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Isospin forbidden E 1 transitions in 'aO and 4oca and the applicability of Siegert's theorem
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We reexamine the well-known problem of isospin forbidden E1 decays in self-conjugate nuclei
in the light of a recent claim suggesting that the E1 decay in ' 0 violates Siegert's theorem. We
first discuss the importance of including, through isospin mixing, giant dipole and monopole com-
ponents if agreement with observed lifetimes has to be achieved. We than show that the same
microscopic calculation which yields broad agreement with (e,e') and lifetimes results in '60 and

Ca also asserts the validity of Siegert's theorem. We conclude by suggesting that the claim re-

garding a violation of Siegert's theorem can only be definitely ascertained once additional data at
low momentum transfer become available.

Isospin forbidden El transitions continue to attract a
great deal of attention. ' ' Historically, two main reasons
have been invoked for this interest; in self-conjugate nu-

clei T 0 T 0 E 1 transitions can only proceed in the
long-wavelength limit by a small admixture of isospin-
breaking wave function components. Recently, an in-

teresting and novel aspect has been added to this problem
by Friedrich and Voeglers who suggested that their elec-
troexcitation experiment of the lowest T 1 1 state in
' 0 reveals an incompatibility with the lifetime measure-
ment at photon point, i.e., a violation of Siegert's theorem,
observed here for the first time. The purpose of this Rapid
Communication is to discuss, in a quantitative manner,
the mechanisms which in our opinion are at play in pro-
ducing strong isospin forbidden E 1 transitions in 'sO and

Ca and to investigate whether the violation of Siegert's
theorem claimed above is indeed the only possibility con-
sistent with the analysis of the electroexcitation experi-
ment in ' 0.

The plan of our Rapid Communication is as follows.
I

We first concentrate on calculating the isoscalar electric
dipole transition densities in I@co and 3hco spaces, em-
phasizing the importance of including the latter space to
describe correctly electron-scattering form factor in ' 0
and ~Ca. We then discuss the importance of including,
through isospin mixing, giant dipole and monopole com-
ponents if agreement with observed lifetimes has to be
achieved. Finally we show that the same microscopic cal-
culation which yields broad agreement with (e,e') and
lifetimes results in ' Q and Ca also asserts the validity
of Siegert's theorem. Since this conclusion is at variance
with the recent photoelectric experiment in ' Q we con-
clude by suggesting that any definitive claim regarding a
violation of Siegert's theorem should await the availability
of experimental results at low momentum transfer.

Isoscalar dipole transitions between T 0 states in
self-conjugate nuclei are well known to be forbidden in
first order because of translational invariance of the
many-body system. Transitions can be induced by virtue
of the higher order terms in qr of the transition operator

egj~(qr;)Yl(f;) 2 [1+i3(i)] eg —, (qr; —
—,', q r; + )Y~(f;) —,

' [1+t3(i)].

In the long wavelength limit, however, isospin mixing in

the dominant T 0 configuration has been invoked as the
predominant mechanism producing the anomalously fast
E 1 transitions observed in closed shell nuclei like 'sQ and

Ca (Refs. 2 and 7).
We first discuss the importance of including the higher

order term r Y~(r) of Eq. (1) in the calculation of the
transition density of the isoscalar dipole state. Note that
the r Y~(r) operator excites both 1 hco and 3h, co

configurations and that a method has to be devised to re-
move the spurious components induced through the space
extension. We will, in what follows, consider the isoscalar
dipole operator to be

A

M, -, (f)-g [r,'Y,o(r, ) —r)r, Y„(i;)],
where ri will be determined later as satisfying the condi-

where a(t) denotes the time-dependent perturbation am-
plitude. The transition density we wish to calculate will
be related to the external perturbation by the continuity
equation

a(t ) 10r+ 3r
Br

ri po Yi (fo), (4)
r)r

where po(r) denotes the ground state mass density. We
can now use the equation describing translational invari-

I

tion of translational invariance Follow. ing Mottelson,
let us assume that the system is excited by an external
perturbation

(3)
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ance

„bp(i)rY~o(i)d r" 0 (5)

to determine the value of the ri coefficient in Eq. (2), namely ri = —', (r )z. The E 1 transition matrix elements can now be
obtained. These are

(1, 1 T OIM(n 0)IO) 5Z((r )~ —(r )z)4z
for the M(n 0) gP-~r;Y~o(r";) operator and

(6)

1 T OIM(n 1)IO) ( —11Z(r )z+ '3 Z(r )~(r )z ——", Z(r )~) (7)

for the M(n 1) g~, [r Y~o(r";) —rir Y~o(r";)] operator.
In Eqs. (6) and (7), we used the transition operator for
protons which has both isoscalar and isovector com-
ponents, while transitional invariance is required for the
isoscalar operator by definition. The inclusion of the iso-
vector component is crucial to obtain a finite value for the
transition matrix element. In the above the amplitude a is
defined as a=9, 1 lalO) (ft/28ru)'~ with the mass pa-
rameter

h

p& PVM&+„(n 1)VrM~„(n 1)df

Z(11(r') ——", (r'&g(r'& + —", (r'4) .

Note from Eq. (6) above that the matrix element of
M(n 0) vanishes when the mean square radii of proton
and neutron distributions are the same, but that M(n 1)
remains finite when one adopts Hartree-Fock wave func-
tions, which take into account Coulomb and symmetry en-

ergies.
Finally one can write two energy weighted sum rules.

First let us consider the sum rule for the Mq-~(n 1)
operator which can be exoressed as

Mq-i(n 1) Z &ru. l«IM~-~ „(n=1)IO) I'
C, p

= —,
' (Olg [M,'„,[H,M,„]]IO)

2Z—(»("&;—'; (") ("),+ —", (r»„).
(9)

There are two ways to calculate the sum rule (9). The
first one is to use the double commutator relation, while
the other is to use the matrix element (7) with the ampli-
tude a = (ft/28m) 'i . Both methods give the same answer
[cf. Eq. (9)] which means that the collective state
IX=1,T=O& in Eq. (7) exhausts 100% of the sum rule
value. Thus, the sum rule for the operator M&-~(n =0)
can be calculated by using the matrix element (5) to be

M~-i(~=1) =gf ~.l«IM~-i, ,(n =1)lo)l'
a, p

Z'((r'& —(r'& )' (10)75
(4z)2 28

We will first make use of our calculated transition den-
sity [cf. Eq. (4)] to study the Coulomb form factor of the
isoscalar 1 states in ' 0 and Ca. Hartree-Fock densi-
ties calculated with the SGII interaction' were employed

I

to determine the proton densities. These are compared
with the experimental results of Buti eral. obtained at
MIT-Bates. As can be seen in Fig. 1, very satisfactory
agreement is achieved in both shape and magnitude for
the 0+ 1 transition density in ' 0. Similar good
agreement is obtained in the oCa case. Note that these
isoscalar dipole transitions exhaust 9% and 20% of the
M~(n =0) sum rule in ' 0 and " Ca, respectively. In that
context these 1 states can be viewed as fairly collective.
Note also that the inclusion of the 3hro space is crucial in

obtaining reasonable agreement with data since as was
noted already by Arima, Manakos, and Strottman' calcu-
lations in the I hru space alone produce form factors which
are i order of magnitude smaller than experiment Note.
also, however, that, although the Coulomb form factor is
non-negligible at the photon point, the calculated transi-
tion strengths are too small by nearly a factor of 5 com-
pared to experiment. This is to be expected since the only
isospin mixing included so far is due to the diff'erence be-
tween proton and neutron density distributions. Isospin
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FIG. 1. Comparison of the calculated transition charge densi-

ty for the E1 (0 1, T 0) transition in '60 (continuous
line) with the one extracted from the MIT data (dotted area
curve). The agreement between theory and experiment is quite
satisfactory except for some deviation at around R-3.2 fm.
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mixing affecting initial and final wave functions is missing
so far and we shall now endeavor to include it specifically
in the E1 calculation.

Like most recent theoretical estimates of isospin mix-
ing, we will use first order perturbation theory to include
the Coulomb interaction V, . As far as we are aware, how-
ever, no serious attempts have been made to include iso-
spin mixing in the ground state wave function, although,
as we shall see, this proves to be a major contribution to
E 1 rates. We then write for the initial and final states

IT-O, J &-IT-O, J &+CIT-I,J &,

with the isospin mixing amplitude C determined by

&T 1J IVIT OJ&
C E(T-0)-E(T-1) (12)

In order to avoid double counting with Hartree-Fock
states, we use the harmonic oscillation model to determine
the excited state wave functions, taking into account
configurations corresponding to Ihip and 3hip excita-
tions.

The E 1 transition matrix element now contains contri-
butions from coupling to the giant dipole and giant mono-
pole states, i.e.,

(0(EI)(T-O,O+&-&T-O, I ~O(EI)[T-O,O+&+C(I )&T-l, l ~O(EI))T Q, Q+&

+C(0')&T-O, I -)0(EI)~T-1,0'&+" . (13)

The transition matrix element of the first term on the
right-hand side (rhs) of Eq. (13) is estimated by using the
Hartree-Fock transition density instead of the harmonic
oscillator one. In this way, we can separate the effects of
isospin mixing due to the single particle wave functions
from those of the random-phase approximation ampli-
tudes due to the Coulomb interaction.

Using a simplified Skyrme interaction

V(r ~, r2) tp(1+xpP )b(r ~

—r2)

+ 6 r3pp(1 +x3P )b(r~ —rp)

with a tp coefficient chosen to bring the energy of the
spurious state to zero, we find the perturbation amplitudes
to be C(I ) S.1x10 4 and C(Q+) 3x10 for ' 0
and C(1 ) 7.2 x 10 and C(0+ ) 1.4 x 10 2 for

Ca. The larger values for the C(0+) mixing amplitudes
should translate into a fairly large contribution to El
rates coming from monopole resonance coupling. Indeed
as we observe in Table I, the monopole mixing contribu-

I

I

tion is by far the largest and is instrumental in bringing
the total calculated E 1 matrix element within a factor of
2 from experiment. This is all the more remarkable if one
notices that this result comes from a strong cancellation
between the two isospin mixing contributions. On the oth-
er hand, these isospin mixing contributions do not appreci-
ably modify the calculated form factors of Fig. 2.

Let us now finally come back to electron scattering
form factor problems and the purported violation of
Siegert's theorem. As is well known, Siegert's theorem
states that at small q the transverse electric form factor is
directly proportional to the Coulomb form factor and as-
sumes for this that the magnetization current contribution
to the transverse component is negligible. Siegert's
theorem then allows one to convert the longitudinal form
factor (or transition probabilities) at the correspondingly
small q to a lifetime. To be more precise we have derived
from the general expression" for the transverse form fac-
tor ET its expression in our particle-hole basis to be

1 (qr)'+'
X+ I (2)j,+3)t!

—mf;e;(Z+ I )&J21
(qr)"

FT &(Jzi i
' »I I Tit IO&u

1

q A. A, +I

2mc (2A, + I )!!8r Br (2&t. + I )!!

2mc

The first term on the rhs is the Siegert term and its ratio to the Coulomb form factor can be calculated from"

)/2

FT(q) — ' F,(q) .

In our case rof; 0.036 fm ', X 1 and in the range q =0.2-0.3 fm we obtain 2(cof;/q) —4%. The second term (with g&

as multiplicative factor) yields a negligible contribution due to the cancellation of two derivative terms. Finally one could
expect a larger contribution coming from the g, term since g,

' -4.7, however, our calculation shows that this third term
is less than 10% of Siegert's term at q-0.25 fm ' and much smaller at the photon point because of the q dependence.

TABLE I. Calculated contributions to the isoscalar E1 matrix elements in ' 0 and Ca compared to
the value extracted from the lifetime measurements. All units are in e fm.

16O

Ca

H-F density

—3.15x 10
—2.52x 10

Dipole mixing

8.08 x 10
6.30X 10

Monopole mixing

—1.11 x 10
—1.12x 10

Sum

—6.17x 10
—13.1 x 10

Experiment

12x 10
7.1X10 '
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FIG. 2. Calculated and experimental cross sections (divided

by the Mott cross section) for longitudinal excitation of the (1
T 0) level at 7.117 MeV (data and calculation are normalized
at q 0.4 fm '). The lower scale is valid for the low-q data, the

upper scale for the whole q range. The calculated cross section
is denoted by a continuous line, together with two parametriza-
tions of the fit to Friedrich and Voegler data: the dashed curve
represents a transition density extending out to a cutoff radius
R, 14 fm with the photon point and g' 105, whereas the dot-
ted curve corresponds to R, 8 fm, without the photon point
and Z' 101.

O. I

Thus, altogether, our calculation for the ratio between
magnetization and convection currents yields a value of
the order of a few percent for both 'sO and Ca 1 form
factors, i.e., no detectable violation of Siegert's theorem.
Note that this result is in agreement with the Darmstadt

Ca data which also asserts the validity of Siegert's
theorem in that case. Our result also agrees with the Ca
data as far as the magnitude of the convection current is
concerned since the Darmstadt group reports an effective
charge due to convection current of 0.5, whereas our DCa

calculation which exhausts 20% of the sum rule, yields e,tt
(convection) (0.2) 'i 0.45.

Let us now examine the possible reasons for differing

with Friedrich and Voegler on whether Siegert's theorem
applies to the isoscalar E 1 decay in ' 0 or not. Prior to
the photoelectric experiment of Friedrich and Voegler a
measurement by the Darmstadt group had revealed a
destructive interference of T I and T=0 contributions
leading to a zero in the form factor at q =0.17 fm ' (see
Fig. 2). Because of this zero one cannot extrapolate the
measured form factor smoothly down to the photon point
at q„0.036 fm '. Friedrich and Voegler have per-
formed a flexible Fourier-Bessel expansion of their data
using different cutoff radii. They make the valid point
that their analysis depends as expected on the cutoff radii;
using R, 14 fm allows, for instance, one to describe the
photon point results and (e,e') data simultaneously but
demands a cutoff radius which these authors deem unreal-
istic. Using R, 8 fm, however, yields a situation where
the lifetime data determined from (ee') cross sections (in-
cluding Friedrich and Vogler's results) are deemed incom-
patible with the (y, y) measurements. Also, one should
notice that Friedrich and Voegler have adopted the MIT-
Bates results in performing the longitudinal-transverse
separation. Although as stated by these authors, this pro-
cedure could cast some doubt on the details of their
analysis, it does not modify their general conclusion re-
garding Siegert's theorem since the transverse contribu-
tion they used is less than 5% for all data points. Still in
view of the fact that the lowest momentum available to
Friedrich and Vogler's analysis corresponded to q 0.218
fm ' it would seem appropriate before casting final
judgement of the validity of Siegert's theorem to solicit
measurements at small momentum transfer with the
specific aim at determining independently the longitudi-
nal-transverse separation. In that regard a recent (y, y)
experiment by Moreh et al. ' which yields satisfactory
agreement with the direct lifetime measurement is of in-
terest.
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