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Neutron radius analysis in the trinucleon system from pion scattering
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We have analyzed recent data for pion elastic scattering on the three-nucleon system to extract
the relative neutron-proton radii in 'He and H. Using standard multiple-scattering analysis tech-
niques we determine the difference between the odd radii with an uncertainty of +0.007 fm and that
between the even radii within +0.010 fm from the existing data. Additional data and improvements
in the scattering theory can be expected to lead to a more precise determination. To assess the
significance of the extracted radius differences we compare them with radii determined from Fad-
deev calculations that include charge-symmetry-breaking forces.

I. INTRODUCTION II. TRINUCLEON RADII

The ratios of differential cross sections for the elastic
scattering of a+ and ~ from the H, He isodoublet
have been reported from two separate experiments. ' A
third measurement is being analyzed. The motivation
for those experiments was to search for evidence of
charge symmetry breaking (CSB) in the hadronic strong
force. Such CSB has apparently been observed in the
binding energy, because only some 650 keV out of the
760 keV H- He binding-energy difference is accounted
for by the replusive Coulomb interaction acting between
the two protons in He. Indeed, the measured ratios
differ substantially from unity, the value one would anti-
cipate if isospin were strictly conserved.

Kim, Kim, and Landau" studied the effect on the mea-
sured ratios of the Coulomb force in the pion-nucleus in-
teraction and showed it to be non-negligible. That is, the
ratios must deviate from unity when the pion-nucleus
Coulomb interaction is included in a model calculation.
Such Coulomb effects do not completely cancel in any of
the ratio measurements.

However, there is a second reason that the measured
ratios must differ from unity: The proton and neutron ra-
dii (distributions) in H and He are not identical. It is
this latter effect that we emphasize in this report. In par-
ticular, it appears on the basis of our investigation that
one can extract the difference between r ( H) and r„( He)
and that between rz( He) and r„( H) with a precision that
exceeds the uncertainty in the difference between r ( H)
and r ( He) as determined by existing absolute measure-
ments in elastic electron scattering.

In the next section we review what is known about the
H and He proton and neutron radii. In Sec. III we dis-

cuss the information content of the pion elastic-scattering
ratios, including meson-exchange-current contributions.
Section IV describes our method of analysis in terms of a
nonlocal pion-nucleus optical model, and Sec. V ad-
dresses the main variables in the scattering theory. Our
results are discussed in Sec. VI and our conclusions are
summarized in Sec. VII.

The structure of the trinucleon bound states is deter-
mined by the properties of the underlying nuclear
forces. One qualitatively understands the relative sizes
of He and H from our knowledge of the nucleon-
nucleon (XN) interactions: neutron-proton (n-p),
neutron-neutron (n-n), and proton-proton (p-p) interac-
tions. The n pforce is s-lightly stronger than the n n(or-
p-p) force. The deuteron is bound and the n pspin-si-nglet
scattering length (

—23.7 fm) is larger in magnitude than
the nn scattering length (= —18 fm), where a ~—~ im-
plies a bound state with zero energy binding. Therefore,
one expects the radius of the odd nucleon in the trinu-
cleon ground states to be smaller than the radius of the
like pair of (even) nucleons. We use the "odd" and
"even" radii nomenclature of Schiff to denote the
different radii for the unlike nucleon (proton in H or
neutron in He) and like pair of nucleons. It follows that
the proton radius of H should be smaller than the neu-
tron radius. State-of-the-art Faddeev calculations em-
ploying contemporary nucleon-nucleon force models
yield a difference between these two radii of about 0.15
fm.

In the absence of the Coulomb interaction between the
two protons in He, charge symmetry would require that
the H and He systems be identical. (At this point we
are neglecting in this discussion any small charge symme-
try breaking in the strong interaction; i.e., the n;n force is
assumed to be identical to the strong p-p force. ) Includ-
ing the repulsive Coulomb interaction in the Faddeev cal-
culations for He leads to an increase in the proton radius
(over the neutron radius in H) estimated to be 0.03 —0.04
fm, based upon separate least-squares fits to a number of
H and He model calculations. This Coulomb interac-

tion also affects the He neutron radius, since the in-
creased separation of the two protons means that the
neutron is less bound; that is, the neutron distribution is
also expanded. The neutron radius is increased (over the
proton radius in H) by 0.02 —0.03 fm in the model Fad-
deev calculations. Thus, to investigate the Coulomb
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r~( He)=1.77 fm,

r~ ( H ) = l. 5 8 fm . (lb)

The 1.77-fm value for He includes an 0.04-fm increase in
its size due to point-Coulomb repulsion between the two
protons. The model difference of 0.19 fm is consistent
with the results of the Saclay analysis. A He/ H
charge-scattering ratio measurement would better define
this difference experimentally.

What is known about the neutron radii of He and H?
The spin of the trinucleon is given essentially by that of
the odd nucleon. However, it is difticult to extract a neu-
tron radius for He from magnetic elastic electron
scattering, because meson-exchange-current corrections
are sizable. ' In fact, the magnetic properties of He
provide one of the few examples where meson-exchange
currents manifest themselves in an unmistakable way.
Using only nucleon one-body currents, one is unable to
account for the experimental He magnetic moment: ir-
respective of the XN and three-body-force models em-
ployed, the theoretical value for the He magnetic mo-
ment in impulse approximation (no meson-exchange-
current correction included) is 20% smaller in magnitude
than the experimental value (

—2. 1275 p~). Even if one
had full confidence in the available models for calculating
the meson-exchange-current corrections to He magnetic
scattering, the uncertainty in the He magnetic radius is a
factor of 2 larger than that attributed to the charge ra-
dius measurement, which would imply that the
neutron-proton radius difference in He is essentially un-
known. The uncertainty in our knowledge of the triton
magnetic radius is even larger. However, that is ir-
relevant for our purpose, because it is the proton (the odd
nucleon) in H that carries most of the spin. That is, for
H it is impossible to extract a neutron radius from

electron-scattering data.

III. PION-SCATTERING RATIOS

For the reasons discussed in the previous section, one
is led to pursue pion scattering to determine the relative
neutron-proton radii in the A =3 system, where meson-
exchange-current contamination is expected to be
minimal. Near resonance, the ~+-p interaction dom-
inates sr+ scattering and the ~ -n interaction dominates

scattering. That is, the ~-nucleon coupling is much

effect it is natural to compare the two even or two odd ra-
d11.

The sizes of H and He have been studied experimen-
tally ' in elastic-electron-scattering experiments. A re-
cent analysis of the charge-scattering data by the Saclay
group yielded point proton radii values of
r ( He)=1.75+0.04 fm and r ( H)=1.61+0.04 fm.
Point proton charge radii have also been c'6'lculated using
He and H one-body densities generated from wave-

function solutions of the Faddeev equations for various
contemporary nucleon-nucleon potential models both
with and without including two-pion-exchange three-
body-force interactions. ' ' Using an interpolating fit to
estimate the point proton radii yields

o(sr+ H).
r&=

o (vr He)
(2)

primarily involves the pion strong interaction with the
odd nucleon in each nucleus. That is, in the region of the
(3,3) resonance, m+p and n n scattering dominate over
~ p and ~+n. Clearly, the coherent Coulomb scattering
does not cancel from the ratio, but away from forward
angles the strong interaction should be much more im-
portant. Thus, r& should be sensitive to the ratio of the
odd-nucleon form factors —in the single scattering (im-
pulse) approximation, this is exactly what one would
measure if only the dominant m

'

p and ~ n interactions
were retained. Both spin-Aip and non-spin-Qip scattering
from the odd nucleon are important, so that the individu-
al cross sections and r, are sensitive to both processes.

Second, the ratio

rr(~ H)
o(~+ He). (3)

stronger than the ~-m coupling. Hence, the situation is
very different from that in electron scattering where the
coupling of the electron to the pion is the same as that of
the electron to the proton. In fact, we can place experi-
mental limits on the strong-interaction contributions of
pion-exchange currents in pion scattering. If we look at
the double-charge-exchange channel, calculations and
experiments limit the contribution of this effect to less
than 1 pb/sr at forward angles (and the cross section de-
creases with angle). Since the smallest cross section to be
considered here is of the order of 1 mb/sr, it is clear that
this contamination is no more than 0.1% in cross section
(3% in amplitude). Assuming that pion multiple-
scattering effects can be properly accounted for, ratio
measurements should be very sensitive to differences in
the odd-nucleon and even-nucleon matter distributions.
Similar techniques have been used in electron-scattering
ratio measurements to explore the charge-distribution
differences of isotope and isotone sequences.

One might ask how three-nucleon forces affec this
analysis. Contemporary two-pion-exchange three-
nucleon-force models were included in a number of the
above-mentioned Faddeev calculations. These three-
body-force models are isoscalar in nature. Thus, they
tend to decrease the difference between the proton and
neutron radii. One can see in Fig. 1 from Ref. 29 that,
while the introduction of a three-body force can improve
the model binding energy (and therefore low-energy
properties such as radii), three-body forces do not resolve
the discrepancy between theory and experiment for the
higher-momentum-transfer region of the charge form fac-
tors. The pion-scattering data we analyze does not en-
compass momentum transfers approaching those in the
region of the charge-form-factor discrepancy. We shall
compare results based on trinucleon densities suggested
by Faddeev calculations which both include and omit
model three-nucleon forces. However, one anticipates
that these shape differences will have only a small effect
on radii differences.

Let us consider three ratios of pion-trinucleon elastic-
scattering cross sections. First, the ratio
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primarily involves the pion strong interaction with the
even nucleons in each nucleus. Again the Coulomb effects
do not cancel in the ratio. However, because the like nu-
cleons are essentially paired in spin (to spin 0), spin-Hip
scattering is minimal. Thus, r2 is sensitive to the ratio of
the even-nucleon form factors and is dominated by non-
spin-Qip scattering.

Finally, the "super ratio"

R —r1r

o(sr+ .H)cr(vr H)
o(vr . He)o(~+ H. e)

(4a)

(4b)

p =o(~ H)/o(~ He) .

IV. ANALYSIS OF THE SCATTERING DATA

In this investigation we use an approach similar to that
of Kim, Kim, and Landau in that a potential is con-
structed to represent the strong-interaction scattering.
We use this method because the Coulomb interaction
modifies the ratios from their isospin-conserving values of
one and it can be included in a potential model. The ra-
tios also deviate from one because the H/ He odd radii
and even radii are not expected to be equal, as discussed
in Sec. II. (In Ref. 4 these radii were assumed to be equal
in order to concentrate on the Coulomb effect alone. )

This second reason for a deviation of the ratios from one
is perhaps more interesting, since it is directly related to
the structure of the three-nucleon system.

In our investigation we have treated the even and odd
radii (actually their difference as discussed below) as vari-
ables by rescaling the individual proton and neutron den-
sities obtained from Faddeev equation calculations.
Thus, we implicitly assume a shape for the densities given
by theory. We have used two different densities as start-
ing points: one from the solution including both two-
and three-body forces (the "standard" case) and one us-
ing two-body forces alone (denoted by a subscript "2"on
the letter identifying the case). Since the momentum
transfer probed is much smaller than that at which the
first zero in the form factor occurs, the basic shape is pri-
marily determined by the radius. The sensitivity to this

should be least sensitive to model uncertainties in the
pion-nucleus-scattering theory (as well as experimental
normalizations). While the Coulomb interaction does not
cancel, the calculation of R is less sensitive to any model
dependence in those effects than are the individual ratios
r) and r2

Because the He nucleus is expected to be larger than
that of H, so that its form factor falls faster, we antici-
pate (in general) that R ) 1. Similar conclusions can be
reached for r, and r2, although they are subject to
greater uncertainty due to Coulomb interference effects.

Also useful from the point of view of the scattering
theory, although they have no direct relationship to the
neutron radii, are the ratios

p+=o(~+ H)/o(~+ He)

assumption is tested by comparing results with the two
forms just mentioned.

While there is, unavoidably, a degree of uncertainty
due to the manner in which the strong scattering process
is treated (and its effect on the Coulomb interference), we
have found that the sensitivity to changes in the three-
nucleon form factors, at a certain scale of variation of the
radii, is considerably greater than this uncertainty. In or-
der to determine the uncertainties due to the approxima-
tions in our scattering theory, we have varied the param-
eters controlling its structure within what we believe to
be reasonable bounds, keeping in mind that it should pro-
vide an acceptable representation of the differential cross
sections. We note that the errors quoted for these (latter)
measured cross sections are substantially larger than
those of the measured ratios.

While we find that there is relatively little sensitivity of
"R" to the scattering theory, for the ratios ri and rz (and
for p+ and p ), this is not true. We discuss this point in
more detail below. In the future we may anticipate that
the scattering calculation can be made with greater cer-
tainty using multiple-scattering techniques, but for the
present investigation we have simply varied the relevant
controlling parameters. The different cases are defined in
Table I with a letter denoting each.

For each case a g comparison with the recent
LAMPF data of Nefkens et al. ' and of Pillai et al. for
the observable "R" was constructed as a function of the
even (y, ) and odd (r, ) neutron radii. The corresponding
even ( He) and odd ( H) proton radii were held fixed at
values within the errors quoted from the electron-
scattering determination. This g function was found to
be well represented by a parabolic form in two dimen-
sions:

g =[(r,—r,')c os(P) +(r 0 ro)sin(P)]~/a2—

+[ (r, —r,')sin(P) +(—r 0 ro)cos(P)] /b +—y,„.

The quantities r,', r,', P, a, b, and g;„which characterize
each fit are quoted in the second half of Table I. They
were obtained by fitting this function to the g calculated
with the scattering theory for selected values of the even-
and odd-neutron radii. It is estimated that the uncertain-
ty in the values of r,' and r,' extracted in this second
fitting procedure is +0.001 fm.

We observe that it is only the differences between the
two odd and two even radii which are relevant for the
fits. While Table I lists results for several different radii,
a comparison of cases J and K demonstrates the effect of
this change alone. This character of the fits is essential to
the analysis, since the uncertainties in the proton radii
determined from the electron scattering are of the same
order as the effect that we are investigating.

The underlying scattering theory is based on a nonlocal
optical potential that has frequently been used in investi-
gations of pion scattering from heavier nuclei. The
optical potential for either neutrons or protons in
momentum space can be written as



43 NEUTRON RADIUS ANALYSIS IN THE TRINUCLEON SYSTEM. . . 1015

V(q, q')=[k bQUQ(q)uo(q')

+b q q'U, (q)v, (q')]p(iq —q'i),

where bo and b& are written terms of the m.-nucleon phase
shifts as

bo =(e ' —I )!k

b, =(e ' —I)!k

the pion-nucleon form factors are

aO i+k
VO 1

A() ]+q
and p is the Fourier transform of the density [p(r) is nor-
malized to 4n]. In the present case the potential is the

sum of the potential from the neutron density (with neu-
tron strengths) and the potential from the proton density
(with proton strengths). In practice, this potential is
transformed into a nonlocal form in coordinate space,
partial wave by partial wave, where it is added to a
Coulomb potential and a local absorptive potential pro-
portional to the square of the density. The scattering
problem is then solved in coordinate space using standard
matrix solution techniques.

The above potentials directly describe the usual non-
spin-Rip pion-nucleus scattering. The spin-Aip cross sec-
tion (incoherent with the non-spin-(lip cross section) is
calculated in the distorted-wave impulse approximation
by using the wave function resulting from the scattering
from the two like nucleons. The logic of Kerman,
McManus, and Thaler (KMT) (discussed in more detail
below in the next section and in the Appendix) would im-

TABLE I. Data from the 14 cases considered. Note that cases B, F, and F& have extreme proton radii. All calculations use the
form of the density from Faddeev calculations with a three-body potential except F2, I2, and J2. It was found that the spin-flip con-
tribution was not very sensitive to o6'-shell range and this quantity was held fixed at 400 MeV/c. The experimental value of p+ is
0.676+0.009 and that of p is 1.604+0.021. The notation AT refers to the factor multiplying the angle transform discussed in Sec. V,
feature (3) and SF refers to the factor multiplying the potential used to calculate the distorted waves discussed in Sec. IV.

Set

B
C
D

F

G
H
I
I2
J
J2
K

(fm)

1.560
1.610
1.560
1.560
1.560
1.610
1.610
1.560
1.560
1.560
1.560
1.560
1.560
1.580

e
rp

(fm)

1.750
1.790
1.750
1.750
1.750
1.790
1.790
1.750
1.750
1.750
1.750
1.750
1.750
1.750

(MeV/c)

600
600
600
600
600
900
900
600
600
600
600
800
800
800

bE
(MeV)

0
10
0
0
0

10
10
0
0
0
0
0
0
0

AT

1.0
0.6
1.0
1.0
1.0
0.6
0.6
1.0
1.0
1.0
1.0
1.0
1.0
1.0

7.5
5.0
7.5
7.5
7.5
5.0
5.0
7.5

7.5
7.5
6.3
6.3
6.3

KMT

2/3
2/3
2/3

0.673,0.595
0.673,0.595
0.673,0.595
0.673,0.595
0.568,0.615

1

0.673,0.555
0.673,0.555
0.673,0.555
0.673,0.555
0.673,0.555

Coulomb
shifts

on
on

on

on

on

on

on

on

on

on

SF
dist.

Set

B
C
D
E

6
H
I
I2
J
J~
K

(fm)

1.602
1.654
1.601
1.596
1.596
1.646
1.654
1.599
1.628
1.592
1.595
1.595
1.596
1.615

er,
(fm)

1.712
1.761
1.714
1.720
1.724
1.763
1.769
1.712
1.720
1.721
1.720
1.721
1.719
1.721

~0
(fm)

0.042
0.044
0.041
0.036
0.036
0.037
0.044
0.039
0.068
0.032
0.035
0.035
0.036
0.035

5,
(fm)

—0.038
—0.029
—0.036
—0.030
—0.026
—0.027
—0.021
—0.038
—0.030
—0.029
—0.030
—0.029
—0.031
—0.029

a
(fm)

0.009
0.018
0.009
0.012
0.010
0.012
0.027
0.011
0.013
0.009
0.010
0.011
0.009
0.010

b

(fm)

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.004
0.005
0.005
0.005
0.005

2
Xmin

2.8
8.4
3.5
6.3

13~ 3
12.6
11.9
3.5
4.9
7.7
8.4
7.0
7.0
7.0

cosP

0.850
0.810
0.860
0.890
0.895
0.805
0.860
0.870
0.710
0.900
0.870
0.830
0.840
0.810

0.845
0.827
0.859
0.738
0.741
0.746
0.746
0.932
0.905
0.679
0.682
0.681
0.684
0.681

p (45')

1.270
1.281
1.251
1.457
1.443
1.426
1.416
1.157
1.194
1.569
1.577
1.560
1.567
1.576
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ply that there should be a factor of —,
' multiplying the po-

tential used in this scattering to obtain the t matrix. For
most of our distorted-wave calculations, we have used
this factor: It is, however, not very important for the
analysis pertaining to R, as can be seen by comparing
cases 3 and C in Table I where this variation is the only
difference.

V. PRINCIPAL FACTORS
IN THE SCATTERING THEORY

Our scattering theory has been described in detail in
Refs. 30—32. The primary uncertainty in our analysis is
related to the treatment of the following principal
features.

(1) Off-shell ranges. The vr Nscat-tering amplitudes
contain s-wave and p-wave ranges which can be varied in-
dependently. While the off-shell dependence of the t ma-
trix can be determined from a model of the strong in-
teraction in principle, in practice, the value obtained de-
pends on the model used and/or on the means employed
to determine it from the extant experimental data.
There is also the uncertainty arising because the value
within the nucleus may be modified by the lifetime of the
delta resonance, adding further nonlocality to the interac-
tion. "

We found that the calculated ratios depended only
weakly on these variables (on a scale set by changes in the
radius differences), although the absolute cross section
approximately scales with these off-shell ranges. Because
of the lack of sensitivity in the ratios to these quantities,
we set the s- and p-wave off-shell ranges equal to one
another.

Since the spin-dependent contribution to the scattering
(all of the spin was assumed to be carried by the odd nu-
cleon) was treated by a distorted-wave impulse approxi-
mation in which the distorting wave was assumed to be
due to scattering from the even nucleons, it was necessary
to construct a transition operator based on the measured
phase shifts. Since this transition operator was treated as
nonlocal, there is also an off-shell range associated with
it. The dependence of the ratios on this spin-Rip off-shell
range was even smaller than that due to the non-spin-Hip
range, so we fixed its value (at 400 MeV/c).

(2) Effective energy. Because of the restriction on the
allowed intermediate states in the nuclear medium, the t
matrix used in the scattering from a bound nucleon
differs from that found in free space scattering. ' The
effective energy shifts, as explained in Ref. 30, can be
treated as a function of the pion-nucleus angular momen-
tum. Since such a calculation is beyond the scope of the
present work, we used a single number for the energy
shift (in practice, usually zero).

(3) "Angle transform. " Due to recoil of the nucleon in
the nuclear medium, the effective s- and p-wave ampli-
tudes are modified. ' We used a rather standard
prescription but considered the possibility of an addi-
tional multiplying factor in this correction. A calculation
of the type reported in Ref. 30 would provide a more
complete description of the recoil effects, but a relativistic
version would be needed for these energies.

(4) KMT factor. It is clear that a given nucleon cannot
be struck successively by the projectile in a multiple-
scattering series based on a t matrix. Kerman,
McManus, and Thaler pointed out that the geometric
multiple-scattering series can be summed under this re-
striction by using for the potential (3 —I )/3 times the
impulse approximation for scattering and then multiply-
ing the scattering amplitude resulting from the solution
of the Schrodinger equation by the inverse of this
( A —1)/A factor. For large 2 this is a small correction,
but for the three-body system it is very important. The
calculation "H" in Table I shows the effect of ignoring
this correction entirely. The values of p+ and p at 45'
(where the predictions of the theory should be the most
reliable and where the dependence on the radii is the
least) are in poor agreement with the data when the
KMT factor is omitted.

In order to understand the physics of this factor, con-
sider it to be a variable "g." That is, start with the
(single-scattering) impluse approximation for the elastic
scattering

[y(k, k')S( lk —k'I ) ],
multiplied by g, as the potential in the Schrodinger equa-
tion and then divide the resulting amplitude by g. If g is
very small, then the single-scattering impulse approxima-
tion is recovered. If the interaction is very strong (and

g = 1), then the nucleus appears to be nearly "black, " and
the cross section will be approximately independent of
the strength of the potential resulting in values for p+
and p nearly equal to one. If the interaction is weak (or
if g is small), then the cross sections will scale as the
square of the strength of the potential. Thus, the factor g
can be thought of as a variable that interpolates between
these two extremes.

Consider the cross sections at 45' where the spin-Aip
contribution is small. If we postulate that we have two
"strong" interactions of magnitude 3 and one "weak" in-
teraction of magnitude 1 (which is the approximate ratio
of the m+p to m p p-wave amplitudes), then the cross-
section ratio for the single-scattering impulse approxima-
tion is

(3+ 1+1) /(3+ 3+ 1) =0.51

for p+ and the inverse 1.96 for p . The experimentally
observed ratios are 0.676 for p+ and 1.604 for p . A po-
tential with g =1 gives 0.90 for p+ and 1.18 for p (ap-
proaching the "black" limit) while using g =

—,
' gives 0.85

and 1.27 (somewhat closer to the experimental result).
As g is reduced, the phase of the strong amplitude is ro-
tated, affecting the interference with the Rutherford am-
plitude as well. In fact, g ( 1 reduces this Coulomb
correction for both r j and r2. While the ratio R is much
less affected, this dependence on g is one of the primary
sources of uncertainty in the present analysis.

The situation becomes even more complex when the in-
teractions of the projectile with the target protons and
nucleons are allowed to differ. An heuristic discussion is
given in the Appendix. In Table I we include calcula-
tions for both the second and third term prescriptions, (1)
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and (2) in the Appendix. (Compare G and D with E in
Table I.) The value of the ratio t2/t, was taken to be the
ratio of p-wave strengths for the optical model. While
this ratio is complex, the imaginary part is very small.
The second prescription [Eq. (A4)] is preferred since it
gives a better representation of p+ and p . In fact, by re-
ducing the "strong" scattering KMT factor to g =0.555,
one obtains the most satisfactory agreement, and there-
fore several cases (I K) are—illustrated with this value.

(5) True absorption. A purely imaginary constant mul-
tiplying the square of the density was used to provide a
potential representing the effect of pion absorption.
The coe%cients used are in rough agreement with values
determined from other nuclei. ' [The units used in Table
I for this factor are such as to yield fm when it multi-
plies the square of the nucleon density (in nucleons/fm ).]
Scaling from experience with calcium and carbon (assum-
ing a proportionality to the number of n-p pairs, XZ)
would lead one to expect a value of around 12 fm . Vari-
ation from this value was allowed in order to obtain a
satisfactory representation of the differential cross sec-
tions.

(6) Coulomb energy shifts. Since the pion will gain or
lose energy approaching the nucleus, depending on the
sign of its charge, the effective energy for the strong in-
teraction will differ for sr+ and n (Ref. 42). The effect is
not very large, but it is of opposite sign for the numerator
and denominator in r, and r2, so that it is important for
those ratios. It is much less important for the ratio R
(compare cases D and E in Table I) since the increase in
one factor of the numerator or denominator is compen-
sated by a decrease in the other. The values used for the
Coulomb energy shifts are —0.9 (sr+ T), —1.8 (~+ He),
+0.9 (~ T), and + 1.8 MeV (m. He).

I I I I I I I I

z+-3H m-H

L
(0

E
CP m+-3He

10 =

I l I I I I I I

0 20 40 60 80 100120 140 160
I I I I I I I I

20 40 60 80 100 120 140 160

8, (deg)

I I I I I I I I I I I I I I I I I

FIG. 1. Angular distributions for the four nuclei considered.
The agreement with the data is moderate. The solid curves cor-
respond to case "I"and the dotted to case "A." While there is
not much to distinguish the two to the eye, the case "I"gives a
much better representation of p+ and p at 45'.

VI. DISCUSSION

A. Super ratio R

a) 50 = 0.04fm

b) 5o = 0.03 fm

We have discussed in the previous section the various
assumptions that went into the calculations summarized
in Table I. In this section we deal with the results shown
in the second part of Table I. The values of 6, =r,"—r~
and 5, =r,"—r~ are seen to closely cluster (with the ex-
ception of "H"' which is not a serious model variation).
Before discussing this uncertainty, we note that the angu-
lar distributions are well represented as shown in Fig. 1.
The minimum in each curve is due to the p-wave nature
of pion-nucleon scattering and is unrelated to the
minimum in the three-body form factor. In Figs. 2 and 3
we illustrate the effect on the predictions for R (compared
with the data) due to variations in the radii of 0.01 fm
about the best fit. Note that the odd radius difference is
determined by the data around the minimum (where the
spin flip, coming from the odd nucleon, dominates)
whereas the even radius difference is determined by the
data at many angles.

The results of our investigation are shown in graphical
form in Fig. 4. The curves were computed using the
average of all of the y surfaces and represent the locii of
all points y —g;„=1 and 4. The point corresponding to

1.2—

1.0

I I I I I I I I I I I I I I I I

0 20 40 60 80 100 120 140 160 180

c.m.{deg)

FIG. 2. Example variations with respect to the odd-neutron
radius of the calculated "R"compared with the data. It is clear
that the minimum region {where the "spin-Aip" term, depending
only on the odd-nucleon form factor, dominates) controls the fit
to the data. The curves are calculated for r„' fixed at 1.720 fm
and r„ taking values of 1.58, 1.59, and 1.60 fm for case "A."
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no effect [i.e., r, ( He)=—r, ( H), etc.] is the upper left-
hand corner of the graph at zero. It is clear that there is
definite evidence for a difference in the two radii and that
a value can be extracted with a specified error.

To estimate the error in our determination of 6, and
6„a conservative approach is to compute the average
and variance of all of the central values and to convolute
the error obtained with the average statistical error deter-
mined from the ellipses. This procedure gives

5, = —Q. 030+0.010 fm (0.005),

50=0.038+0.007 fm (0.004).

The number in parenthesis is our estimate of the contri-
bution to the error due to theoretical uncertainties. A
more optimistic approach in estimating the error entails
the elimination of those cases which do not give a good fit
to p and p (A, B, C, and 6) and those cases which
have a large g (E, F, and F2). This leaves cases D, I, I2,
J, J2, and E. An average for these cases alone yields

5, = —0.030+0.008 fm (0.001),

5, =O.Q35+0. 007 fm (0.001) .

For purposes of comparison with these radius
differences extracted from our analysis of pion- H/ He
scattering, we have constructed three separate trinucleon
models in which a single parameter (the pion-nucleon
form-factor range) was adjusted to yield the experimental
H and He binding energies: (1) We combined the "stiff"

Reid-soft-core (RSC) NN potential with the Tucson-
Melbourne (TM) two-pion-exchange three-nucleon

force. We chose the pion-nucleon form-factor range in
the TM three-body force (A =5.49m, where rn = 139.6
MeV) such that the triton binding energy was 8.48 MeV.
Turning on a point-Coulomb interaction between the two
protons in He then yielded a binding energy of 7.81
MeV. To reduce this to the experimental 7.72 MeV, A
was set to 5.41m . That is, we introduce a charge-
symmetry-breaking three-body force to decrease the He
binding to 7.72 MeV. (2) An analogous procedure was
followed using the Argonne V, ~ (Av14) NN potential
combined with the Brazilian (BR) three-body-force mod-
el. Choosing A=5.01m, we obtained a triton binding
energy of 8.48 MeV and a He energy of 7.81 MeV. Re-
ducing A to a value of 4.93m„ lowered the He binding
energy to the desired experimental 7.72 MeV. (3) Both of
these three-body-force models are isoscalar. Therefore,
we considered a third model in which the l =0 spin-
singlet central potential strength was increased (multi-
plied by 1.057) to obtain the desired 8.48-MeV binding of
the triton using the AV14 NN force model. (The original
AV14 model yields a binding energy for the triton of 7.67
MeV in a 34-channel calculation. ) The corresponding
He binding energy was again 7.81 MeV; 7.72 MeV was

attained by introducing an hadronic charge-symmetry-
breaking interaction that reduced the spin-singlet
enhancement factor to 1.051.

In each of these three cases, one finds 6, =0.020 fm
and 5, = —0.032 fm, when the Coulomb interaction be-
tween the two protons is the only charge-symmetry-
breaking interaction considered; that is, 8( H)=8. 48
MeV and E ( He) =7.81 MeV. This result is indicated by

I I I I I I I I I I I I I I I I I

-0.00

1.3—
a) 5 = -0.04fm

b) 5e = -0.03 fm

c) 5 = -0.02 fm

-0.01

1.2—
-0.02—

E
-0.03

Q)

1.0
-0.04

0.9—
-0.05

I I I I I I I I I I I I I I I I I

0 20 40 60 80 100 120 140 160 180

c.m (deg)

FIG. 3 ~ Example variations with respect to the even-neutron
radius of the calculated "R" compared with the data. Here the
entire angular range (but especially the part at large angles) is
important. The curves are calculated for r„' fixed at 1.59 fm and
r„' taking on values of 1.71, 1.72, and 1.73 fm for case "A."

-0.06
0.00 0.01

I

0.02
I

0.03
Bo (fm)

I

0.04 0.05 0,06

FIG. 4. Locii of the g surfaces y =y~;„+1 and +4. The
calculated g is the average of all of the cases shown, hence, the
ellipse is spread by the distribution of centroids. Note that the
case F2 is not as aberrant as it might seem since its position
along the major axis is ill determined. Case 0 is not shown and
the point E is degenerate with J.
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-0.00
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FIG. 5. Same as Fig. 4 except that it includes the reduced
"optimistic" set only.

the black square in Figs. 4 and 5. When short-range
(strong-interaction) charge-symmetry-breaking forces
were introduced so that the models yielded the experi-
mental E ( He) =7.72 MeV, then for each of the first two
models one finds 5, =0.027 fm and 5, = —0.042 fm,
whereas for the pure NN force model one finds 5p=0. 025
fm and 5, = —0.040 fm. That is, charge symmetry
breaking in the three-body force produces a slightly
larger radius difference effect for these models. These re-
sults are represented by the open square and circle in
Figs. 4 and 5.

One can postulate another type of (charge-symmetry-
conserving) three-body force which could account for at
least a part of the missing energy difference. If the effect
of this three-body force were to increase the T = 1 attrac-
tion and decrease the T =0 attraction, then the protons
in He (and the neutrons in H) would be drawn closer to-
gether leading to a greater Coulomb repulsion in He
while the odd-nucleon radius would become larger. For
example, if one multiplies the singlet potential by 1.209
and the triplet potential by 0.935, then the triton binding
energy remains the same but Coulomb repulsion in-
creases by 31 keV reducing the discrepancy from 90 to 60
keV. The even (proton) radius is decreased to 1.719 fm
and the odd (proton)' radius is increased to 1.650 fm, both
within the electron-scattering experimental errors. Thus,
such a model could not be ruled out experimentally at
this point by electron scattering. However, if we look at
the values of 5, and 5„ it is found that they decrease
(from the pure Coulomb values) to 0.018 and —0.027 fm.
(These are shown as the cross in Figs. 4 and 5.) That is, a
determination of the even- and odd-radius differences ap-
pears capable of eliminating a certain class of models
which might otherwise be an alternative to CSB.

B. The ratios r
&

and r2

While we have observed that the results of the analysis
of the ratio 8 are rather stable against model variations,
such is not the case for the separate ratios r, and r2.
They are particularly sensitive to the factor g. They are
also somewhat sensitive to the Coulomb energy shifts. In
most instances the minimum in r& lies at smaller (abso-
lute) values of 5, and 5, than it does for R, and the
minimum for r2 lies at larger values than for R. Howev-
er, for case E (no Coulomb shifts) all three differences are
in essential agreement although g from R is large. We
note that the prescription that we have used for estimat-
ing the shifts gives a maximum effect and the magnitude
of the shift probably should be reduced.

The inferences drawn from these two ratios cannot be
pushed too far because of the experimental problem of
Aux normalization. The measurements were made rela-
tive to deuterium and the quoted results are only the true
ratios if m+ and ~ scattering from the deuteron are
equal. From recent measurements one can estimate
that this ratio is about 1.02+0.02. The value chosen for
this correction impacts, to some extent, any conclusions
drawn from r, and r2. Nevertheless, they do provide a
school for investigating multiple scattering and do indi-
cate which uncertainties are likely to be important for
other nuclei where the double-ratio measurement is not
possible.

VII. CONCLUSIONS

Calculations for the trinucleon system have established
that there is a Coulomb anomaly in terms of the trinu-
cleon binding-energy difference as is the case for a num-
ber of other nuclei. The difference in binding between
He and the triton is 760 keV. Theoretical estimates only

yield some 650 keV due to Coulomb repulsion between
the two protons. The remaining 100 keV is attributed to
some other charge-symmetry-breaking effect. It is natu-
ral to ask if an analogous effect is visible in the radii. The
present treatment lends itself well to answering this ques-
tion. What we have extracted is the difference in "odd
size" (o) and "even size" (e) between He and H. That is,
we find

and

5, =r„( H) —r ( He)= —0.030+0.008 fm

5, =r„( H) —r ( H)=0.035+0.007 fm .

Model Faddeev calculations imply differences of the or-
der of —0.042 fm for the even radii and 0.027 fm for the
odd radii.

From Fig. 4 or 5 we see, because of the form of the
correlated errors, that the general magnitude of the effect
(its nonzero size) is better determined than either of the
individual radius differences. The overlap with the
theoretical charge-symmetry-breaking 5p aIld 5 is nonne-
gligible and, based on present data, it seems unlikely that
the experimental radius differences are smaller than the
theoretical predictions. Measurements at larger angles,
and possibly improved precision in the forward-angle
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data, are needed in order to provide a definitive answer.
Smaller differences would perhaps indicate that the like
pair of nucleons reside closer to one another than predict-
ed by the present Faddeev calculations.

The present analysis indicates that a significant
charge-symmetry-breaking effect (beyond the Coulomb
interaction) has been observed in the differences of the
H/ He radii.
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APPENDIX: KMT FOR SYSTEMS
OF NONIDENTICAL NUCLEONS

In deriving their result, KMT (Ref. 39) assumed that
the interaction of the projectile with each nucleon is the
same. The situation involving different interactions for
protons and neutron has been analyzed by Garcilazo
and requires a coupled-channel calculation. Since such a
calculation for the three-body case is beyond the scope of
the present paper, we present an heuristic argument
based on the (almost) geometric series generated by the
multiple-scattering expansion. For the strict KMT as-
sumption of identical nucleon interactions (we set the
Green's functions equal to 1 in this schematic representa-
tion to focus on the algebraic properties of the series) we
have

T= Ar+ A (A —1)t'+ A (A —1)~t3+

= At /[1 —( A —1)r]

=[A/(A —l)]I(A —l)t/[1 —(A —1)t]] . (Al)

g =2t, (t, +2r, )/(2r, + t, )' . (A3)

For t, =t2 we have g = —', , as
KMT result. For t2 =3t„
t

&

=3t2, g =
—,', =0.56, both less

(2) Requiring the third-order
first, we arrive at

we must to recover the

g 4 0.6 1 while for
than —', .
term to be the cube of the

g'=2t, (r, + r, )(t, +2t, )/(2t, + t, )', (A4)

which gives, for t, =3tz, g =+56/125=0. 67 and for
t, =3t„g = V 120/343=0. 59.

(3) If we assume for the case in which tz =3t, that the
scattering from the pair completely dominates and that
we can neglect t, completely, then we obtain g =

—,'.

The quantity in curly brackets is the amplitude resulting
from the solution of the Schrodinger equation with a po-
tential, (A —1)t T. hus, we formally recover the KMT re-
sult.

For the three-nucleon case in which there is one pion-
nucleon interaction strength for the odd nucleon (t&) and
a second strength for the even nucleons (tz), we can write
the first few terms of the multiple-scattering series

T=2t2+~) +2t2+4t] t2+2t2+6t)t2+4t jt2+
= 1/g [g (2t, + t, )+g (2r 2 +4r, t, )

+g (2t,'+6t, t2+4t', t„+ . ],
where we have introduced the factor "g" and grouped the
terms by scattering order. Since there are only three nu-
cleons and at least one of the interactions is "weak, " we
may expect that the series converges rapidly enough that
the first few terms will give some guidance in choosing
the best value of g. We consider three cases to obtain
some intuitive feeling for the size of g.

(1) If we require that the second-order term be the
square of the first, we obtain

'B. M. K. Nefkens, W. J. Briscoe, A. D. Eichon, D. H.
Fitzgerald, J. A. Holt, A. A. Mokhtari, J. A. Wightman, M.
E. Sadler, R. L. Boudrie, and C. L. Morris, Phys. Rev. Lett.
52, 738 (1984).

~C. Pillai, D. B. Barlow, B. L. Berman, W. J. Briscoe, A.
Kokhtari, B. M. K. Nefkens, A. M. Petrov, and M. E.
Sadler, Phys. Lett. B 207, 389 (1988); C. Pillai, D. B. Barlow,
R. S. Kessler, G. J. Kim, B.M. K. Nefkens, J. W. Price, J. A.
Wightman, B. L. Herman, W. J. Briscoe, A. Mokhari, A. M.
Petrov and M. E. Saddler, Phys. Rev. C 43 (to be published).

S. Matthews, private communication.
4K. Y. Kim, Y. E. Kim, and R. H. Landau, Phys. Rev. C 36,

2155 (1987);Y. E. Kim, M. Krell, and L. Tiator, Phys. Lett. B
172, 287 (1986); Y. E. Kim, Phys. Rev. Lett. 53, 1508 (1984).

5For a discussion of convergence in the calculation of trinucleon
bound-state observables as a function of the number of two-
body partial waves (for various contemporary NN potential
models) see C. R. Chen, G. L. Payne, J. L. Friar, and B. F.
Gibson, Phys. Rev. C 31, 2266 (1985). For details of calcula-
tions including three-body forces, see C. R. Chen, G. L.

Payne, J. L. Friar, and B. F. Gibson, ibEd. 33, 1740 (1986); T.
Sasakawa and T. Ishikawa, Few Body Syst. 1, 3 (1986).

J. L. Friar, B. F. Gibson, C. R. Chen, and G. L. Payne, Phys.
Lett. 161B,241 (1985).

7L. I. Schiff, Phys. Rev. 113,B802 (1964).
8J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 35,

1502 (1987).
P. Dunn, S. B. Kowalski, F. N. Rad, C. P. Sargent, W. E. Tur-

chinetz, R. Goloskie, and D. P. Saylor, Phys. Rev. C 27, 71
(1983).
C. R. Ottermann, G. Kobschall, K. Maurer, K. Rohrich, Ch.
Schmitt, and V. H. Walther, Nucl. Phys. A436, 688 (1985).

'J. S. McCarthy, I. Sick, and R. R. Whitney, Phys. Rev. C 15,
1396 (1977)

Z. M. Szalata, J. M. Finn, J. Flanz, F. J. Kline, G. A. Peter-
son, J. W. Lightbody, X. K. Maruyama, and S. Penner, Phys.
Rev. C 15, 1200 (1977).
G. Retzlaff and D. M. Skopik, Phys. Rev. C 29, 1194 (1984).
H. Collard, R. Hofstadter, E. B. Hughes, A. Johansson, M. R.
Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138, B57



43 NEUTRON RADIUS ANALYSIS IN THE TRINUCLEON SYSTEM. . . 1021

(1965).
5M. Bernheim, D. Blum, W. McGill, R. Riskalla, C. Trail, and

T. Stovall, Lett. . Nuovo Cimento 5, 431 (1972).
' R. Arnold, B.T. Chertok, S. Rock, W. P. Schutz, Z. M. Szala-

ta, D. Day, J. S. McCarthy, F. Martin, B.A. Mecking, I. Sick,
and G. Tamas, Phys. Rev. Lett. 40, 1429 (1978).

~7J. M. Cavedon, B. Frois, D. Goutte, H. Huet, Ph. Leconte, J.
Martino, X-H Phan, S. K. Platchkov, S. E. Williamson, W.
Boeglin, I. Sick, P. de Witt-Huberts, L. S. Cardman, and C.
N. Papanicolas, Phys. Rev. Lett. 49, 986 (1982).
D. H. Beck, S. B. Kowalski, M. E. Schulze, W. E. Turchinetz,
J. W. Lightbody, X. K. Maruyama, W. J. Stapor, H. S. Ca-
plan, G. A. Retzlaff, D. M. Skopik, and R. Goloskie, Phys.
Rev. C 30, 1403 (1984).
F. P. Juster, S. Auffert, J.-M. Cavedon, J.-C. Clemens, B.
Frois, D. Goutte, H. Huet, P. Leconte, J. Martino, Y.
Mizuno, X.-H. Phan, S. Platchkov, and S. E. Williamson,
Phys. Rev. Lett. 55, 2261 (1985).
S. Platchkov and B.Frois, private communication.
W. M. Kloet and J. A. Tjon, Phys. Lett. 618, 356 (1976).
M. A. Maize and Y. E. Kim, Nucl. Phys. A407, 507 (1983).
E. Hadjimichael, B. Goulard, and R. Bornais, Phys. Rev. C
27, 831 (1983).

~W. Strueve, Ch. Hajduk, and P. U. Sauer, Nucl. Phys. A405,
620 (1983).

25See, for example, J. L. Friar, B. F. Gibson, G. L. Payne, E. L.
Tomusiak, and M. Kimura, Phys. Rev. C 37, 2852 (1988).
J. Martino, in The Three-Body Force in the Three-nucleon Sys-
tem, edited by B. L. Herman and B. F. Gibson (Springer-
Verlag, Berlin, 1986), p. 129.
N. Auerbach, W. R. Gibbs, Joseph N. Ginocchio, and W. B.
Kaufmann, Phys. Rev. C 38, 1277 (1988); E. Oset, D. Strott-
man, M. J. Vicente-Vacas, and M. Wei-Hsing, Nucl. Phys.
A408, 461 (1983);J.-F. Germond and C. Wilkin, Lett. Nuovo
Cimento 13, 605 (1975).
Z. Weinfeld et al. , Phys. Rev. C 37, 902 (1988).
J. L. Friar, B. F. Gibson, G. L. Payne, and C. R. Chen, Phys.
Rev. C 34, 1463 (1986).

OW. B. Kaufmann and W. R. Gibbs, Phys. Rev. C 28, 1286
(1983).
L. S. Kisslinger, Phys. Rev. 98, 761 (1955); J. Revai, Nucl.
Phys. A205, 20 (1973); J. Maillet, J. P. Dedonder, and C.
Schmit, ibid. A316, 267 (1979); W. R. Gibbs, in Theoretical
Methods in Medium-Energy and Heavy Ion Physics, edited by
K. W. McVoy and W. A. Friedman (Plenum, New York,
1978), p. 503; M. Silver and N. Austern, Phys. Rev. C 21, 272

(1980).
H. Garcilazo and W. R. Gibbs, Nucl. Phys. A356, 284 (1981);
W. R. Gibbs, B. F. Gibson, and G. J. Stephenson, Jr., Phys.
Rev. Lett. 39, 1316 (1977).
J. T. Londergan, K. W. McVoy, and E. J. Moniz, Ann. Phys.
(N.Y.) 86, 147 (1974); M. J. Reiner, Phys. Rev. Lett. 38, 1467
(1977)~

C. Schmit, Nucl. Phys. A197, 449 (1972); C. Schmit, J. P.
Dedonder, and J. P. Maillet, ibid. A239, 445 (1975); J. P.
Maillet, J. P. Dedonder, and C. Schmit, ibid. A271, 253
(1976).
W. B. Cottingame and D. B. Holtkamp, Phys. Rev. Lett. 45,
1828 (1980).

R. H. Landau and A. W. Thomas, Phys. Lett. 618, 361 (1976).
7R. H. Landau and M. McMillan, Phys. Rev. C 8, 2094 (1973);

E. Kujawski and G. A. Miller, ibid. , 1205 (1974); G. A. Mil-
ler, ibid. 10, 1242 (1974); R. Landau, Phys. Lett. 578, 13
(1975).

W. R. Gibbs, B. F. Gibson, A. T. Hess, G. J. Stephenson, Jr.,
and W. B.Kaufmann, Phys. Rev. C 13, 2433 (1976).
A. Kerman, H. McManus, and R. Thaler, Ann. Phys. 8, 551
(1959).
R. H. Landau and A. W. Thomas, Nucl. Phys. A302, 461
(1978).

P. B. Siegel, Ph.D. thesis, Arizona State University, 1986; M.
J. Leitch, H. W. Baer, R. L. Burman, C. L. Morris, J. M,
Knudson, J. R. Comfort, D. H. Wright, R. Gilman, S. H.
Rokni, E. Piasetzky, Z. Weinfeld, W. R. Gibbs and W. B.
Kaufmann, Phys. Rev. C 39, 2356 (1989).

"J.P. Dedonder, J. P. Maillet, and C. Schmit, Ann. Phys. 127,
1 (1980).

R. V. Reid, Ann. Phys (N.Y.) 50, 411 (1968); B. D. Day, Phys.
Rev. 24, 1203 (1981),provides the higher partial waves.

4~S. A. Coon, M. D. Scadron, P. C. McNamee, B.R. Barrett, D.
W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242
(1979).

~~R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev.
C 29, 1207 (1984).
H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C
28, 1812 (1983).

47G. R. Smith, D. R. Gill, D. Ottewell, G. D. Wait, P. Walden,
R. R. Johnson, R. Olszewski, R. Rui, M. E. Sevior, R. P.
Trelle, J. Brack, J. J. Kraushaar, R. A. Ristinen, H. Chase,
E. L. Mathie, V. Palfilis, R. B. Schubank, N. R. Stevenson, A
Rinat, and Y. Alexander, Phys. Rev. C 38, 240 (1989).

4~H. Garcilazo, Phys. Lett. 828, 332 (1979).


