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Coupling schemes in doubly odd nuclei and identical superdeformed bands
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Using coupling schemes derived for low-lying structures in doubly odd deformed nuclei in the
framework of the particle rotor model and properties of orbitals which follow from pseudospin
symmetry, likely explanations are given for identical superdeformed bands.

One of the most intriguing and striking recent dis-
coveries in high-spin nuclear physics has been the finding
of almost identical superdeformed bands' in several
neighboring nuclei.

On the other hand investigations of band structure in

doubly odd nuclei carried out in recent years have lead to
the establishment of coupling schemes which imply identi-
cal bands in odd, doubly odd, and even-even neighboring
nuclei provided the inertia parameters are equal. One of
these schemes, called (nonstaggered) semidecoupling,
consists of the coupling of a particle occupying an orbital
with a given Q (or a set of states [Q]) and another in an
Q = —,

' orbit with decoupling parameter a = ~ 1. In this
case the net result is that in the neighboring odd-odd or
even-even (in the case of alike particles) nucleus one finds
bands identical to the Q (or [Q]) structure in the odd nu-

cleus (examples for this situation have been shown to exist
in the heavier rare-earth region").

Furthermore if two distinguishable (e.g. , of diff'erent

isospin or parity) Q —,', a =1 orbits are coupled together
one encounters a special case of a doubly decoupled
band, namely a two-quasiparticle band of odd spins with
alignment one in the odd-odd or even-even system and
identical to the ground-state band of the even-even nu-

cleus. In fact, in the framework of the two-quasiparticle
plus rotor model the matrix element of the Coriolis in-
teraction coupling these two states is

[a,+ ( —I ) "+"a„][I(I+I)]'".
For a~=a„= ~1 and odd spins its value is ~2[I(I
+1)]'t2. The two-body part of the recoil term gives a di-
agonal contribution for the K Q, —

Q~ =
2

—
2

=0
state which is ( —1) +'a„a~. Again for the favored signa-
ture sequence (a =1, odd I) its value is unity. Hence the
2x 2 matrix to be diagonalized is (all elements in units of
the rotational constant A = It /2Z):

I(I+1)+1 2[I(I+1)]'

2[I(I+1)] 'l 1(I+1) —
1

One obtains for the lowest eigenvalue E =I(I+1)
—(2I+ 1) (odd I). With the substitution I =R+ 1

(which implies alignment 1), E —=R(R+1)—1 exhibit-
ing explicitly that the spin sequence I=1,3,5, . . . has

I

identical transition energies to the core states R =0,
2, 4, . . . . This is a generalization of the well-known case
of an 0 =

2 band with a =1, where the rotational energy
1s

I(I+1) —,
' + ( ——I )"'"(I+—,

' ) = (I —
—,
' )(I+ —,

' ) —
—,
'

=R(R+1)——,', (2)

with the substitution I=R+
& (alignment —,

' ). Again
one sees that the spin sequence I = &, 2, . . . (favored sig-
nature a= —,

' ) has transition energies identical to the
even-even core.

In fact the excited superdeformed (SD) band ' in ' 'Tb,
identical to the yrast band of ' Dy has been explained in

just these terms invoking the Nilsson proton state labeled
[301 —,

' ] (and much better described by the [200 —,
' ]

asymptotic pseudospin quantum numbers, corresponding
to a 1). On the other hand the SD yrast band
configuration of ' 'Tb corresponds to the [642 —', ] Nilsson
orbit (at zero rotational frequency) and denoted as 63 in

Ref. 8. The excited SD band' in ' Gd (identical to the
yrast band of ' 'Tb) can be understood exactyl in terms of
the semidecoupled scheme utilizing the [[200 —,

' ];63] two-

quasiparticle configuration in ' Gd.
Recently two excited SD bands have been reported' in
'Gd. One of them has transition energies identical to

the yrast band in ' Gd while the other has transitions
with energies equal to the average of the nearest-lying
transitions in ' Gd (also yrast). An attempt to explain
these bands in terms of a single Q =

2 orbital encounters
two types of difficulties. The first one is that a single
0=

2 orbit, whether a=1 or —1, gives a single set of
transition energies. For a=1 one obtains, as discussed
above, transition energies equal to the core for the favored
signature branch ( —,', —', , . . .) while the a = ——,

' sequence
( 2, &, . . . ) is degenerate with ( —', ,

—', , . . .) giving again
transition energies equal to those of the core. For a = —1

the structure of both signature components consists of a
sequence of degenerate doublets: ( —,', —', );( —', ,

—', ), . . . and
the level energies follow the expression E(I) =III+2)
+ 4 for a = —.

' . Here the energy for the BI=2 transition
which originates in the state I=R+ —,

' (even R) equals
4R + 2 which turns out to be equal to the average:

p [(R+2)(R+3) R(R+1)+R(R+1)——(R —2)(R —1)]=4R+2.

R1822 1990 The American Physical Society



COUPLING SCHEMES IN DOUBLY ODD NUCLEI AND. . . R1823

The second difficulty is that for the neutron numbers

and deformations involved, the only Q = —,
' state near the

Fermi surface is the [411 —, ] orbit. (Again, this is much

better described by [310—,
' ] having a =(—1) = —1,

namely the pseudospin limit. The calculated values of the
decoupling parameter for this state change from —0.9 to
—0.7 for a quadrupole deformation going from 0.3 to
0.54, respectively. )

%e have now to turn our attention to the concept of
pseudospin which is being currently'" discussed in con-
nection with the identical superdeformed bands. The nat-
ural parity single-particle spectrum within a given major
shell is dominated by the presence of quasidegenerate
doublets labeled in a Nilsson diagram as (Nn3 A Q A

+ —,
' ) and (Nn3h+2, Q = A+ —', ) which alternatively can

be described as pseudospin-orbit partners with quantum
numbers (N =N —1, n 3, A = h + 1, Q = & +'

2 ) =
~

~ ).
These doublets have the following asymptotic properties:

and &+ (j+ )
—) =1. In addition, if

one of the partners has Q = —,
' its decoupling parameter is

zero. If we assume that these doublets are isolated ener-
getically from the rest, something which is particularly
true for very large deformations, then the Coriolis cou-
pling problem reduces to the diagonalization of a 2X2
matrix. If we neglect the splitting between the two com-
ponents of the doublet and work in a high-spin regime
(I»K) the particle plus rotor matrix can be written as

I(r+1)
,
—[I(I+1)l ' '

—[r(r+1)l '"
r(r+1) (4)

The lowest eigenvalue turns out to be E —=(I—
2 )

x (I+ 2 ). Again with the substitution I =R+ —,
' (align-

ment —,
' for a 2 and —

—,
' for a= —

—,
' ) it goes over to

E — R(R+1). In many respects this excitation has the
properties of two Q =

& orbitals, one with a=1 and the
other with a = —

1 [see Eq. (2)l. The matrix (4) is valid
for all values of I(1~ A+ —,

' ) unlike matrix (1) and Eq.
(2). We obtain here alignments +' —,

' and both signature
components. The a 2 trajectory follows the core spac-
ings while the a = ——, component has transition energies
which are the average of the two nearest transitions in the
a 2 sequence. This excitation provides a natural ex-
planation for the two excited SD bands in ' Gd. A suit-

I

able pseudospin-orbit doublet which lies near to the Fermi
surface and seems to be particularly degenerate is
[[530—,

' ],[532, —', ]j (in the pseudospin representation
{[4312 l, [431-,' ]j. The Coriolis matrix element coupling
these two orbitals varies from 1.1 to 0.8 for a quadrupole
deformation changing from 0.3 to 0.54).

The next finding' to be explained is an excited SD
band in '" Gd which appears identical to the a = —

—,
' tra-

jectory in ' "Gd. Since we are dealing most likely with a
two-quasiparticle band in ' Gd let us explore the cou-
pling of an Q = —,

' orbit (e.g. , the [310—,
' )) with a doublet,

for instance the one just suggested for ' Gd. The
configuration space is spanned by the following basis:

[QbiQb lj[Qa 2 j [Qb+Qa~Qb Qa~Qb 1+Qa~Qb 1 Qaj

For a, = —1 the resulting 4x4 matrix is (again neglecting splittings and taking I» K):

r(r+1) —[I(r+1)]'" —[I(r+1)]'"
—[I(r+1)]'" I(r+1) 0
—[I(r+1)]'" 0 I(I+1)

0 —tI(1+1)l '" —[I(I +1)] '"

0
—tr(r+1)] '"
—fr(r+1)] '"

I(r+1)

(5)

We obtain for the lowest eigenvalue E —=l(I + 1)
—2[I(I+I)]' . The substitution [I(I+1)]'~ =[R(R
+1)]'~ +1 gives E =R(R+1)—I. This implies that
the even spin sequence in ' Gd will be equal to the
a = ——,

' component in ' Gd while the odd spin sequence
should equal the a =

2 band. This last point is in fact a
prediction. It is worth mentioning that the quasiexact
problem (i.e., neglecting only the diagonal single-particle
splitting) admits closed solutions with the lowest one be-

ing E =I(I+1)—2I 2, which after the subs—titution
I=R+1 goes over into E —=R(R+1)—2.

Still another possibility would be the coupling of two
doublets for example the one already used for ' Gd and
[[402 —', l, [404 —,

'
ll [[303—', l, [303 —', ]j. If we order the

basis as Qb+ Q„Qb+(Q, —1), (Qb —1)+Q„(Qb —1)
+ (Qg —1), Qb —Qg, Qb —(Qg —1), (Qb —1)—Qg,
(Qb —1) —(Q, —1) we obtain a block diagonal 8x 8 ma-

I

trix with two blocks identical to matrix (5). The decou-
pling of the two blocks is due to the fact that the decou-
pling parameter of the [431 —,

'
l orbit is zero. In this case

we would have two solutions of the kind described above.
It is important to realize that this scheme works, pro-

vided there is a mechanism which gives the equality of the
moments of inertia in the different neighboring systems
and in fact, some ideas have been put forward in this
respect. " ' It would seem likely that since blocking
eA'ects are not apparent, pairing correlations should be re-
duced in the superdeformed structures.

One may envisage even more complicated schemes in-

volving more doublets (or Q = —, orbits) and also other
states with no pseudospin alignment to explain different
situations. It is evident however that the Coriolis coupling
of these excitations provides a natural framework for the
understanding of identical superdeformed bands.
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