depends on the ten form factors: FL, FT, FLT, FL, F&, FLT, F&T, F&, FL&, and FL&, of which FLT
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and I'"&T vanish below pion threshold.
Parenthetically, we would like to mention that at the photon point one has the following equations which relate the

purely transverse form factors to (a) the total photoabsorption cross section ar, , of deuteron photodisintegration for
unpolarized photons and deuterons and to (b) the corresponding photon and target asymmetries of the total cross
section

Md p
I"T2p

(Xt~t; — ET ) 7 2p (21)

y I1P
c T l TT
10 p & T22

T T
(22)

where E and ~ denote respectively the total n-p and the photon c.m. energies.
The form factors in (20) can be separated by introducing various asyrrunetries and by selecting specific polarization

angles Od and Pd. In analogy to the asymmetries we defined for the exclusive deuteron breakups we write the cross
section in the form

o.(h, P,", P") = oo[l + P, n + P n + h(P,"n,„+P n, )], (23)

where

(ro —6c(pL FL + pT FT) (24)

The various asymmetries are functions of the deuteron orientation angles (Od, pd), and they can be obtained from
specific combinations of experimental settings as follows
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2P1"O P
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As usual I"I. and I"I are determined from a Rosenbluth
separation of the unpolarized cross section. Furthermore,
I"&T and I"&& are easily obtained from o.& and n, &, re-
spectively. Since these two form factors vanish below
pion threshold, it follows in this case that, on the one
hand, without electron polarization the inclusive cross
section does not depend on the deuteron vector polariza-
tion and, on the other hand, that for a tensor polarized
deuteron target additional electron polarization does not
carry new information.

Somewhat more complicated is the asymmetry o;d,
since it depends on four form factors. One possibility
for separating them is to use the explicit pd dependence.
For example, choosing consecutively Pd = 0, 2, and+
one finds the following relations:

k(~~(g~ o)+~~(~~ ~))+~~ (4, —
)

(PLFI". + PT FT")doo(Od) (»)
Op
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Furthermore, for Od ——0 one finds th at to the asymmetry

While F&T and F&T can be directly obtained from (30)
and (31), Fg

o and FTo can be separated from (29) by the
Rosenbluth technique. Another possibility rests on the
fact that, d~oo(0&o) = 0 for gd ——cos '(I/~3) = 54.7' and
one finds that I"&T and I"'TT can be determined from
nd (0d, vr/4) and n& (0&, vr/2), respectively, i.e. ,

For the electromagnetic form factors of the one-body cur-
rent we use two models: (i) the dipole fit with the two
choices G~„—0, G~„——D (with p = 5.6) for the neu-
tron electric form factor and (ii) the Gari-Kriimpelmann
model (GK). s Finally, for the meson-exchange-current
form factor we consider, in view of the unresolved con-
troversial issue, both cases G& and I"& . In detail we will
investigate the following efIects: the influence of meson-
exchange (MEC) and isobar currents (IC), the potential-
model dependence, and neutron electric (G~„) and MEC
form factor eA'ects (G& vs F&+).

The form factors E&„are functions of F„& and q,
the relative n-p energy and the three-momentum trans-
fer squared, respectively, both in the c.m. system which
cover a whole plane. Guided by the results of an earlier
study we have chosen three specific kinematical regions
in the E„&-q, plane where the various above-mentioned
efI'ects show up in difIerent ways:

(i) crossing the quasifree peak at a fixed momentum
transfer (q, = 12 fm ), since for the quasifree 1&ine-

(34)

only I'"L and I"T contribute, and thus again the Rosen-
bluth technique will separate them. Finally, the beam-
vector-target asymmetry is used to obtain the remaining
form factors F& and I"LT from o,d at Od

——0 and
Hd = ~/2.

III. RESULTS AND DISCUSSION
0.05—

(I)IM
AVe study the various form factors F&„within a non-

relativistic framework as described in detail in Ref. 9.
The only difference to Ref. 9 is that we do not use the
nonrelativistic approximation in the kinematical factors
of the T matrix as given in Eq. (61) of Ref. 3 but take
instead the relativistic expressions. In the calculation
of the t-matrix elements we use a multipole decompo-
sition and include the final-state interaction up to the
multipole order I. = 6. For the higher multipoles we

use the Born approximation. This was shown to be a
reliable procedure in Ref. 9. For the deuteron and n-p
scattering wave functions we use the same potential mod-
els as employed in our study of the role of G~„ in the
exclusive deuteron breakup, namely the Paris, Bonn
(r-space version), and Argonne Vr4 and V2s potentials.
The latter explicitly includes A-degrees of freedom within
a coupled-channel (CC) approach. Above pion threshold
V28 is modified for the D2 channel in order to give a
better description of this channel as described in Ref. 14.
For the other potential models we use the impulse ap-
proximation (IA) for the calculation of the IC.

In the current operator we include explicit meson ex-
change contributions beyond the Siegert operators, essen-
tially from m- and p-exchange, and isobar contributions.

0,
0 100
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FIG. 2. The form factors ET {full curve), EI. {dash-dotted
curve), ET' (dashed curve), and E&T, (dotted curve) at
g, =12 fm with the Paris potential, and G~ = O. {a)
absolute magnitudes, {b) El. , Eg, and Ez~ relative to Er
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matics the influence of final-state interactions and inter-
action currents such as MEC and IC is minimal;

(ii) near the deuteron breakup threshold (E„z
1.5 MeV), where one has a strong influence from ir- and
p-MEC and to a lesser extent from E-IC on the domi-
nating transverse M 1-matrix elements;

(iii) the A-resonance region (E„z —240 MeV), where
the 6-excitation and thus 4-degrees of freedom play a
very important, if not dominant, role.

Though the nonpolarization form factors I'"I. and I'"z

are already well studied in the literature, at least below
pion threshold, we will include them in our discussion
in, order to have a scale for comparison of the various
possible eA'ects.

For the first kinematical region (q2 =12 fm 2) one
may divide the eight form factors —here I"&& and

F&T are not considered since they either vanish or are

negligible —into two groups. Members of the first group
(FI„FT,FIT. , FT' ) have corresponding counterparts in
electron scattering from a single nucleon W(e, e')N and
should therefore exhibit a typical one-body response in
the quasifree region. In other words, the scalar and vector
form factors are dominated in the quasifree liinematics by
the one-body process, while eA'ects where the two-body
density enters do not significantly contribute. The re-
maining tensor form factors (Fg o, FTs, F&&, F&T ) are
not present in the single nucleon process. Their exis-
tence thus is intimately related to the presence of the
other nucleon in order to form a spin S = 1 system nec-
essary for a tensor polarization. This fact presumably
leads to a diA'erent response, and, therefore, we expect
in contrast to the one-body character of the scalar and
vector form factors that the tensor form factors exhibit
a larger sensitivity to the deuteron D state, to the final

0.20 0.20

0.$5— 0.$5—

0.$0—
I

0.05—

0.$0—
I

0.05—

0 I 1 I I
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200 300 0 100 200 300
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0.$5— 0

0/0—

~EI
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0
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FIG. 3. The form factor F&& at qc ~ =12 fm . (a) influence of final-state interaction and subnuclear degrees of freedom
with Paris potential and Gz~ = 0: normal part (N) consisting of one-body currents plus Siegert operators with inclusion
of final-state interaction (dashed curve), Born approximation (Born) as N but without final-state interaction (dotted curve),
N with additional n' MEC (N+MEC, dash-dotted curve) and further addition of IC (T, full curve). (b) potential model
dependence (Ga„=0): Paris (full curve), Viq (dashed curve), Bonn (dotted curve) and V2s (dash-dotted curve) potential. (c)
influence of G~ (Paris potential): Ga„= 0 (dotted curve), GE„= D (dashed curve), and G~„= GIi (full curve)
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state interaction, and to MEC and IC.
Figure 2 shows the results for the first group. As ex-

pected they all have a peak in the quasifree region. The
peak heights of FT, FT, and F&& are rather similar,
while that of FL, is about a factor of 3 smaller. The shapes
of the curves of F& and F&& are somewhat difFerent
from those of FL, and FT as is evident from the lower
part of Fig. 2. In particular, FT has a stronger fall-ofF
on both sides of the peak.

Since all four form factors are afFected in a rather simi-
lar way by MEC, IC, and final-state interactions, we will

only discuss FLT in detail. We choose this form factor,
because it is the only one with a strong dependence on
G~„. One readily sees this dependence in Fig. 3 where,
for example, the maximum of the peak is reduced by 10%%

and 17%%uo for the D and GR fits, respectively. These re-
sults are not surprising (see also Refs. 2, 4, and 5), since
the relatively small G@„enters linearly in F&& through
interference with GM„and not quadratically as for the
other three form factors of this group. On the contrary,
MEC and IC have only negligible efFects in the peak re-
gion, while in the tails their infIuence can become larger.
Also the various potential models lead only to very small
difFerences over the entire energy range considered. The
tiny influence of subnuclear currents and the almost neg-
ligible potential model dependence are particularly inter-
esting and encouraging with respect to the efFects of the
neutron electric form factor.

Therefore, we will investigate in addition the momen-
tum dependence of this efFect along the quasifree ridge,
i.e. , E„z/MeV=10 q2m /fm ~. However, for this pur-
pose we prefer to directly discuss the asymmetry o;,d.
The results in Fig. 4 show that even at lower momentum
transfer G~„has a significant influence. Furthermore,
increasing momentum transfer the efFects become even
more pronounced. Thus a determination of G~„seems to
be quite possible. However, compared to the asymmetry

A, & of the exclusive process the uncertainties are larger
due to the fact that o.,d does not vanish for G~„——O.

Thus a higher accuracy is required and the extraction of
Q~„ from a,& would have to rely heavier on a theoretical
calculation. Since the dependences on potential models
and on subnuclear degrees of freedom are small, the ma-

jor theoretical uncertainties arise from relativistic efFects
which we have ignored completely in the present work
and which might have a significant influence on the ab-
solute value of n, &. Assuming that relativistic effects are
similar in size for the two form factors F&'T

' and I"T'

one could use the latter one to check their importance by
studying n, &(0, 0), since in this case only FT, which is

almost not affected by G~„, contributes to n+&.

Now we turn to the second group of form factors
(Fl, F&, Fl&, FTT ) Figur. e 5 shows that they are
rather small and that they all exhibit an interference pat-
tern instead of having the typical quasifree peak struc-
ture. Their difFerent behavior is also illustrated in Fig. 6,
where one readily notes a sizeable influence from the
final state interaction even at quasifree kinematics for
F&, F&T, and F&& . Only Fg is not shown because
t, he eff'ects are small. In one case (F&& ) it even leads to
a complete sign change. Furthermore, these form factors
are also quite strongly influenced by MEC and IC. Iso-
bar efFects are particularly large for FTT . The size of
the potential model dependence is rather similar for all
four form factors and for this reason we only show it for
FIT and E&T in Fig. 7. It is evident that there is only
a moderate infj. uence from the potential model.

We would like to point out a specific sensitivity of I"&
to the deuteron D wave. In fact, it is easy to show using
the explicit expressions in Ref. 3 that for a pure 9-wave
deuteron FI vanishes identically in Born approximation.
Final-state interaction and subnuclear degrees of freedom
do not change this result significantly. This is demon-
strated in Table I, where we list for quasifree kinematics

O.IZ

-0.1—
0.08-

0.04—

-0.8—

-0.4
fO ZO

q ~ [fm, ]
30

—0.04
0 100 ZOO

[kfev]
300

FIG. 4. Influence of Q@ on the beam-vector-target asym-

metry n z( , 0) (Paris potential, —quasifree kinematics with

8, = 60'). Notation as in Fig. 3(c).

FIG. 5. The form factors ET (dotted curve), Er, (dashed
curve), Ez& (dash-dotted curve), and Ezz (full curve) at
q, ~ =12 fm (Paris potential, G~ = 0).
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- - - - - - Born

0.2-

0.06— 0.1—

-0.1—

—0.06
0 100 200 300

[Ale V]

-0.3
100

E „[MeV]
ZOO 300

0.6 ------ Born

0.3-

-0.3
0 100 200 300

FIG. 6. Various contributions from final state interaction and subnuclear degrees of freedom to the form factors FP (a),
Fzz' (b), and Fzz (c) at q, =12 fm (Paris potential, G~„= 0). Notation as in Fig. 3(a).

the results for FI with and without the D wave. One
notes for T = X+MEC+IC a reduction by almost an
order of magnitude if the D wave is switched oK In
order to see whether this sensitivity allows one to inves-
tigate the D wave in greater detail, we have studied F&
along the quasifree ridge. However, the difFerences be-
tween difIerent potential models are small and, moreover,
final-state-interaction efI'ects are sizeable. Therefore, de-
spite its sensitivity to the D wave, FI is not suited for
a study of the deuteron D wave. Finally, with respect to
the neutron electric form factor only FL and F&T are
significantly affected as can be seen in Fig. 8 for FIT

Deuteron breakup near threshold is the classical re-
gion for the study of MEC in electron scattering. In
this case it is not sufFicient to use only the vr MEC
consistent with the potential model because also the p
MEC leads to important contributions here. Other ex-
change currents which in principle are required for consis-
tency can safely be neglected because their efI'ect remains
small. For the Paris and Bonn potentials we take the ~

and p parametrization consistent with the corresponding
potential, while for the phenomenological Argonne po-
tentials we use the following parameters: A =5 fm
(monopole), g~~~/47r = 0.95, f~~~ jg~~~ = 6.1, and
A~ =1.3 GeV (dipole).

According to the importance of the MEC contribution
we again divide the eight form factors into two groups.
The first group (F~, FT, FT&", FT', ) contains all the
form factors where the MEC dominated Ml transition
to the So quasi-bound state contributes. If one had only
this transition, one would obtain from (A2), (A5), (A9),
and (A10) of the Appendix the following simple relations

110 20F20 F F2—2

'2

(35)

Figure 9 shows that, the above relations are approxi-
mately fulfilled, thereby underlining the dominance of
this transition. Qf course, these relations are no longer
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0.6 FIG. 8. Infiuence of G@„on the form factor I'z&' a,t
q, =12 fm (Paris potential). Notation as in Fig. 3(c).
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FIG. 7. PoteI&tial-model dependence for the form factors
Ezz' (a) and ET& (b) at q, =12 fm (G~„= 0). Nota, —

tion as in Fig. 3(b).

potential is most evident. For IT this fact has already
been discussed in Ref. 19, where we have pointed out
that this different behavior cannot solely be attributed
to a lower D-state admixture in the deuteron. Another
strong effect of similar size originates from the choice of
the MEC form factor, i.e. , whether one uses F&' or 0&.
This latter effect also depends very much on the model
for Q~„.'

The four remaining form factors (FL, , FI, F&&', F&T )
are shown together in Fig 1l. With increasing momen-
tum transfer they all fall oA' rather rapidly. I"L, exhibits
the weakest and I"IT the strongest slope. For the purely
longitudinal form factors I"l. and I"& there are of course
no MEC contributions. However, even for the two LT
llltcl'ferencc form factol's onc finds only a tiny inhuence
from MEC. This is explained by the fact that the lead-

valid in the region of the minima because here transitions
to other partial waves of the final state become impor-
tant.

In view af the similar behavior of these form factors,
apart kom the minimum region, it is suKcient to discuss
in the following only one of the four form factors, e.g. ,

Fg o. The crucial role of MEC becomes evident in Fig. 10.
One notes that the strong MEC contribution shifts the
minimum of the normal part N to a much higher momen-
tum transfer. With respect to the potential madel depen-
dence, the very different behavior if one uses the Bonn

TAB LE I. The longitudinal tensor form factor I"I at
E~p ——120 MeV and q, ~ =12 fm with and without D
wave in 10 fm.

0 10 ZO 30

D wave

Yes
No

2.33
—0.319

2.36
—0.315

Born

2.42
0.0

Flo. 9. The form factors ET (dotted curve), ET T
(dashed curve), Eg (dash-dotted curve), and ET (full curve)
at E„„=1.5 MeU (Paris potential, G~„=0).
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'P

so ZO 80 0

(b)
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q~ [fm. ]
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Og

I

DEC—FE
V

V

V

y V
1

0 10 ZO

q~[fm, ]
30

FIG. 10. The form factor ET' at E„„=1.5 MeV. (a) and (b) as corresponding parts of Fig. 3, but MEC contribution in (b)
includes also p MEC. (c) dependence on Gs„and MEC form factors: Gz as MEC form factor with Gs„= 0 (dotted curve),
with Ga„——D (dashed curve), and with G@„=GIi (full curve) and Ez as MEC form factor with Gs„= GIi (dash-dotted
curve .

I

p

0 20 30

q~[fm ~]

FIG. 11. The form factors Er (dotted curve), EzT'
(dashed curve), Ei& (dash-dotted curve), and EI. (full
curve) at E „= 1.5 MeV (Paris potential, Ga„= 0). A
sign change is indicated by (—).

ing LT interference originates from the CO, C2, and Ml
multipoles of the transition to the coupled Si- Di state.
Since this is an isoscalar transition, the dominant isovec-
tor MEC do not, contribute even for Ml. We should men-
tion that there is no interference of the strongly MEC
influenced Ml transition to the rSo state as there is no
Coulomb transition to this state.

Since all four form factors are influenced similarly in
size by the various effects we are considering here, we

only discuss Fi in more detail. Figure 12 shows that
there is only a small IC contribution and, furthermore,
that differences due to the various potential models also
remain small. The effect of G~„ is a little more sizeable.
However, apart from the uncertainty due to unknown
relativistic effects, one would not base a determination of
G~„on a measurement of this quantity since the analysis
would be marred by the potential model dependence and
IC contribution which are almost of the same size than
the inQuence of G~~.

For the third kinematical region, the A-resonance re-
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FIG. 12. The form factor El at E»~ ——1.5 MeV. Notations as in Fig. 3. A sign change is indicated by (—).

gion, we divide the form factors into three subgroups.
The first two groups are identical with the two groups
of the second kinematics, while the third group consists
of the additional two form factors F&& and I"&& . As
mentioned previously these vanish below pion threshold,
but might become important in the L-resonance region.
The reason for the separation of the first two groups is
again an Ml transition, but in this case to the D2 par-
tial wave. This transition is most strongly affected by
IC contributions, since only in this case there is a cou-
pling of an NA-partial wave in a relative S state (sS2)
to the NN configuration. VJe will show the various form
factors at a fixed energy E„p:240 MeV but for vary-
ing momentum transfer ranging from the photon point,
i.e. , q, =1.34 fm, up to q, =20 fm 2. The upper
limit is already quite close to the quasifree peak which is
located at q, =24 fm

Figure 13 shows the results for the various form factors
of the first group. I"z and I"T' are similar in size, while

and I~7 are about one order of magnitude smaller.

0.4

O.Z-

~OF zo
T

POI' ~~~
yi 10

—O.Z-

-0.4
0 5 PO $5

q, [f7Tt ]
FIG. 13. The form factors EP (dot ted curve), Ezz

(dashed curve), ET' (dash-dotted curve), and ET (full curve)
at E ~ = 240 MeV (CC with V2s potential, G~„= 0). Note
that the curves for FT and FT& are multiplied by a factor
of 10,
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They all increase towards higher momentum transfer as
the quasifree peak is approached (see Fig. 2). The contri-
butions of MEC and IC are shown in Fig. 14. One finds
for the two stronger form factors (Fz, FT ) the largest
IC effects at lower momentum transfer, e.g. , at q~ =2
frn where one has an increase from IC by a factor of
3 .3 for F~ and by 5 .1 for F& . The large influence from
IC makes F& p ar ticu 1ar 1y interesting for the stu dy of
degrees of freedom.

The other two form factors, though much smaller, also
exhibit strong IC eKects, which for these two cases are
not restricted to the lower-momentum-transfer region .
The potential-model dependence of F~ and FT is rather
unimportant, even if one compares the CC calculation us-

ing V28 with the IA of the other potential models . There-
fore, we only show the potential influence for one of them
(FTio) in Fig. 15. But this might change if one moves
away from the A peak according to what one finds in the

photodisintegration of the deuteron in the 6 region, r4

where the CC results show a considerable sensitivity on
the NA interaction. Compared to FT2o and FT& we find
that F& and F&& —also shown in Fig . 15—are quite sen-
sitive to the method by which A degrees of freedom are
incorporated, i.e. , IA or CC. The CC calculation leads to
significantly diA'erent results underlining the importance
of a p rop er treatment of 4 degrees of freedom for these
two form factors .

The second group of form factors is dep icted in Fig . 16 .
While Fg and F&T are similar in size one finds that
F&T and F& are respectively about one and two or-
ders of magnitude smaller. Figure 17 shows the eff'ects
of subnuclear currents only on F& and F&T, because
the other two form factors are not significantly aA'ected .
The IC contribution increases Fg o by about a factor of
2 at lower momentum transfer, while F&T is similarly
influenced at somewhat higher momentum transfers . In

0.4 0.1

0.3-

O.Z-

O.1

-0.1

0 I I I I

5 10 15

q ~ [fm ~]
20

—O.Z
5 10 15

q
~ [fm ~]

ZO

0.1 0.4

0.3-

—0.1

I

—O.Z—

P~
—0.3-

O.Z-

0.1

0
l

-O.1

004 1 I ~ I
I

I I I

5 10

q ~ [fm ~]
15

AP%%
I I I I I I I I

I

5 10

q, [fm ]
15 ZO

FIG. 14. Various contributions to the form factors ET (a), FP (b), Fz (c), and Ez& (d) at, E„~ = 240 MeV (CC with
Vga potential, G~ = 0). Notation as in Fig. 3(a).
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&c~

15 ZO 0 5 10

q, ~ [fm, ~j
15

0.4

0.3-

O.Z-

Bonn

V28
Paris

0.1—

I

-0.1—

0 ZO

FIG. 15. Potential-model dependence for the form factors FT (a), FT (b), and FT&(c) at E„,~ =240 MeV (Gs„= 0).
Notation as in Fig. 3(b).

0.4

O.Z-

~OOr, 20

fgjp 2—1
LT

LT

-O.Z—

I I I I l

5 10

q ~ [fm ]
15 ZO

FIG. 16. The form factors Fr, (dotted curve), FzT
(dashed curve), F&& (dash-dotted curve), and F~ (full
curve) at E „=240 MeV (CC with V2s potential, Gx„= 0).
Note that the curves for I'L, and I'&& are multiplied by fac-
tors of 100 and 10, respectively.

addition, F~T has a rather strong MEC contribution.
The potential-model dependence is shown in Fig. 18.

Only F&& is not shown, since the interesting effects are
small. Comparing the results for Vy~ and V28, one notes
a rather strong effect leading to a reduction in size from
the CC treatment at lower momentum transfer which is
particularly interesting in the case of FL, . Though the
direct IC contribution is very small, FI. is considerable
reduced in the CC calculation with V2g, which is an indi-
rect feedback effect of the IC channels on the NN chan-
nels. The other three potential models lead to almost
identical results. A similar reduction is found for the
normal contribution in deuteron photodisintegration in
the 6 region from a CC treatment. Compared to Fl.
the potential effects on FI and F&& are notably differ-
ent. Besides the sizeable influence of the CC treatment,
one notes in addition strong differences among the results
of the other three potential models. We cIose the discus-
sion with Fig. 19, which shows the form factors F&& and

FL& . Since they originate from the inelasticity due to
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FlG. 17. Various contributions to the form factors Ez (a) and EzT (b) at E„~ = 240 MeU (CC with V~a potential,
Gg„= 0). Notation as in Fig. 3(a).

0$

0.6-

0.5

Bonn

~~8I nvx

0.4-

0.Z-

0 5 f0 t5

q ~ [fm, ]
5 $0

q ~ [fm, ]
15 ZO

-O.Z-

Bonn
——— V14
- —- — V28

—0.6—

-0.8-

—1.0—

I I ~ ~ $

10

q [fm, ]
15 ZQ

F!G. 18. Potential model dep-endence for the form factors Fg (a), F& (b), and F&& (c) at E„& ——240 MeV (Ga„= 0).
Notation as in Fig. 3(b).
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$.0—

0.5-

5 $0 $5

q ~ [fm ]
20

FIG. 19. The form factors Fr& (dashed curve) and F&&
(full curve) at E „=240 MeV (CC with V2s potential, G~„=
0) .

ticularly interesting for FI. , since on the one hand IC
contributions are negligible and on the other hand dif-
ferences among potential models without explicit A de-

grees of freedom remain small. As regards the MEC we

do not find such a variety of effects as due to the 4 reso-
nance. The strongest MEC influences are present at the
deuteron breakup threshold. Because of the dominance
of the Ml transition to the rS() partial wave Fg, F&~0,

and F&& are very similarly affected as is the well-known

Fz. One further interesting result is the rather strong
dependence on the neutron electric form factor of F&&
in the quasifree region, while at the same time potential
and interaction current efFects remain negligibly small.
Thus the inclusive reaction H(e, e') with a vector polar-
ized deuteron target could be an interesting alternative
to the more involved exclusive processes H(e, e'n)p or
H(e, e'n).
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the 4 dynamics, we only show the results for the CC cal-
culation. However, they are both quite small compared
with the various other form factors, so that 4 effects are
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The two transverse tensor form factors F& and F&& are
also affected in other kinematic regions. The latter one
even shows rather strong IC contributions for quasifree
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4 degrees of freedom. AVe only mention here Fp, FI
and FL&, which show notably different results if one
compares the IA with the CC calculation. This is par-

APPENDIX A

Here we will list the explicit expressions for the multi-

pole decomposition of the various form factors.
The unpolarized form factors are given by

16m2

' L2A"+'
(Al)

), , I:IE'(»)I'+ lM'(») I'I' LDA"+'

The vector polarization form factors are given by

(A2)
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concerning the role of the D wave in the tensor form
factors.

F~Y. ——22m'v2 ) (—)~ ( ] ( . )Im(C (Aj) [E~(Aj) +M~'(2j)]],
L,I.~j A

(A3)

F." '=32 '~2) (--)
I
', ', ,

'
I

", ', '. R.(C'(»)*IE'(»)+M'()„)j),
(O —1 1 1 1

(A4)

F~" = 12~ ) (—)'
]

. )Re[[E (Aj)+ M (Aj)]"[E (Jj)+ M (Aj)]].
I.Lij A

(A5)
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Finally, the tensor polarization form factors

I"L ———16~
LLljA

(A6)

I'LT —32+ ) (-) ~, , ~, , a;{c'(») [E'(»)+M'(»)]~, (A7)

FLT ——32m ) ( ) ) 0 1 1 1
III1(C (~g)*[E (Ag') + M (~g)])

LL'j A

Z" = 16~' ).(-)', , ~, , Re&[E'(») + M'(»)]*[E'(») ~ ~l'(»)]),
LL~jA

——16m ) (—) ~ I g g I (, , J&~&% (&i) —I (&i)I'fz Vi)+M (~i)I)
LLIjA

(A10)
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