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Role of Levinson’s theorem in neutron-deuteron quartet S-wave scattering

S. A. Sofianos, A. Papastylianos, and H. Fiedeldey
Department of Physics, University of South Africa, P.O. Box 392, Pretoria, South Africa

E. O. Alt
Department of Physics, University of South Africa, P.O. Box 392, Pretoria, South Africa
and Institut fiir Physik, Universitdt Mainz, P.O. Box 3980, Mainz, West Germany
(Received 4 April 1990)

The real part of the phase shift for elastic neutron-deuteron scattering in the quartet S-wave
channel, as calculated with the exact three-body theory, assumes at threshold the value = if nor-
malized to zero at infinity; that is, it does not comply with the expectations raised by a naive ap-
plication of Levinson’s theorem since no bound state exists in this channel. A description of this
situation on an equivalent two-body level via a potential, constructed by means of the Marchenko
inverse scattering theory, necessitates the introduction of a fictitious bound state. This predom-
inantly attractive, equivalent local potential can be related via supersymmetry to a strictly phase
equivalent partner potential. The latter is unique and purely repulsive, a behavior already exhibit-
ed by the underlying exact effective neutron-deuteron interaction. At the origin it possesses a
singularity of the centrifugal barrier type which admits of the required zero-energy phase shift
value of # by means of a modified version of Levinson’s theorem. Hence, the unphysical bound
state of the attractive equivalent local potential plays a role in three-body scattering theory analo-

gous to the one of a Pauli-forbidden state in the context of the resonating group method.

The exact formulation of the nonrelativistic three-body
theory' 3 made feasible the first calculations of scattering
of neutrons off deuterons which correctly took into ac-
count the compositeness, and the resulting possibility of
dissociation, of the latter. Only a few years after the first
numerical calculations® had been published it was pointed
out by Sloan’ that the (real part of the) elastic neutron-
deuteron (nd) scattering phase shift in the quartet chan-
nel with total orbital angular momentum / =0 apparently
assumed the value 7 at threshold if the conventional nor-
malization to zero at infinity is adhered to, i.e., 450(0) =r.
Such a finding is—at first sight— surprising because in
this channel, as a consequence of the Pauli principle, the
effective interaction between the neutron and the deuteron
derived from the three-body theory acts in a repulsive
way, precluding the existence of a bound state. Thus, the
quartet S-wave phase shift appears to be in contradiction
to what one might expect from a (naive) application of
Levinson’s theorem.® The latter states that for two-body
scattering with a real, regular,® energy-independent, local
potential ¥ (r), the phase shift §;,(0) =mnx, where n
equals the number of bound states in the particular angu-
lar momentum state / considered (in the absence of a
zero-energy bound state for / =0).

Of course, as Sloan pointed out, a straightforward ap-
plication of the two-body Levinson theorem to the scatter-
ing of composite particles may not be allowed even if the
latter is formulated as an effective two-particle theory.’
For the exact effective interaction between the neutron
and the deuteron occurring in such a formulation is nonlo-
cal, energy dependent, and becomes complex as soon as
the deuteron breakup channel opens up.

This situation is reminiscent of the one frequently en-
countered in the resonanting group model (RGM) ap-
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proach to composite-particle scattering. There, threshold
phase shift values of n;x are often encountered where n; is
larger than the number of true bound states existing in the
system considered. In such cases, in an equivalent two-
body description, deep local target-projectile potentials
are found which give rise to identical phase shifts as the
nonlocal effective RGM interactions. Thus, they are
phase but not binding energy equivalent since, in addition
to the physical bound states, they also support unphysical
ones, the so-called Pauli-forbidden states (PFS). The
latter are related to the redundant states of the RGM
Hamiltonian. Since, according to a generalization of
Levinson’s theorem to the scattering of composite parti-
cles in the framework of the RGM by Swan, '®!! both true
and Pauli-forbidden bound states contribute to the value
of n;, agreement with the observed multiplicity of 7 of the
threshold phase shift is restored.

Therefore, guided by these facts, Sloan suggested that
the result *8(0) =x might be due to the existence of a
PES in the quartet S-wave channel. His argument was,
however, not convincing since the notion of a PFS is given
a clear meaning only in the resonating group and related
methods (see, e.g., Ref. 12), but is alien to the composite-
particle scattering theory based on integral equations.

On the other hand phenomenological, shallow, local,
two-body target-projectile potentials exist describing the
same scattering data as the deep potentials discussed
above but supporting the physical bound states only.
However, as has been pointed out in Ref. 13 for the case
of a+ '%0 scattering, the requirement that they satisfy the
(generalized) Levinson theorem forces them to be irregu-
lar at the origin with centrifugal barrier-type singularity
there. In fact, a connection is suggested in Ref. 11, be-
tween the strength of the short-distance singularity of
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these potentials which are phase equivalent to the mul-
tiparticle RGM interaction, and the number of redundant
states of the corresponding RGM Hamiltonian.

Recently, in an application of the ideas of supersym-
metric (SS) quantum mechanics Baye'¢ has explicitly es-
tablished the relation between these two classes of two-
body potentials. When removing the PFS from the deep
potential via SS transformations he ended up with the cor-
responding shallow potential, while retaining in this pro-
cess strict phase equivalence, and hence also the multipli-
city of x at the threshold. This fact is in agreement with
another generalization of Levinson’s theorem. '!3

On the three-body level the above-mentioned threshold
value of the nd quartet S-wave phase shift is not yet un-
derstood. In the present paper we, therefore, try to shed
some light on this situation by reverting to an equivalent
two-body description, in analogy to the procedure dis-
cussed above for the RGM case. Thereby, the basic idea
is similar to the one pursued in Ref. 14. We demonstrate
that the nd quartet S-wave phase shifts, calculated from
the rigorous three-body theory, can be reproduced by a
predominantly attractive, local two-body potential sup-
porting one unphysical bound state, as well as by a purely
repulsive local potential. Their interrelation is established
by application of SS quantum mechanics. The strict
phase equivalence can, however, be maintained only at the
expense of the occurrence of a 1/p? singularity in the
purely repulsive supersymmetric partner where p is the
distance between the neutron and the (center of mass of
the) deuteron.

For the present investigation we choose a very simple
and therefore frequently used but, nevertheless, qualita-
tively and also quantitatively quite successful model based
on separable nucleon-nucleon forces. They are chosen to
be spin dependent but, for simplicity, to act in nucleon-
nucleon S waves only. This has the consequence that the
total spin and the total orbital angular momentum are
separately conserved. Since we are at present interested
only in the scattering in the quartet state in which the
spins of the three nucleons are parallel (i.e., the total spin
equals %) it suffices to specify the S, nucleon-nucleon
potential. The latter is taken to be of Yamaguchi form,
with the strength and range parameter chosen so as to
reproduce the experimental deuteron binding energy and
the triplet scattering length.

For such a nuclear-force model the three-body equa-
tions can be solved without any approximation. The nd
quartet S-wave phase shift calculated in this way is real
below the deuteron breakup threshold (at 3.339 MeV in-
coming neutron laboratory energy), and complex above as
a consequence of the opening of the dissociation channel.
Its real and imaginary parts are depicted in Fig. 1. In-
spection reveals that, in fact, Re[*85(0)]1 =x. Since we
are attempting here to elucidate the consequences for the
equivalent local potential of this value of Rel*80(0)],
despite the absence of a bound state, it is sufficient to con-
sider in the following only the real part of the phase shift,
or equivalently to “unitarize” the corresponding S-matrix
element. Because of the weakness of the absorption,
reflected in the smallness of the imaginary part of the
phase shift, this has negligible consequences.
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FIG. 1. Real part of the neutron-deuteron quartet S-wave
phase shift as function of the neutron laboratory energy. Inset
shows the corresponding imaginary part.

In order to construct a deep, energy independent but /
dependent, local two-body potential which reproduces the
real part of the phase shift from threshold up to infinity
we employ the Marchenko inverse scattering formalism
valid for regular potentials.>'"'® The value of 7 of
Re[*50(0)] necessitates the introduction of one (fictitious)
bound state in order that the usual form of Levinson’s
theorem be satisfied. However, since the value E © of its
binding energy is not fixed by any physical principle we
arrive in this way at a whole family of equivalent local po-
tentials depending parametrically on E©. We denote
them by V(p;E 0)). Here and in the following we
suppress the index / =0 characterizing the orbital angular
momentum whenever no confusion can arise.

The inversion procedure is greatly simplified by employ-
ing a rational (Bargmann type) parametrization of the
(unitarized) S function

‘Solg) _ (g+ix@) X (g+am)
[4So(@)|  (g=ix@) m=1 (g—am)’

S(g):= (1)

N odd, with x© > 0 related to the binding energy via E ©
=—h2©2/2,. ¢ is the neutron-deuteron relative
momentum canonically conjugate to p, and u the corre-
sponding reduced mass. The parameters a,, can be deter-
mined by fitting the form (1) to the numerically given S
function. The consequence of such a choice is that the
kernel of the Marchenko fundamental equation becomes
degenerate and, therefore, analytic solutions can be ob-
tained.

If the Marchenko equation is to yield a unique
equivalent local potential, in addition to the binding ener-
gy the value of the bound-state normalization constant 4
also has to be specified. We choose®!’

A=AE @) =iF(—ix©)/F(ix @) , )

where F(q) is the Jost function, and F(q) =dF(q)/dq.
Application of this approach leads, for each chosen
value of the binding-energy parameter E © to0 a unique,
deep, local two-body potential V(p;E ©) which exactly
reproduces Re[%8o(g)], 0=<g <. In Fig. 2 we show
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FIG. 2. Equivalent local potentials, all of which exactly
reproduce the real part of the neutron-deuteron quartet S-wave
phase shift, as a function of the distance p between the neutron
and the deuteron. The three with an attractive part are selected
members of a one-parameter family, each supporting a bound
state at an energy, the absolute value of which is indicated. ¥ ?
is the unique supersymmetric partner of this whole family.

several members of this family related to binding-energies
E© of —2, —3,and —4 MeV. They are all attractive
for intermediate neutron-deuteron separation, with the
minimal range attained approximately at E @ =~ —3
MeV. We mention in this connection that choosing
bound-state normalization constants different from the
value (2) has been found to increase the range of the asso-
ciated potential. A more detailed discussion of the depen-
dence of the equivalent local potentials, and the corre-
sponding wave functions, on the binding-energy parame-
ter and the bound-state normalization constant will be
given elsewhere.

To a deep potential supporting one bound state the cor-
responding “shallow” potential can be constructed by the
methods of SS quantum mechanics.'”"2? As shown in
Ref. 14 the application of two consecutive SS transforma-
tions is required for this purpose. The first one eliminates
the bound state of the original potential, here denoted by
V©®(p), but also changes the phase shift. Phase
equivalence is then restored by a second SS transforma-
tion leading to the desired potential ¥ ®(p). The exact
phase equivalence of ¥ (p) and ¥ @ (p) implies that the
phase-shift value at threshold is the same for both poten-
tials, despite the fact that the bound state supported by
V©(p) is absent in ¥ ?(p). The fact, however, does not
imply for ¥ ®(p) a failure of Levinson’s theorem. The
reason becomes clear when looking at the short-distance
behavior of ¥ @ (p) which is found to be (for / =0)

@ © 6 h?
vV (p)paoV (p)+ Py 3
Thus, the singularity at the origin excludes ¥ ®(p) from
the Levinson class of potentials. However, the value of
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Rel*80(0)] produced by it is in agreement with what one
should find for potentials with a singularity of the form
and strength as displayed in Eq. (3), according to the gen-
eralized Levinson theorem. !’

Identifying now any one of the previously discussed
phase-equivalent potentials ¥ (p;E @) with V©@(p) we
find the corresponding SS related singular potential
V@ (p,E®). Here we again indicate explicitly the
dependence on the value of the binding-energy parameter
E @ It turns out, however, that all members of the fami-
ly of potentials ¥ ®(p:E @) coincide, independent of the
actual value of E @,

VOPE®)=1yD(p), forall E® . )

In fact, such a remarkable coincidence is found even when
the bound-state normalization constant is chosen different
from the value given by Eq. (2). This unique potential
V(Z)(p) is also shown in Fig. 2. It can be seen to be purely
repulsive, in agreement with the expectation raised by the
repulsive nature of the effective nd interaction mentioned
above.

Thus, we have demonstrated that apparently the un-
physical bound state, whose introduction was required for
the applicability of the inversion procedure to the nd quar-
tet S-wave phase shift, plays an analogous role in the
framework of the exact three-body theory as a PFS in the
RGM. Namely, its existence enforces a deep attraction in
the equivalent local two-body potential. Eliminating it by
means of SS transformations leads to a—in our example
purely repulsive— potential having no unphysical bound
states. But, in order to preserve phase equivalence and
hence also the phase-shift value at threshold, the latter
has to develop a repulsive singularity for vanishing inter-
cluster distances; this being another manifestation of the
repulsion induced by the Pauli principle. These features
appear to be independent of the original formulation of
the theory, either in terms of exact three-body integral
equations or of the RGM. Hence, they can arise only by
the mapping of a multiparticle scattering theory onto an
equivalent two-body formalism. However, there is one
important difference. Namely, at present we are not
aware of any physical criterion for selecting a unique
value of the binding energy of this fictitious bound state;
in contrast to the situation in the RGM, any value is ac-
ceptable. One might hope that in the future a deeper un-
derstanding of its origin on the three-body level may even-
tually uncover some prescription for fixing this quantity.
We finally mention that a first attempt in this direction
has been made by Kukulin et al.
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