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Decay studies of the neutron-rich isotopes '68Dy and '68Hog

and the identification of the new isomer '68Ho
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Multinucleon transfer reactions between "Er ions and ""W targets with on-line mass separa-
tion were used to produce neutron-rich A 168 isotopes. P and y spectroscopy was used to study
the decay of these activities. A new isomer of holmium, ' Ho, was identified to decay by an
isomeric transition with a half-life of 132(4) s. A decay scheme for the most neutron-rich

168 isotope, 8.8(3)-min '68Dy, was determined. Also, a new Q&- value of 2.93(3) MeV for
the decay of 3.0-min ' SHo has been obtained.

Studies of neutron-rich rare-earth nuclides with the
On-line Apparatus for SuperHILAC Isotope Separation
(OASIS) facility' at the Lawrence Berkeley Laboratory's
(LBL) SuperHILAC using neutron-rich rare-earth beams
have progressed over the last few years. Past studies
characterized the new isotopes ' Dy (Ref. 2) and ' Er
(Ref. 3) and deduced the decay scheme of ' 'Ho. The
present experiment was performed to determine the decay
scheme of ' Dy. Gehrke et al. previously measured an
8.5(5)-min half-life for ' Dy and assigned five y rays to
this isotope but no decay scheme was constructed.

An 8.5-Mev/nucleon ' Er beam, with 50-125 particle
nA intensity, from the LBL SuperHILAC and ""W tar-
gets located inside the OASIS ion source were used to
produce projectilelike neutron-rich lanthanides via mul-
tinucleon transfer reactions. Reaction products were sur-
face ionized, mass analyzed, and the A 168 mass chain
transported ionoptically to a shielded counting area. The
A =168 activities were then collected on a fast-cycling
tape system and transported, within 200 ms, to a detector
array for P- and y-ray spectroscopy. P particles and low-

energy (10-400 keV) photons were detected with a tele-
scope consisting of a 718-pm-thick Si detector and a pla-
nar hyperpure Ge (HPGe) detector which faced the ra-
dioactive layer of the tape, while a large solid angle
(-35% of 4tr) 1-mm thick plastic scintillator, for electron
detection, and a 52% efficient Ge detector, for y-ray
detection, were located on the opposite side of the tape. A
third 24% efficient Ge detector was located at 90' with

respect to the other detectors -4.5 cm from the source.
Singles data were acquired for all three Ge detectors. For
half-life determinations, the HPGe and 52% Ge detector
data were time resolved, with the tape cycles divided into
eight equal time intervals. Coincidence events registered
in the various detectors were recorded in an event-by-
event mode.

A tape cycle time of 1024 s was used to optimize the
yield of the 8.5-min ' Dy activity and give adequate
growth and decay statistics for the 3.0-min ' Ho
daughter. All five y rays previously assigned to ' Dy de-
cay (143, 192, 443, 487, and 630 keV) were observed to
decay with the previously measured half-life. Also, two
new y rays at 43.8 and 437.0 keV were found to decay
with a similar half-life. A weighted average value of
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FIG. 1. Two-component decay curve fits to the Ho x-ray data
for the 1024-s experiment; (a) Ho Ka~ (47.5 keV), and (b) Ho
Ka2 (46.6 keV) with the long-lived component of each decay
fixed at 8.8 min. The resulting short-lived components are
134(8) and 130(11) s for (a) and (b), respectively. Vertical
bars on data points (shown as crosses) are indicative of the un-

certainty in the activity at each point.

1024

8.8(3) min was calculated for the half-life of the seven y
rays. Inspection of the Ho ECa~ and ECa2 x rays, however,
yielded two component decay curves (a short-lived com-
ponent in addition to the 8.8-min '6sDy) which are shown
in Figs. 1(a) and 1(b).

The absolute decay rate of ' Dy was determined by ob-
serving the growth and decay of its ' Hog daughter y
rays. Ho~ever, this was complicated by the short-lived
activity (132-s ' Ho discussed below) observed in the
x-ray singles data (Fig. 1), which also decayed to '6sHog.

Figure 2 shows the decay data of the two strongest y rays
(741 and 821 keV) in the decay of ' Hoe during the
1024-s experiment. Decay curve fits for the two parents,

Dy (8.8 min) and ' sHo (132 s), feeding one
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FIG. 2. Calculated growth and decay curve fits for '
Dy and

Ho parents feeding the same daughter activity, 3.0-min
'6'Hog, for the 1024-s experiment; (a) 741-keV y-ray decay and
(b) 821-keV y-ray decay. All half-lives were held fixed with the
two parents at 8.8 min and 132 s, respectively, and their
daughter at 3.0 min.

34(3)% 5.5 1+

10(3)% 6.0 (1)
(1)- ip

3+ g p 3.0 min

16sH p67

o~0.]925 108(11)ns=0.1873
0.1435 &4@$

O

0.0

FIG. 3. Proposed decay scheme for the decay of 8.8-min
' 'Dy. Energies are in MeV. The Q&- value is taken from Ref.
7. Logft s are in italics following the P intensities. The spin
and parity assignments are discussed in the text.

daughter activity, ' Ho, are shown in Fig. 2, with all
half-lives held fixed. The decay intensity of the 8.8-min
parent '

Dy was integrated over the counting interval
and corrected for the known emission probabilities of the
741- and 821-keV y rays from ' Ho, 0.359(8) and
0.347(8), respectively, to yield the total ' 'Dy decay in-
tensity. An emission probability per P decay of 0.225(16)
was determined for the 487.0-keV y ray from '

Dy in

good agreement with the previous value of 0.22(4).
Table I lists the energies, absolute intensities, multipo-

larities, total conversion coefficients, and y-ray coin-
cidences for the transitions assigned to the decay of 8.8-

min ' Dy. The Ho Ea x-ray intensities, also given in
Table I, were determined by integrating the long-lived
component of the decay curves in Fig. 1. All y and Ho Ka
x rays were seen in coincidence with P particles in the P
telescope or the plastic scintillator. The multipolarity of
the 43.8-keV transition could not be measured directly
since the Ho L x-ray energies were too low to be observed,
but was inferred from intensity balances in the decay
scheme proposed in Fig. 3. The Q&- value was predicted
to be —1.4 MeV using the atomic mass predictions com-
piled by Haustein. The 192.5-keV level was measured to
have a half-life of 108(11) ns using the timing informa-

TABLE I. y-ray energies E„, absolute intensities I„, multipolarities M, theoretical total conversion
coefficients a, and y coincidences in the decay of "Dy.

E„(keV)

43.8(2)
46.6 Ho Ka2
47.5 Ho ECal

143.5(2)
192.5(2)
43v.o(v)
443.3(2)
487.0(2)
630.4(3)

1„(abs.)

o.o44(4)
0.122(14)
0.213(23)
o.o6s(s)
0.328 (20)
0.085 (11)
o. 1 ss(»)
0.225(16)
0.136(11)

E2
(M 1)
(E &)

(E 1)
(E2)

4.90

6.72
0.279
0.0465
0.00703
0.00569
0.00897

Coincident y rays

X, (143), 443
43.8, X, (143), 443, 487

c
43.8, 487
(X), 437
X, 192

43.8, X, (143)
X, (143)

d

'Parentheses indicate the multipolarity was not measured but inferred from intensity balances or spin
assignments of the decay scheme.
X Ho K x rays. Parentheses indicate a weak coincidence.

'Due to Er Ka2 interferences, no clean coincidence gate could be set.
No coincident y rays were observed.
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tion between P particles and 192.5-keV y rays. The
half-life of this level from the single-particle model for an
E2 transition and corrected for internal conversion is ex-
pected to be 30 ns. The half-life of the 143.5-keV level
was longer than the resolving time (1.5 ps) of the time-
to-amplitude converter spectrum, and is estimated, from
intensity ratios of the coincidence and singles data, to be
& 4 ps, consistent with the single-particle estimate of 2

ps. The half-lives of all other levels were found to be ( 5
ns.

The '6sHo ~round-state spin and parity have been as-
signed as 3+. The 1+ spin and parity of the 193- and
630-keV levels are the only assignments consistent with
both the measured low logft values and ground-state y
transitions. The negative parity assignments of the 143-
and 187-keV levels are based on the y multipolarity as-
signments and the weak P branches. Either a 0 or 1

assignment is compatible with the y-ray deexcitation of
the 187-keV level, but a 0 assignment is inconsistent
with logfr ) 7 measured for other 0+ 0 P transi-
tions in this region. In ' Dy decay, a logft 5.9 has
been measured for a 0+ 1 P branch. We therefore
propose a 1 assignment for the 187-keV level. Ground-
state P feeding could be estimated as less than 4%(2o)
from the measured transition intensity feeding into the
ground state [I„+~F, 1.06(5)l. P feeding to the 143-keV
level had a measured upper limit of ~ 2(5)%; however,
with all of the P intensity already accounted for and the
large relative error on this P branch, no feeding to this lev-

el is proposed.
To identify the short-lived activity seen in both the Ho

Ka x rays (Fig. 1) and the 3.0-min ' Ho growth and de-

cay, an experiment with a shorter tape cycle of 512 s was
carried out. The Ho Ka~ and Ka2 x rays again exhibited
two-component decay curves and a weighted average of
132(4) s was obtained for the half-life of the short-lived
component from both the 512- and 1024-s experiments.
However, no y rays could be found that decayed with this
half-life. Possible explanations of this activity are a new
'6 Dy isomer, which predominantly P decays (' Dy de-

cay showed no growth and decay behavior) through a
highly converted y transition, or a new ' sHo isomer de-
caying by a highly converted isomeric transition (IT).
Since long-lived isomers of even-even isotopes are not ex-
pected in this region, the activity is assigned to the new
isomer ' Ho with a half-life of 132(4) s.

The total IT intensity of this new isomer was deter-
mined by analyzing the growth and decay curves of its
daughter's 741- and 821-keV y rays (similar to ' Dy de-
cay). An absolute Ho K x-ray intensity of 0.133(10) per
IT decay was measured. For K-shell internal conversion,
a y transition of ~ 56 keV is required. To obtain a 132-s
half-life, an E3 or M3 y transition is necessary, but the
E 3 transition is ruled out due to the K x-ray intensity and
absence of the y-ray detection. An M3 transition at 59
keV would have the correct K x-ray intensity and a y-ray
intensity per IT decay of 4.02x10, which is below our
detection limit. For M3 transitions with energies near the
K binding energy, the K x-ray intensity is very sensitive to
transition energy, but is essentially linearly dependent on
energy near 60 keV. Assuming pure M3 multipolarity,
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FIG. 4. Partial level schemes of N 101 isomers and their
Nilsson model proton and neutron configurations; (a) '72Lug

and ' 2Lu, and (b) ' 8Hog and proposed ' BHo . Energies are
in MeV.

we can estimate the energy of the unobserved transition to
be 59(1) keV with a B(M3) 0.088.

The isotope ' Lu, with four more protons than ' Ho,
also has an isomer that decays via a 3.7-min M3 IT at
41.9 keV (Ref. 9) with a similar B(M3) =0.053. The
spins of ' Lus (4 ) and ' Lu (1 ) were proposed to
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FIG. 5. Fermi-Kurie plots of y-gated, background-subtracted
p-particle spectra for '6 Ho p decays to levels in '6'Er; (a)
821-keV level, (b) 896-keV level, and (c) 995-keV level. The
fitting intervals used in the least-squares linear fits were (a)
1.0-2.0 MeV, (b) 1.0-1.9 MeV, and (c) 0.8-1.5 MeV.
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result from the coupling of the —', + [404] proton state and

the —,
' [521] (ground) and —', [512] (first excited) neu-

tron states, respectively, ' as shown in Fig. 4(a). The
Ho ground-state spin and parity of 3+ presumably re-

sults from the coupling of the —', [523] proton state and
the —,

' [521] neutron state. Assuming a similar coupling
scheme as in ' Lu, ' Ho would then result from the
coupling of the —', [523] proton state and the —', [512]
neutron state, shown in Fig. 4(b). This is consistent with
the assignment of 6+ from the M 3 transition and thus the
isomer would not be populated by

' Dy decay. A similar
6+ coupling was also proposed as the ground-state con-
figuration of ' Ho. "' We, therefore, assign a 6+ spin
and parity for the 132(4)-s ' Ho isomer at 59(1) keV
above the 3.0-min ' Ho ground state. This activity de-
cays predominantly ()99.5%) by IT decay since there
was no evidence for P decay which would have been seen
as an enhancement in the 'ssEr 6+ to 4+ transition (284
keV) intensity. The proposed partial decay scheme for

Ho™is shown in Fig. 4(b).
The Q&- value for ' Ho decay has been reported as

2.74(10) MeV from end point measurements of P parti-
cles (measured in a 5.08 cmdiam by 1.27 cm plastic
detector) coincident with 80-, 741-, and 821-keV y rays
from ' Hos decay. In our experiment, considerable
statistics were acquired for the P decay of ' Hos. y-

gated, background-subtracted P spectra, measured in the

P telescope, were acquired in coincidence with y rays

TABLE II. Level energies, y-ray gates, P end points, and

Q&- values for '6'Hos decay.

Level energy Gate energies' End point energy
(keV) (keV) (MeV)

Qp-
(MeV)

821.1

895.7
994.7

741, 821
632, 816
731, 915

2. 10(4)
2.04(7)
1.96(21)

2.92(4)
2.94(8)
2.96 (21)

'Coincidence gates summed for the indicated transition ener-
gies.

deexciting the 821-, 896-, and 995-keV levels in 'ssEr.
Fermi-Kurie plots were made for each spectrum and the
end points were detertnined using least-squares linear fits.
(Further details of the P detector calibration and analysis
are given in Ref. 2.) Figures 5(a)-5(c) show the Fermi-
Kurie plots and Table II lists the results for this analysis
and the resulting Q values, from which a weighted average
Qtt- value of 2.93(3) MeV for the decay of ' Hos was
calculated, which is slightly higher than the previous
value.
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