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Temperature dependence of fusion barriers
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We calculate the free interaction energy of two finite-temperature nuclei in the sudden approxi-
mation by using realistic semiclassical energy-density function als. The fusion barriers for
intermediate-size systems come over their ground-state values for higher temperatures in such a

way that there is a "critical temperature" above which fusion cannot occur. We discuss the im-

plications of our results for the interpretation of empirical data.

Properties of equilibrated hot and compressed nuclei
are important ingredients for astrophysical investigations.
This static picture of a finite-temperature nucleus is also
useful for the description of some aspects of high-energy
heavy-ion collisions although these reactions are rather
complicated time-dependent processes (see, e.g. , Ref. 1,
and references quoted therein).

Theoretical information on finite-temperature nuclei
usually stems from a description of the nucleus either as
(i) a nuclear liquid in equilibrium with its vapor 2 or as (ii)
a heated finite metastable system in the vacuum. For
temperatures below about one-half of the Maxwell critical
temperature the thermostatic properties of nuclei derived
from these two descriptions, however, do not diA'er

much. '

Fission of hot nuclei may serve as a guide to our under-
standing of the thermostatic properties of nuclei in ques-
tion. From early attempts done in the framework of the
liquid-drop model the fission barrier was found to de-
crease with temperature. Microscopic treatments of
fission with realistic effective interactions lead also to the
same conclusion. Intuitively, these results can be ex-
plained by the fact that the surface tension (specific free-
surface energy) decreases with temperature, whereas the
Coulomb repulsion is not affected much since the thermal
expansion of nuclei in all calculations turns out not to be
important.

As a first approach to the study of the temperature
dependence of fusion barriers we try to take over the re-
sults for the fission barrier since both fission and fusion
have some common overlap of qualitative features. In
both cases, the two fragments for large distances only feel
the Coulomb repulsion. If their distance is in the range
where overlap sets in, the nuclear attraction from the sur-
face tension bends this Coulomb potential in such a way
that in the fission potential as well as in the fusion
potential —for small and intermediate size systems —a
barrier is built up. The shape of the fission barrier of a
hypothetical nucleus (2N, 2Z) is expected to have similar
characteristics as the fusion barrier of the binary system
(N, Z)+(N, Z). In particular, if two large nuclei do not
have a fusion barrier, the hypothetical compound system
is supposed to be unstable against fission, i.e., has no
fission barrier at all. For very large overlap during the
fusion process, depending on the scattering energy, there
may be a repulsion between the two systems which comes

mainly from compressing nuclear matter above the satu-
ration density. This effect clearly has no analog in the
fission process.

The curves for the fission and fusion potentials, plotted
each in its standard diagram, differ in their absolute
values. The fission deformation energy is normalized
asymptotically, i.e., for large distances of the fission prod-
ucts, to the free energy of the separated fragments, which
means that it reaches the sum of the free energies of the
fragments whereas the fusion barrier curves are normal-
ized in such a way that all of them approach zero asymp-
totically. Thus, although the shapes of fusion and fission
barriers might look similar it may not be right to conclude
that the fusion barriers decrease with temperature in the
same way as the fission barriers for the composite system
might decrease. In order to draw conclusions about the
behavior of fusion barriers from that of fission barriers
one first would have to shift all fission barriers from their
asymptotic values (which equal the free energies of the
fragments) up to zero. Since the free energies of the frag-
ments also depend on temperature this procedure could
result unexpectedly in an increase of the barriers with
temperature after the new normalization. From the intui-
tive argument which explained the behavior of the fission
barriers, namely from the decrease of the surface tension
with temperature, just this behavior of the fusion barrier
is expected. The attraction between the two nuclei at a
given distance becomes smaller with temperature, and this
effect could increase the fusion barrier. There are com-
peting effects from the overlap of the two density distribu-
tions. However, then the entropy terms in the free energy
also come into play, which results in a repulsion. It is the
aim of the present paper to study all of these effects quan-
titatively in a microscopic approach.

Fusion and fission barriers for excited nuclear systems
normally are plotted as isotherms in the deformation-
energy diagram. That does not mean necessarily a restric-
tion to isothermal processes. The isotherms in a pressure-
volume diagram for the equation of state contain the full
thermodynamical information. Similarly, also informa-
tion about nonisothermal processes is contained in the plot
of isotherms for the fission barriers. It is some kind of
contour plot for a function of two variables. Naturally,
for a description of some specific process for a finite tem-
perature system it is convenient to use the specific thermo-
dynamic potential with natural variables that are suited
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for this process. If, e.g. , the process to be studied is iso-
thermal, the adequate potential is the free energy F as a
function of the temperature T and distance R, whereas for
an isentropic process the relevant potential will be the
internal energy E as a function of R and the entropy S.

The force K between two fusing nuclei at a distance R
and for some temperature T (not necessarily constant dur-
ing the process) or some entropy S can be calculated from
the general thermodynamic relations

aF aEK=—
8R 8R

where F=E —TS is the free energy and E the internal en-

ergy of the interacting systems. Both relations will give
the correct value for the force at a given thermodynamical
state if the relevant quantities are inserted properly. For
theoretical calculations, where the temperature is given as
a parameter in a natural way, it is convenient to calculate
first the free energy. The internal energy E could then be
obtained as a function of its natural variables S and R if
the temperature T=T(S,R) is known from the entropy
S=S(T,R) (see, e.g. , Ref. 10 for the calculation of the
internal interaction energy as a function of S and R). We
prefer to use the free interaction energy because it is the
easiest to obtain theoretically.

The problem of the temperature dependence of the
fusion barrier is a topic in the literature for more than ten
years. In the earliest investigation in the Thomas-Fermi
approach, ' the fusion barrier was found to increase with
excitation energy (both free energy as a function of tem-
perature as well as the internal energy as a function of en-
tropy increasing). The free energy, however, was calcu-
lated in the low-temperature approximation and therefore
the quantitative conclusions from there are questionable
at higher temperatures. The deficiency of this T approx-
imation was pointed out in Ref. 4 in the context of fission
barriers and later in Ref. 11 in the context of fusion bar-
riers. Several recent papers, ' '5 in contrast to Ref. 10,
predicted that the fusion barrier decreases with tempera-
ture. Some of these papers calculated the internal in-
teraction energy E =E(T,R) as the interaction potential
which, however, is a starting point not consistent with the
thermodynamic relation (1).

The free interaction energy between two nuclei at a sep-
aration R having temperature T is given in the sudden ap-
proximation as

F~2(R, T) = d r[3'(T,pI+p2) —P(T,p~) —P(T,p2)],

(2)
where pI and p2 are the densities of the respective nuclei
taken as Woods-Saxon (WS) distributions. We evaluate
the free-energy density functionals P(T,p) in the
temperature-dependent extended Thomas-Fermi approxi-
mation" (TETF). The kinetic energy and the entropy
density functionals are evaluated up to the second order.
The SkM* force is taken as the effective interaction that
allows for a variable effective nuclear mass dependent on
density. The central density po in the WS density expres-
sion is taken as 0.1603 fm consistent with the SkM* in-
teraction. The neutron and proton densities are scaled ac-
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FIG. 1. The free interaction energy for the system ' Cl+ ' Ni
plotted as function of distance R between the nuclei. Here the
calculations are done in the ETF approximation without in-

clusion of second-order correction terms to the free-energy den-

sity functional. The solid and dashed-dotted lines correspond to
T 0 and 3 MeV; the dashed and dotted lines correspond to
T 5 and 7 MeV, respectively.
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cording to the neutron-proton ratio in the respective nu-
clei. The half-density radius C is given by the well-known
expression depending on the nuclear mass 8, the surface
diff'useness a, and the radius parameter ro. The tempera-
ture dependence of ro and a, to a good approximation, is
given by ' ' ro(T) =ro(0)[1+aT ] and a(T) =a(0)[1
+PT ]. The values of a and P are chosen as a=0.0011
MeV and P 0.01 MeV, consistent with previous
calculations. The Coulomb potential in the free-energy
functional is a sum of direct and exchange terms. The
direct part is evaluated for two overlapping spheres of
homogeneous charge distributions' and the exchange
part is evaluated in the Slater approximation (see also
Ref. 10).

We have calculated the interaction potential for a few
selected systems, namely Cl+ Ni, Al+ Ge, Ca
+ Ca, Ge+ Ge, ' Mo+' Mo, ' Cd+' Cd, and

Pb+ Pb. In Fig. 1, we display the free interaction
energy as a function of separation R between the nuclei

Cl and Ni, evaluated in the ETF approximation
without the second-order gradient corrections. 4 At zero
temperature, a well-developed barrier of height Eq
=62.96 MeV appears at the separation R =10 fm. As
the temperature increases, the location of the barrier is
pushed a little inside and its height increases. When a
certain critical temperature is reached, the barrier van-
ishes completely. We call this temperature "critical
fusion temperature" (TcF), above which it is impossible
for two hot nuclear systems to fuse. After the inclusion of
the second-order terms in both the kinetic energy density
and the entropy density in the calculation of the interac-
tion potential, the role of temperature on the fusion bar-
riers is, however, a little diff'erent as can be seen from Fig.
2. As the second-order correction to the free-energy den-
sity functional gives rise to a net attraction, all the fusion
barriers at different temperatures are lowered compared
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FIG. 2. Same as in Fig. 1; here the calculations are done with

the inclusion of second-order corrections in the free-energy den-

sity functional.

FIG. 3. The free interaction energy for the system
OCa+ Ca with the inclusion of second-order corrections.

to those evaluated with the TF approximation. We also
find that with an initial increase in temperature (up to -4
MeV), the barrier decreases; with further temperature in-

crease, however, the barrier increases up to the critical
fusion temperature when the barrier dissolves. This
strange behavior of the fusion barrier with temperature is
to be understood as arising from a delicate interplay of the
increased attraction from larger overlap between heated
nuclei, a loss of attraction due to a decrease in the surface
tension with temperature and a further repulsion coming
from the entropy of mixing. 'o" We have also repeated
the calculation for the interaction energy with only the
internal energy term dependent on T [without the entropy
term in Eq. (2)]. A monotonic decrease of the internal
energy barrier with temperature is found there, as is ob-
served in previous calculations. '

All calculations reported here are done with WS density
distributions with fixed values of the central density

(po 0.1603 fm ) and surface diffuseness (a 0.56 fm)
at zero temperature. In principle, the densities should be
self-consistently determined with the particular effective
interaction chosen (SkM here) which one wishes to em-

ploy for the evaluation of the free-energy density function-
al. For the calculation of the free interaction energy, the
WS density distribution with the same po as obtained for
the SkM* force, is a very reasonable approximation. The
surface diffuseness may, however, change from system to
system. To see the sensitivity of the fusion barrier to the
choice of the parameters, we have made calculations for

Ca+ Ca with two choices of the diffuseness parameter
(a =0.56 and 0.47 fm that results from the self-consistent
calculation ), with different central densities and also
with two different expansion coefficients for the tempera-
ture dependence of surface diffuseness (P =0.01 and 0.015
MeV ). They have some influence on the barrier
heights and locations, but the relative pattern of fusion
barriers with increasing temperature does not change ap-
preciably. In Figs. 3 and 4, we display the fusion barriers
for Ca+ Ca for a 0.56 and 0.47 fm. The influence of
not too unreasonably different parameters on the critical
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FIG. 4. Same as in Fig. 3; here the calculations are done with

a different surface diffuseness (a -0.47 fm) in contrast to that
in Fig. 3. For further details, see the text.

fusion temperature is found to be rather inappreciable.
The location and heights of the fusion barriers at zero
temperature of the few systems studied here are given in
Table I. Wherever experimental results' ' are available,
our calculations seem to be in fair agreement with them.
For the system Pb+ Pb, there is no fusion barrier, in

agreement with what is obtained by Faessler et al. "
For all the studied systems that have a fusion barrier at

zero temperature, it is found that there exists a critical
fusion temperature Tcp above which it is no longer possi-
ble for the system to fuse. The Coulomb repulsion is then
just sufficient to overcome the nuclear attraction weak-
ened due to the reduced surface tension so that the system
cannot hold together. In Table II, we show TCF as a func-
tion of the mass A ( Hi+32) of the composite systems
that are studied here. With increasing mass, TCF de-
creases, mainly due to the larger influence of the Coulomb
force. It is interesting to see that the disappearance of the
fusion barrier above TCF is quite consistent with the re-
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System Vtt (MeV) Rtt (fm)

TABLE I. The heights Vg and positions Rg of the fusion bar-
riers at zero temperature obtained in second order ETF.

TABLE II. The critical fusion temperatures TcF calculated
for the studied systems. Also shown are the limiting tempera-
tures Tl; as calculated in Ref. 24 in a thermodynamical model
for the nuclei having 8 =8~+2 & along the P-stability line.

4 Ca+ Ca

' Cl+ Ni

"Al+ '0Ge

74G + 74G

100Mo+ 100Mo

120Cd+ 120Cd

53.30
55.75 '
55 03

61 ~ 75

53.53
55. 1

'

120.99

197.07

247. 19

9.8
95'
974

10.1

10.2
10.2 '

1 1.7

12.2

System

40Ca+ 40Ca

"Cl+ "Ni
27A1+ 70Ge

Ge+' Ge
Mo+' Mo

120Cd+ 120Cd

T( F (this work)
(MeV)

7.1

7.15
7.2
6.4
5.3
4.2

Th (Ref. 21)
(MeV)

7.0
7.0
7.0
6.3
5.2
4.2

'Values calculated with a 0.47 fm.
Values quoted in Ref. 18 to have a good fit with the subbarrier

fusion cross section for Ca+ Ca.
'Experimental values quoted in Ref. 19.

cently observed vanishing of the fusion cross section ' at
bombarding energies around the Fermi energy domain.
Since, at such bombarding energies, the temperature in a
symmetric system may be -5-7 MeV, 22 it may be
worthwhile to explore the possible connection between the
disappearance of the fusion cross section and the tempera-
ture of the heated interacting nuclei. It is also noteworthy
that in this mass range, TCF nearly coincides with the lim-
iting temperature T~; (the temperature above which no
phase equilibrium between the finite nuclear liquid and
the surrounding vapor exists) obtained in a thermodynam-
ic model of liquid-gas coexistence for the same nuclear

masses along the P-stability line (see Table II). Our
values for TCF are also consistent with the value of the
limiting temperature ("flash temperature") obtained for

Pb in the picture of metastable equilibrium. For a
given composite system, TcF is the lowest for symmetric
configurations, but it has been checked numerically that,
not too far away from symmetry, the change in TCF is
inappreciable (as an example, for Al+ Ge, TCF is 7.2
MeV, for the symmetric configuration for the same com-
posite system, TcF is 7.05 MeV). In the present calcula-
tion as well as in the calculations invoking liquid-gas
phase equilibrium, the Coulomb potential and the surface
tension play a central role, but whether this agreement be-
tween TcF and the limiting temperatures is purely
coincidental or has deeper physical reasons is not known
and further investigation on their interrelation may be
called for.
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