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Annihilation shifts and widths of the P-d atomic levels
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The strong interaction shifts and widths of the antiproton-deuteron atom are calculated within

a simple three-body model. The nuclear p-d optical potential is obtained from a projected form
of the Faddeev equations with rank-one, separable, S-wave two-body potentials. The N —N po-
tential parameters are fit to the zero-energy scattering results of the Graz potential. The
Coulomb potential is combined with the nuclear optical potential to obtain the atomic levels from
the Schrodinger equation. The truncation of the Faddeev model optical potential to the level of
the standard tp impulse approximation overestimates the shifts and widths by up to 10% and 30%,
respectively. The use of first-order perturbation theory for the atomic eigenvalue overestimates
the widths by 1 order of magnitude.

The shifts and widths of the atomic levels of exotic
atoms formed from captured antiprotons off'er valuable in-
formation on the nucleon-antinucleon (NN) interaction at
threshold. The analysis is usually made in terms of the
complex energy eigenvalue of a two-body problem involv-

ing the p-nucleus optical potential constructed from a
phenomenological NN interaction in addition to the at-
tractive Coulomb potential. ' For heavy nuclear cores that
are spin saturated, the spin dependence of the underlying
NN interaction is not accessible. At the other extreme,
the pP atom, or protonium, provides direct access to a sin-
gle spin component of the effective pP interaction without
the uncertainties associated with folding in the effects of a
many-nucleon core. 2 The case of a deuteron core, in
which the atom is antiprotonic deuterium, offers the possi-
bility for study of a more complete spin structure of the
NN interaction while the many-body eff'ects of the nuclear
core can be treated more explicitly. The p-d atom has a
Bohr radius of about 44 fm. One would expect that the
nuclear distortion of the deuteron core would be negligible
and that the simple impulse approximation (tp) will
suffice for the P-d optical potential.

In this work we calculate the p-d optical potential in a
simple separable potential model of the NNN system, add
the two-body Coulomb potential, and then solve for the
complex atomic energy eigenvalues as a two-body prob-
lem. To our knowledge, only one previous estimate has
been made for the shifts and widths of the P-d atom.
The approach taken in that work involved the use of the
Trueman formula4 in the form where the complex energy
shift is related in first-order perturbation to the atomic
state matrix element of the nuclear P-1 scattering ampli-
tude. The latter quantity is estimated by an approximate
summation of the three-body multiple scattering series
with separable S-wave interactions. Large corrections to
the tp or impulse approximation for the p-d amplitude
were found to be present and to lead to reductions in the
shifts and widths by factors of about 2 and 10, respective-
ly. In this work we avoid these approximations by a direct

(Pd I UN 14'd)+ VC . (2)

Here Vc is the p-d Coulomb interaction, Ipd) is the deu-
teron ground state, and Utv is the pure nuclear P-d optical
potential operator given formally by

UN(E) Vtv+ Vtv QGd(E)UN(E) . (3)

In Eq. (3), Vtv is the sum of effective two-body nuclear
potentials

VN vkg
+ vpp (4)

Q is the projector onto the excited states of the deuteron,
Gd (E Hd K, ) ' wher-e E-is the total three-body ener-
gy, and Hd is the deuteron Hamiltonian. We use rank-
one S-wave separable forms for the three nuclear poten-
tials and solve for the first term of Eq. (2) within a
momentum space Faddeev formulation. Both the NN and

solution of the model Faddeev equations for the P-d opti-
cal potential, and also by the solution of a two-body eigen-
value problem for the shifted atomic state. We find a
much reduced role for three-body dynamical corrections
to the nuclear impulse approximation. We also find that,
due to strong absorption, the atomic eigenvalue problem is
not amenable to first-order perturbative estimates.

The complex energy shifts of the P-d atomic levels are
defined by

~F. =AF-tt l I /2 EcN —Ec',

where I is the full width, Egtv is the eigenvalue due to
both Coulomb and nuclear interactions, and Ec is the
pure Coulomb eigenvalue. We project the three-particle
Hamiltonian onto the deuteron ground state channel so
that EcN is the eigenvalue of the effective P-d two-particle
Hamiltonian K, +U. Here K, is the P kinetic energy
operator and U is the exact P-d optical potential for the
three-particle model. We ignore the possibility of
Coulombic excitation and deexcitation of the deuteron
core so that the optical potential can be approximated by
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NN potentials are described by a strength parameter (real
for NN, complex for NN) and a real range parameter for
the Yamaguchi form factor. We use the isospin formal-
ism so that there are two spin-isospin channels for NN and
four for NN. The NN parameters are fit to the relevant
scattering lengths and effective ranges as well as the
deuteron binding energy. For the NN case, the parame-
ters are fit to the zero energy scattering results obtained
from the Graz potential which describes the available
phase shifts below 200 MeV and contains an annihilation
mechanism to a phenomenological channel of two spinless
bosons. We have previously employed the present rank-
one model to study nuclear states of the NNN system6
and the potential parameters are to be found tabulated in
that work.

Three-body integral equations for UN follow from Eq.
(3) by elimination of potentials in favor of t matrices for
each pair, and in Alt-Grassberger-Sandhas (AGS) form, '
they are

3
U' b,3Gp '+ g B,„T„GpU",

y 1

(5)

where U33= UN. Here particles 1 and 2 are nucleons and
particle 3 is the antiproton, and each interacting pair is la-
beled by the spectator particle. In Eq. (5), b,3=(1 8 3),
and Gp is the three-body noninteracting propagator. In
terms of the usual t matrices T„for each two-body subsys-
tem, the quantities T„that enter Eq. (5) are T„T„for
y 1,2 (NN channels), but for the NN channel the rela-
tion is

T3 —= T3 Gp PGd (E)G p

where P ~Pd&&Pq~ is the projector onto the ground state
of the deuteron (P 1 —Q). The subtraction term occurs
only in the np spin-triplet channel and has the effect of
canceling the deuteron pole of the t matrix. The particu-
lar off-shell extension of the pole residue of the subtrac-
tion term is necessary to reproduce the optical potential of
Eq. (3) from the three-body AGS equations. Under the
replacement Q 1, the optical potential UN becomes the
elastic Pd scattering amplitude, and Eq. (5) becomes the
standard AGS formulation of the Faddeev treatment of
this system.

With the indistinguishability of the two nucleons, the
three coupled equations (5) reduce to the pair

U' Gp '+E~2T~GpU' E~2+T3GpUv (7)

and

Ulv TiGpU' +E)2T&GpU' E12,

where E ~2 is the operator that exchanges all of the coordi-
nates of particles 1 and 2. Multiple scattering contribu-
tions can be removed from the nuclear optical potential
Uz by retaining just the first term of U', and this yields
the single scattering or impulse approximation

TABLE I. p-d atomic S-state energy shifts ~ bE& —iI /2
(keV) obtained using the Faddeev model optical potential com-
pared to the Wycech-Green-Niskanen (WGN) result (Ref. 3)
containing approximate multiple scattering corrections to the
impulse approximation. Bracketed values are obtained from a
first-order perturbative use of the nuclear optical potential and
thus omit nuclear distortion of the atomic state. The WGN re-
sult from Ref. 3 uses the Trueman formula (Ref. 4).

Atomic state
(2s+ I )LJ Faddeev model

WGN (Ref. 3)
(w+ws)

K, +Ulv+V, in momentum space using the Lande sub-
traction method as described by Kwon and Tabakin to
handle the integrable I/q singularity of the Coulomb po-
tential V, (q). We use the point charge form of V, and the
complex shifts are based on an unperturbed ground state
energy E~ —16.67 keV. The energy parameter of
Ulv (E) is the sum of the deuteron energy and the energy
of the atomic level under consideration. However, it is not
necessary to calculate Ujv(E) self-consistently in this pa-
rameter as the variations below the deuteron energy are of
no consequence on a nuclear scale. If care is taken in the
subtraction of the deuteron pole from intermediate states
as required in Eq. (6), we find no important dependence
on the atomic component of the energy and we evaluate
U~(E) at E —3 MeV for convenience.

The S-state shifts and widths obtained from the Fad-
deev model P-d optical potential are shown by the entries
without brackets in Table I for both the doublet and quar-
tet coupling of nuclear spins. If we estimate the size of
the spin-doublet p-d atomic shift as double the 'Sp
protonium shift, then recent Pp experiments would sug-
gest 1.460 i 1 1—30 ~. (0.1 i 0—09) .keV, 1.400 i 1 —600.
~ (0.3 —i0.4) keV ' and 1.240 i l. —

13 0~(0.2 —i0 17).
keV, "while recent Pp theoretical work would suggest, for
example, 1.04 —i0.89 keV (Ref. 2) and 1.08 i 1.0—2
keV. ' The calculated real shifts in Table I correspond to
these estimates while the calculated widths are substan-
tially smaller. This is to be expected since the calculation
involves the triplet spin NN channel as well as the singlet
with the former having an effective annihilation strength
which is a factor of 7 less in the present model.

Also shown for comparison are the results from Ref. 3
in which the complex shifts are determined from the True-
man formula in terms of the unperturbed atomic state
matrix element of the zero-energy nuclear P-d scattering
amplitude or scattering length. The latter quantity is
determined in that work by supplementing the tp impulse
approximation with estimated corrections for all orders of
multiple scattering of the antiproton as well as rescatter-
ing of the deuteron constituents. The NN potential em-
ployed there is the Green and Wycech' rank-two separ-
able representation of the Dover-Richard' local poten-
tial. If we neglect for the moment the differences in the
treatment of the nuclear sector of the NNN dynamics, the

UN T1+E12T1E12 ~ (9)

The results from this approximation will be compared
with the full solution from the three-body model.

We calculate the eigenvalues of the Hamiltonian

S t/'2

S3/'2

1.48 —0.45i
[2.61 —3.82i]
1.72 —0.36i

[4.35 —3.94i]

2.14 —0.59i

2.19—0.64i
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two methods should, in principle, agree if the nuclear dis-

tortion of the shifted atomic eigenstate is insignificant.
This is because the pole position of the Q-d T matrix,
which is the basis of the Trueman formula, corresponds to
the eigenvalue of EC, +U where U is the optical potential.
To assess the importance of nuclear distortion of the
eigenstate, we also show in brackets in Table I the com-
plex shifts obtained by truncating the present work to
first-order perturbation in the nuclear optical potential
Uiv. That is

~=&w. I&ed IUNIAd &I w, &, (10)

where y, is the pure Coulomb atomic state. Without nu-

clear distortion, the widths are overestimated by about an
order of magnitude and the real shifts are also
significantly overestimated. Within the range of the nu-

clear interaction, where the atomic state is required, it is
not purely Coulombic.

To assess the importance of multiple scattering and re-
scattering mechanisms in the nuclear P-d optical potential
UN, we have performed calculations that retain just the
single scattering or impulse approximation mechanism as
in Eq. (9). This corresponds to the folding of the NN T
matrices with the deuteron density. The results are
displayed in Table II for both the rank-one NN potential
used for the foregoing Faddeev calculation and also for
the NN potential' employed in the work of Ref. 3. We
again use eigenvalues of K, +U~+ V, to obtain the com-
plex shifts. Compared to our previous model-exact Fad-
deev results (Table I), there is an overestimation by 10%
for the real shifts and by 30% for the widths when nuclear
multiple scattering and rescattering are ignored. The cor-
responding impulse results of Ref. 3, also displayed in
Table II, suggest much larger corrections, e.g., an order of
magnitude change in the widths. This is surprising given
the peripheral character of the nuclear interaction that
bears upon the atomic orbital.

To test whether the differences in the employed NN po-
tentials are responsible for this discrepancy, we have re-
peated the impulse approximation calculation for Uiv with
the same rank-two Green-Wycech NN potential employed
in Ref. 3. Two versions of this calculation are performed.
The effective two-particle energy of the NN t matrices
varies with integration over the deuteron distribution.

The results obtained with this energy dependence treated
correctly according to the underlying three-particle kine-
matics are displayed under the heading t[E(k)]. The
column headed by t(E =0) contains the results obtained
with this energy frozen at zero. The impulse calculation
of Ref. 3 employs a factorized tp prescription at a fixed
energy E calculated from the deuteron distribution. Our
results show that this energy dependence is not a major
consideration. We also find that the evident NN model
dependence of our impulse approximation results is at
most 15%.

If we further ignore the nuclear distortion of the atomic
state by returning to the first-order perturbation estimate
of Eq. (10), we obtain agreement with Ref. 3 for impulse
results from the same NN potential. Our impulse results,
without nuclear distortion, are displayed as the bracketed
quantities in Table II. In agreement with the findings in
the case of the full Faddeev optical potential, the neglect
of nuclear distortion of the atomic state overestimates the
widths by about an order of magnitude and overestimates
the real shifts by up to a factor of 3.

In summary, we have explored the nuclear shifts and
widths induced on the S-states of the P-d atom through
use of a simple three-particle NNN model. Rank-one se-
parable NN optical potentials were employed to produce a
Faddeev solution for the P-d nuclear optical potential con-
taining all orders of multiple scattering and rescattering.
The complex shifts are produced from eigenvalues of the
effective two-particle Hamiltonian containing the sum of
the P-d pure nuclear optical potential and the Coulomb
potential. Nuclear multiple scattering and rescattering
effects are found to be much less important here than in
the only previously available estimate. We find that the
tp impulse approximation for the P-d nuclear optical po-
tential overestimates the real shifts by only 10% while the
widths are 30% too large.

This effect of the nuclear distortion of the deuteron core
is not as important as the nuclear interaction distortion of
the atomic orbital. This latter distortion is omitted if the
complex shifts are estimated from the pure atomic state
matrix element of the effective nuclear P-d amplitude
rather than from the eigenvalue of the Coulomb plus nu-

clear Hamiltonian. Such a first-order perturbative ap-
proach is the basis of the simple Trueman4 formula for

TABLE II. P-d atomic 5-state complex energy shifts dS 8$& —il /2 (keV) obtained using the im-

pulse approximation to the optical potential. Values without brackets are obtained from eigenvalues of
the effective p-d Hamiltonian. Bracketed values are obtained from a first-order perturbative use of the
nuclear optical potential and thus omit nuclear distortion of the atomic state. The WGN result from
Ref. 3 uses the Trueman formula (Ref. 4).

Atomic
state

(2S+ ] )LJ

2S I/2

S3/2

VNN

LT (Ref. 6)

This work
t [E(k)]

1.63 —0.64i
[1.18 —5.20i]
1.92 —0.47i

[3.74 —7.12i]

This work
i[a(k)]

1.59 —0.54i
[4.57 —4.88i]
1.63 —0.53i

[3.65 —5.20i]

VJYN

GW (Ref. 13)

This work
t(E-0)

1.38 —0.48i
[3.55 —2.22i]
1.43 —0.42i

[3.56 —2.41i]

WGN
(Ref. 3)
to~(E)

4.48 —4.90i

3.90 —5.24i
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complex shifts of the levels of exotic atoms when they are
taken to be proportional to the pure nuclear scattering
length. We 6nd the perturbative treatment overestimates
the widths by an order of magnitude and overestimate the
real shift by factors of 2 or 3. The Trueman formula is
known to be quite adequate for pionic atoms but about
20% too large for the stronger absorbing kaonic atoms'
and protonium. In the present P-d case the absorption is
much stronger and the interaction is of longer range.
Within the range of the nuclear interaction where the
atomic state is required to be known, it is not purely
Coulombic. This is found to account for the difference be-

tween our results and those of the only previous work on
the P-d atom at the impulse approximation level. Experi-
mental results for p-d atomic shifts and widths would help
stimulate the further theoretical work needed to develop
the P-d optical potential in terms of a more realistic NW
interaction so that spin-dependences can be addressed
with more confidence.
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