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It is demonstrated numerically that a separable expansion of the two-body t matrix gives us an
exact method of solving the Faddeev equation with a local potential. The method of a separable
expansion adopted is simple and systematic. The result of the three-body calculation on the n-d

scattering is stable at least in four significant figures with a lower truncation of the separable
series.

It is currently of interest to solve the Faddeev equations
in the scattering region exactly. Neutron-deuteron
scattering with realistic two-nucleon interactions is espe-
cially important because it is expected that the nuclear
force can be understood through this study.

The equations can be solved both in momentum space
and in configuration space. ' In the scattering region,
however, the momentum space equations look simpler.
The most widely used technique to solve the Faddeev
equations in momentum space for neutron-deuteron
scattering up to now has been the direct solution of the
two-dimensional integral equations after angular momen-
tum decomposition. The merit of this technique is
that the exact solution, in principle, can be obtained if the
numerical integration is performed carefully, which is not
trivial because of the singularities in the kernel. This
method, however, usually requires a huge memory as well
as a large CPU time, and hence it is a considerable task to
solve the equation with this method even in present day
vector processors.

A separable two-body t-matrix reduces the two-
dimensional integral equations to coupled one-
dimensional integral equations. If the two-body t matrix
is expanded into a separable series, it provides another
method for solving the Faddeev equations. Several
methods have been proposed for the separable expansion
of the two-body t matrix. The usefulness of the method
depends upon the speed of convergence. It has been
demonstrated that some methods are powerful enough to
approximate two-body properties with low-rank separable
t matrices.

Separable potentials derived using these methods have
been published. One of the most widely used finite-rank
two-body separable potentials is the PEST potential, s ob-
tained by the Graz group which represent the Paris poten-
tial in a wide energy region reasonably well. The Ernst,
Shakin, and Thaler (EST) method of the separable expan-
sion was used to obtain this potential. The PEST poten-
tial has been used successfully in an n-d scattering calcu-
lation by the Osaka-Graz group with a refinement of the
potential. ' Since then, versions of the PEST potential
have already appeared in literature. Different versions of
the PEST potential usually have a different rank.
Differences may exist even in the PEST potentials with
the same rank because of the freedom of the energy to cal-
culate the form factor. Therefore, it is necessary to make

clear which version of the PEST potential is used in each
few-body calculation.

Mathematically, it is impossible to expand the two-
body t-matrix of the local potential into a separable form
in the rigorous sense. " This is because a local potential is
noncompact in the two-body Hilbert space while a separ-
able potential is compact. Therefore, it is impossible to
have a finite-rank separable two-body t matrix which is a
good approximation to the t matrix of the original local
potential at all the energies. In a certain region of the en-

ergy and momentum, although the region may be large,
some finite-rank separable potentials represent the origi-
nal potential well.

The purpose of the separable expansion of the two-body
t matrix, however, is to use it in the few-body equations
for the system with more than three particles. In the con-
nected kernel few-body equations, such as Faddeev equa-
tions in the three-body case, the kernel itself is compact
with a reasonable potential. In other words, the Green's
function in the few-body equations is a cutoff factor in the
two-body Hilbert space. A proper separable expansion
gives a series of three-body results which converges to the
exact few-body solutions with the original interactions.

Because it is impossible to have a perfect separable po-
tential as discussed above, we have versions of potentials.
Instead, the separable expansion of the two-body t matrix
should be used directly to solve the few-body equation. In
other words, the convergence check should be done not in
the two-body results but in the few-body results. The se-
parable expansion plays the same role as a quadrature for
the numerical integration. It is our purpose in this paper
to show that a series of the three-body result with a separ-
able expansion of the two-body t matrix converges to a
certain number, and hence it is a method to solve the Fad-
deev equations exactly with local as well as nonlocal po-
tentials. For this purpose, however, the separable expan-
sion should be easy and more or less straightforward. If
some complicated procedures are necessary, which is the
case of the EST method where a careful choice of the en-
ergy is necessary, it is diScult to make the separable ex-
pansion directly in the few-body calculation.

We adopt here another method of separable expansion
which has been introduced by Adhikari and co-workers.
Contrary to the momentum space base functions in the
work of Adhikari and co-workers, we use the Laguerre
polynomial in the configuration space as the base function.
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This choice is more reasonable because many two-nucleon

potentials are represented in the configuration space. The
momentum space form factor is obtained by numerical
Fourier transform.

We study the n-d elastic scattering at 10 MeV with the
Los Alamos version of the Malfliet-Tjon potential.

In the separable expansion method of Adhikari and co-
workers, a series of base functions pl, &2, . . . , p„ is needed.
We can choose a different series, if necessary, for different
N-N states. We define the form factor g; by

Ig &-VIO & (I-I,2, . . . , n),

where V is the original potential; i.e., the Malfliet-Tjon
potential in this case. We define the rank N separable po-
tential Vl 1 by

N
V'~'- g lg;)x;, (gjl, (2)

ing energies. We have introduced another series of base
functions by adding the wave function to the type-A base
functions in each state. That is,

yl(r) -g(r),

PJ(r) F (r)LJ 2(rr)—(j -2,3, . . .).
(9)

g (r) -V(r)y)(r). (10)

Then the form factor in the momentum space can be ob-
tained by

Here g(r) is the deuteron wave function in the triplet s
wave, while it is the zero-energy scattering wave function
in the singlet s wave. We call this choice of series (9) type
B. Type-B separable potentials reproduce the pole in each
state.

From these base functions, we easily have form factors
defined by Eq. (1) in the configuration space. That is,

where X;, is the element of the matrix A;

X~)
- [A]ij .

The matrix A is defined through its inverse,

(3)

[A-'],, -(y, l vip, &.

Then the potential V' 1 acts just the same as V on P;; i.e.,

v'"'le;) -vie;& (i =N). (5

(4)

The choice of the series of the function lp;), therefore, is
essential in this method. We use the Laguerre polynomial
in this work, since it is one of the orthogonal polynomials
defined in O~r (~. We introduced a factor which is
multiplied to the Laguerre polynomial,

F (r) exp[ —or],
where cr is a cutoff parameter that can be chosen to get a
rapid and stable convergence in the three-body calcula-
tion. The final result should be independent from the
value of a.

With this factor and Laguerre polynomial L;, we have a
series of base functions by

gi(p) r drj 0(pr)gj(r) .

Here, jo(pr) is a spherical Bessel function. The integra-
tion in Eq. (11) is evaluated numerically.

The momentum space form factor plays an essential
role in the kernel of the one-dimensional three-body equa-
tions. ' The present method, contrary to some other se-
parable expansion methods, 6 gives a form factor in one
variable; i.e., the momentum. We replaced the numerical
form factor by an analytic form factor. This is necessary
in order to use the contour deformation technique.

A superposition of the Yamaguchi-type form factor has
often been used to have an analytic form factor. Then one
has to treat a considerable number of parameters which
are obtained by a least-squares fit. The quality of the ap-
proximation is sometimes poor.

Instead, we have introduced a procedure based on the
Legendre expansion. Since it is an expansion with an or-
thogonal polynomial, it is straightforward and accurate.
A similar treatment has been used before. ' The present
treatment is an improvement. We divide the form factor

y, (r)-F (r)LJ 1(rr) (j 1,2, . . .).
Here r is a scaling parameter which we have fixed by

1.5+2o .

(7) TABLE I. Calculated n-d scattering phase shifts 8' and the
absorption parameters g in Sly at 10 MeV with the Malfliet-
Tjon potential. The higher-rank separable potential is used in
'So, while a fixed rank-one potential is used in S]. The cutoN'
parameter a is 0.4 fm '. The phase shift is in degrees.

As we see from Eq. (4) and the orthogonal condition of
the Laguerre polynomial, this choice of r would make the
matrix A diagonal under a potential V(r) a:e ' '/r . It
helps to keep the matrix A nonsingular. We call this
choice of series (7) type A.

There are poles in the two-nucleon t-matrix. A virtual
state pole is in the singlet s wave, awhile the deuteron pole
is in the triplet s wave. The approximation of the t matrix
is, therefore, better if these poles are well described.
Low-rank type-A separable potentials may fail to repro-
duce these poles.

In the EST method, on the contrary, these poles are
reproduced by using the true wave function at correspond-

Rank
1

2
3
4
5

6
7
8
9

10

41.41
107.40
117.23
118.31
119.07
118.09
118.28
118.33
118.34
118.35

Type A

0.8891
0.6414
0.6229
0.6170
0.6098
0.6183
0.6168
0.6164
0.6162
0.6162

8
115.39
114.01
117.96
118.36
118.46
118.34
118.35
118.35
118.35
118.35

Type 8

9
0.6091
0.6089
0.6150
0.6162
0.6161
0.6162
0.6162
0.6162
0.6162
0.6162
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TABLE II. Same as Table I with a different value of the cutoff parameter. The series of separable
potentials is type B.

Rank
1

2
3
4
5

6
7
8

8
115.39
113.59
118.31
118.34
118.37
118.43
118.34
118.35

e 0.2

0.6091
0.6086
0.6161
0.6161
0.6162
0.6162
0.6162
0.6162

8
115.39
113.87
118.21
118.35
118.38
118.32
118.35
118.35

o 0.3

l1

0.6091
0.6088
0.6157
0.6162
0.6162
0.6162
0.6162
0.6162

115.39
114.09
117.48
118.37
118.31
118.34
118.35
118.35

o 0.5

0.6091
0.6090
0.6139
0.6162
0.6162
0.6162
0.6162
0.6162

into two factors,

g, (p) -YJ(p)R, (p) . (i2)

Here, Y~ (p) is a Yamaguchi-type form factor. That is,

(i4)

p' b ( —1(t( I) .2 1+t
J (is)

The parameters y, and bj in Eqs. (14) and (15) can be
chosen in order that the Legendre expansion can be trun-

YJ(p)-
p +pg

with a fixed value of pj. Then the parameter xi is deter-
mined by a requirement that R, (0) 1. This factor intro-
duces a correct asymptotic and threshold behavior inta the
analytic form factor g, (p). All numerical information is
contained in R, (p). Since the threshold and asymptotic
behavior of this factor is simple, it is easier to expand.

We expand this factor as follows. We present RJ (p) as

2

RJ(p) 1+
~ FJ(p) .

p2+ y2

Finally, this function Fi(p) is expanded by the Legendre
polynomial in a variable t after a standard transform

cated faster. The resulting analytic form factor has poles
at p ~ip, , +iy, , +i8, Du. e to the canstruction, the
parameter pj is for long range, while y~, and bj are for
short range. We took P, 1.4 fm ', y, 5.0 fm ', and

bj 2.5 fm '. These poles do not cause any problem in
the method of contour deformation because they are large
enough. We have checked that the quality of the expan-
sion is independent from the choice of these parameters if
they are in a reasonable region.

Simpler formulas could be used to expand the form fac-
tor in an analytic function. However, the merit of this for-
mula [Eqs. (12)-(15)]is that the analytic form factor ob-
tained is very accurate and smooth in the region of smaller
and medium momentum which is very important in the
three-body calculation. Typically, the first ten Legendre
polynomials are enough to reproduce the form factor in
five significant figures or more in the region of 0 (p ( 5
fm

Once the separable potentials in singlet and triplet
states are fixed, we solve the resulting one-dimensional
coupled equations. We solve the equations repeatedly
with the rank of the separable potential increasing to see
the convergence of the three-body result. In this work, we
calculate the phase shift and the absorption parameter.

As a first example, we solved the equations in the dou-

TABLE III. Calculated n-d scattering phase shifts 8' and the absorption parameters g with the
Malfliet-Tjon potential both in Si&2 and in S3i2 at 10 MeV. Ranks in the all channels are increased.
The type-B series is used.

'S)g

Rank
1

2
3
4
5
6
7
8
9

10

8
77.16
77.09
77.97
78.08
78.08
78.08

Sy2

fl

0.9922
0.9922
0.9920
0.9919
0.9919
0.9919

115.39
113.35
120.05
120.30
120.36
120.31
120.32
120.33
120.34
120.34

o' 0.3

yl

0.6091
0.6117
0.6016
0.6012
0.6012
0.6012
0.6012
0.6012
0.6012
0.6012

8
115.39
113.66
119.75
120.33
120.45
120.45
120.33
120.34
120.34
120.34

o 0.4

7l

0.6091
0.6106
0.6015
0.6013
0.6012
0.6012
0.6012
0.6012
0.6012
0.6012

78.08 0.9919
Our exact

120.34 0.6012
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blet n d-s wave by increasing the rank of the separable po-
tential in the singlet N-N state, keeping the triplet N-N
state the rank one of type 8. Table I shows the calculated
numbers. Two series are shown. One of them is with the
type-A series in the singlet state, while the other is with

type B. In both cases o 0.4 fm
The convergence shown in type A is typical. The num-

bers of the successive terms get closer and closer as the
rank increases, while the number with rank one is poor.

On the contrary, the rank-one calculation in type 8 is
already a good approximation to the higher-rank calcula-
tion. This simply means that the unitary pole approxima-
tion is good. The speed of the convergence in the type-8
series is faster although the results from both types of
series converges to the same number.

Table II shows the series of the type-8 calculation with
diff'erent cutoff parameters. As we have expected, the
converged number with higher rank is independent from
the cutoff parameter.

The value in these tables is not the final value that we

want to calculate because the potential in the triplet state
is still rank one. As a second example, we repeated the
calculation increasing the rank in the triplet potential with
a fixed singlet rank-one potential. We also found that the
series converges quickly.

In order to calculate the final exact numbers with the
original potential, we increase the rank of separable po-
tentials in all relevant channels. Table III shows the series
of calculations in the double s state and in the quartet s
state of the n-d scattering. Type-8 series is used here.
The cutoff parameter is 0.4 fm '. In each state, we found
that the series converges to a certain number, which is the
result of our exact calculation. The present procedure of
the exact method has already been applied at different en-
ergies, and compared with solutions from other ap-
proaches. ' Our numbers agreed with others.

The calculation was done at the Institute of Nuclear
Study, Tokyo University, and at the Hosei University
Computer Center.
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