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Linear relation between deuteron matter radius
and the scattering length
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We explain the empirical linear relations between the triplet scattering length, or the asymp-
totic normalization constant, and the deuteron matter radius using the effective range expansion
in a manner similar to a recent paper by Bhaduri et al. We emphasize the corrections due to
the finite force range and to shape dependence. The discrepancy between the experimental
values and the empirical line shows the need for a larger value of the wound extension, a param-
eter which we introduce here. Short-distance nonlocality of the n-p interaction is a plausible
explanation for the discrepancy.

I. INTRODUCTION

Some time ago we found an empirical linear relation
between the deuteron mean square matter radius r and
the triplet even eft'ective range at, obeyed by all the "re-
alistic" potential models of the nucleon-nucleon interac-
tion which we had examined. This relation is displayed
in Fig. 1. The experimental values of these quantities lie
3 standard deviations oA' the line. While we did not have
a theoretical derivation of the linear relation, it seemed
clear that the discrepancy was significant, and pointed to
a surprising failure of the nonrelativistic potential mod-
els to explain deuteron properties in conjunction with the
low-energy scattering data.

Recently, Bhaduri et al. 2 have found a partial explana-
tion for this linear relation. They presented an analytic
argument, backed up by some specific examples using a
variety of simple potential models. Specifically, they ob-
tained

—,'(1+ ,'zB + —2'zs —+ )(1+24rl'), (1)
at

where zs = pjat 0.33 is the ratio of the effective
range to the scattering length in the triplet even state;
see Eq. (6) below. We have a somewhat simpler deriva-
tion of their result, to which we have added the correction
for the finite range of the nucleon-nucleon force. This al-
lows us to give a complete explanation for the empirical
linear relation. AVe find that the slope of this line is very
sensitive to the "healing function, " and in particular to
the "wound extension" A', which are defined below. We
establish that the experimental r and at require a larger
value of I~ than is obtained from the standard potential
models. Recently I&ermode et aI,. have constructed a po-
tential model which incorporates short range nonlocal at-
traction, which does reproduce the experimental radius,
and correspondingly the required large I~. This points to
short-distance nonlocality as a plausible explanation for
the discrepancy. Such nonlocality arises from coupling of

the nucleon-nucleon channel to exotic components of the
deuteron wave function, which may be either isobars or
explicit quark degrees of freedom.

II. ASYMPTOTIC RELATION FOR SQUARED
MATTER RADIUS

A. S wave only

The important point in Ref. 2 was to use an expansion
around p = 0. This is the zero-range approximation,
given by a boundary condition at r = 0,

This implies that the scattering length is aq ——1/cr, while
the deuteron wave function is

u(r) = Age " —= Asu(r),

with

~s
2A

The mean square radius is

(4)

&0=—,2 1
4 Asu (r)r dr

S
2 a2

16o.3 8

This is the leading term in their expansion. It reflects
the fact that the radius and the scattering length are
two measures of the size of the n-p system at low energy.
The scattering length at measures the decay length of
the zero-energy wave function, while ( r ) measures
that of the wave function squared. This accounts for one
factor of 2. The additional factor of 4 comes because the
radius is measured from the center of mass, while at is a
separation distance.
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FIG. 1. The empirical linear relation between the scattering length a~ and deuteron matter radius r as presented in Fig.
6 of Ref. 1. The experimental values with their uncertainties lie in the shaded box which lies about 3 standard deviations oR'

the empirical line.

B. Coupled S and D waves From effective range theory, one has

In the general case, including tensor forces, one must
distinguish between three different effective ranges.

1
k cot b

—= y(k ) = ——+ ~ pok —k pzg(k )
Qg

defines the zero-energy effective range po. The phase
shift b~ is the Blatt-Biedenharn eigenphase, and the di-
mensionless function g(kz) allows for corrections to the
shape-independent approximation as discussed recently
in Ref. 4. If instead we expand y(k ) around the deuteron
pole, one has

y(k ) = —n+ -,'p (k2+ n')+. . . .

This effective range pg is the slope of y at k = —n . A
third effective range is the slope pm of the chord joining
k~ = 0 to k2 = —n~. One has

Cl = + ~P~Cl
aq

In practice, the three effective ranges are not exactly
equal, but the differences between them are tiny and
give information on the degree of shape dependence in
the neutron-proton interaction. ~

—,'pg = H(r)dr,
0

where the "healing function" is defined by

Since the deuteron wave function, normalized to unity

[u (r) + w'(r)]dr = 1
0

has the asymptotic limits

u(r) Ase " = Asu(r),

w(r) ~ Asr/w(r),

with

3 31u(r)—: 1+ —+ —
~

e ', z = nr,
z z

(12)

H(r) will vanish at large distances beyond the centrifugal
barrier. But at distances of order 5 fm, where w(r) is
converging towards ur(r), one has w(r) = 6u(r), which
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contributes a negative tail to the healing function. (See
Fig. 2, below. )

Finally, we need the expression for the mean square
matter radius of the deuteron, which is

of the deuteron, which makes z & 1. We believe that our
choice gives the simpler expressions.

Going beyond the shape-independent approximation,
from Eqs. (6)—(8) one finds that

s , [I."g(e')] ~—:dz', .j (19)

+ & br'). (13)

2''
As( I +n ) = (14)

We define our expansion parameter to be zd = np~. Also
from Eq. (8) we have

—= n(1 —2np ) .
1 1

Qg

This involves z~ = np~ zq. Then from Eqs. (13)—(15)
one has

Since & r &I depends only on the asymptotic wave

function, it will have the same expansion as found in

Ref. 2. This is derived as follows. From Eqs. (9)—(11)
one obtains

1 1 1

A2(1+ ris)
'

giving

Using the estimate pd —p~ = 0.012 6 0.002 fm, deduced
from systematics of potential models, a the coefFicient d
has the small value 0.046. Nonetheless, we shall see that
accurate work requires that we treat zg and z~ as dis-
tinct.

III. HEALING FUNCTION
AND WOUND EXTENSION

1 —r/pq, 0&r& pd"- 0, )p.
This gives

(20)

The correction to the above result, Eq. (17), due to the
difference between the exact and asymptotic wave func-
tions, is given by an integral over the healing function,
as in Eq. (13). Since u(r) and w(r) vanish at the origin,
H(r ) is positive at small distances, making the correction
to the mean square radius negative. H(r) is constrained
to have its area equal to half the effective range. The
simplest model which satisfies the required properties is
a linear one:

A~(1+ (7a) 1 1 1

16na 8 n~ (1 —zg)
'

Treating the two effective ranges as equal,

(16)
1 1 Az~&b~ )= ———
8 n2 (1 —zg)

with K = si. In general,

«'& 1(1—z /2)'
a2 8 (1 —zg)

1 z2=-
I
1+=, ('-.)) (17)

pmz„,(1 —2z ) = —zip .
a&

(18)

One then sees that the z~ terms are the same, while the
cubic term has coefFicient

&
in our series, and 2 in theirs,

in the shape-independent approximation. Whether one
uses z (or zd) instead of zB in the expansion is largely
a matter of taste, because the three effective ranges differ
among themselves only in terms of order za (see below),
and np differs from p/ai only in order z2. In either case
the physical basis for the expansion is the weak binding

where z = o,p 0.4. This shows that in the shape-
independent approximation, there is no term linear in z
in the expansion, and also that the higher order terms in
the expansion essentially double the result of the z~ term.
Bhaduri ef al. did not give a closed form for the series
despite making essentially the same approximations as
we have introduced. Their expansion parameter xB is
related to ours by Eq. 15,

4 oo

Ii = —
a H(r)r dr

Pd 0
(22)

We call this parameter the "wound extension, " as it is
a dimensionless measure of the radial distribution of the
healing function. Since the coefFicient of the z& term in
Bhaduri's expansion [Eq. (1)] was ~, I~ = ~s represents
a major reduction in its value. Ericson, in his I&arlsruhe
conference talk used a Hulthen model for the wave func-
tion, and found li = s. (There is a misprint in that
paper. ) Other simple models expressing H(r) by expo-
nentials give IC ranging from ~ to l. It is this finite-force-
range correction, then, which is primarily responsible for
reducing the mean square matter radius below its asymp-
totic value. This shows why, in the particular analytic
models presented in Ref. 2, the coefticient of the cubic
term was always much smaller than 2. (In our expan-
sion, the cubic coe%cient is &, so the reduction by A' is
even more significant. )

For a more realistic estimate of ( br ), we use the
Paris wave function. 7 Figure 2 is a plot of r H(r) The.
area under H(r) is by definition 2pg, and comes mainly
from small r. When the r weighting is factored in, the
contributions from the "core" (r & 0.4 fm), "intermedi-
ate, " and "outer" (r & 1.4 fm) regions are about 0.018,
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IV. LINEAR RELATIONS

Combining Eqs. (17) and ('21), we have
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H„(r)=— (24)

This should be valid for z & zo 1, where z = nr.
Integrating, we find

2

bIi„zz — e "(12zo+ 36+ 36/zo) . (25)1+ 92

The numerical value is certainly sensitive to the cutoff
point, but for zo ——1, we have —bIi«z& ——11.4g2. If one
wishes to extend the integration in to the origin, one must
drop the most singular piece of Eq. (12), which leads to
the result, 24gz, of Bhaduri ef al. s So we agree that a
part of the finite-force-range correction is sensitive to rl,
rather than zs&, but only about half the amount proposed
earlier. The remaining part of I~ which does scale with

z& has to be larger to compensate. The last factor in
Eq. (23) should be replaced by

(1 —I~zq) = (1 —Ii„zq+Cg ) . (26)

We computed IC for a large selection of well-known po-
tential models, finding IC' values in the range 0.19 & I& &
0.27, as shown in Table I. The bulk of the dependence
on zg could be accounted for by Eq. (26). By choos-
ing C = 14 [corresponding to zo —0.91 in Eq. (25)], we
found the least variance in the value of I&&, giving the
average value Kz —0.395 + 0.007. This agrees well with
the estimate given above. [We omitted the Reid Soft
Core (RSC) and its alternate (RSCA) potentials from
the average, because they have shape-dependent terms
quite different from the other models, as seen in Fig. 1 of
Ref. 5.) Taking the square root of Eq. (23) gives

1 —I»„z'„+Cg' .
1 (1 —z /2)
8 (1 —zg)

(27)

When a~ varies, z also varies. The empirical straight line
in Fig. 1 was only observed over a range of variation in
aq of about 5%, so it should be adequate to examine only
the first derivative. Because the binding energy of the
deuteron is essentially the same for all empirical potential
models, we can use Eq. (15) to establish that

& r~ & 1(1—z /2)z,
(1 —I» z~

1~21( 4z +z~ —z

)
This is almost our final result. For any potential
model, the calculated values of the "wound extension"
Eq. (22), radius, and scattering length, will precisely sat-
isfy Eq. (23). However, in order to understand the slope
of the empirical r~ vs a& line, we must consider a fur-
ther refinement to the definition of the parameter I». In
the asymptotic region beyond about 5 fm, the "healing
function" H(r) is negative. We call this the "centrifugal"
contribution. From Eqs. (10)—(13) we have

~zm

Baq a
(28)

Since zg occurs in two places in Eq. (27), we need its
derivative as well. According to Fig. 1 of Ref. 5, the two
derivatives differ by a nearly constant factor f 0.89.
This leads to

Dp~ Tm 11+
Bag a a~ aaq (1 —zg) (1 —z /2)

3fI&pzq
(1 —I&pzs„+Cg~)

The term in square brackets represents the correction
to the slope due to the variation of z. Without it, the
slope of the a~ —r~ line [the inverse of Eq. (29)] would
differ by only 1% or 2% from the value +8. With it, the
slope is lower by 10—20%, depending on the value of I~&.
The terms linear in z give a 30% reduction, but this is
moderated substantially by the term involving I~&. From
Fig. 1, one sees that the empirical slope is 2.55, about
10% smaller Usi.ng Eq. (15), we can rewrite Eq. (29) in
the form

GK4
GK5
GK2
GK9
GK1
RSC
ESCA
GK6
RHC
FL15
FL14
FL13
GK8
FL12
FL11
HW
FL10
FL9
FL7
FL4
FL5
FL6
FL8
FL1
FL2
FL3
PARIS
TRS
GK3
TS
GK7

0.3944
0.3949
0.3958
0.3972
0.3977
0.3988
0.3990
0.3997
0.4028
0.4046
0.4062
0.4074
0.4076
0.4083
0.4083
0.4088
0.4090
0.4090
0.4095
0.4097
0.4097
0.4097
0.4097
0.4099
0.4099
0.4099
0.4113
0.4136
0.4197
0.4245
0.4252

0.026 77
0.026 62
0.026 93
0.026 70
0.027 13
0.026 22
0.025 96
0.026 76
0.025 90
0.027 23
0.027 02
0.026 86
0.026 54
0.026 67
0.026 63
0.026 42
0.026 49
0.026 48
0.026 28
0.026 19
0.026 20
0.026 21
0.026 28
0.025 81
0.026 05
0.026 09
0.026 08
0.026 22
0.025 95
0.026 22
0.025 64

0.2299
0.2386
0.2454
0.2379
0.2179
0.1918
0.2005
0.2461
0.2325
0.2361
0.2418
0.2458
0.2444
0.2502
0.2507
0.2469
0.2543
0.2546
0.2596
0.2614
0.2614
0.2613
0.2593
0.2707
0.2649
0.2650
0.2615
0.2566
0.2646
0.2716
0.2667

0.3934
0.3997
0.4091
0.3972
0.3818
0.3435
0.3490
0.4031
0.3763
0.3928
0.3943
0.3952
0.3900
0.3965
0.3965
0.3900
0.3979
0.3981
0.4004
0 4010
0. 4011
0.4012
0.3999
0.4061
0.4028
0.4033
0.3983
0.3926
0.3922
0.3974
0.3864

TABLE 1. Values of zg, g, and integral I& [Eq. (22)] for
various well-known potential models. E„is computed for each
model taking C = 14. The mean value of A& is 0.395 + 0.007.

Potential
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clr m

c)ar a
(1 —z /2) f

at

1 3I~pz~~

(1 —z~) (1 —lipz~+crP) ) '

(30)

With the values of Ii.z and C fitted above, we find excel-
lent agreement with the empirical slope of the at —r
line.

What we conclude, then, is that the zero-range limit
would give a slope of y 8 and a strictly linear relation-
ship. The finite-range correction removes the linearity
and decreases the slope in the region where the empirical
potentials have been fitted. The exact amount of reduc-
tion is sensitive to the finite-force-range correction, which

is an oA'-shell eKect. The slope observed for the "realis-
tic" potential models implies that ICp 0.4, rather larger
than the total I~ value for the Paris potential, and the
difference is due to the "centrifugal" contribution. The D
state is thus seen to make the asymptotic radius a better
approximation to the complete radius, since it reduces
the finite-size correction.

Finally, we remark on the second linear relation dis-
cussed in Ref. 1, that between the asymptotic normaliza-
tion constant As and the matter radius. From Eqs. (16)
and ('21) one can write

& r' &= s (1 —It'„z'„+Cr)') .
Azs(l + rl')

(31)

Taking the square root, one has Ap 0.45m, in good
agreement with points on the line in Fig. 7 of Ref. 1.
Taking into account the dependence of A~ on z~, we find
for the slope

t9As As ( 3I&'„z„(1—zq)
Dr n r i, (1 —Iipzs„+Cruz) y

In the figure, the slope is about 17% greater than the
ratio, and this is well reproduced with I~„=0.395 as
deduced above.

The empirical linear relations obeyed by the realistic
potential models appear then to have their explanation in

the weak binding of the deuteron relative to the range of
the nuclear force. The matter radius is close to its asymp-
totic value, the deviation depending sensitively on the de-
tails of the healing function. To reduce the radius to its
experimental value, without altering at, requires a sub-
stantial It value. The peak in r2II(r) must be moved out

relative to its location for the Paris potential. Kermode
et al. have managed to do this by employing a separable
attraction at small distances. Their u(r ) has a lower and
broader maximum just outside the core radius than for
a purely local interaction. This may be the clearest ev-
idence for a nonlocal component of the nucleon-nucleon
interaction. The physical basis for this nonlocality lies in
coupling of the NN channel to exotic components of the
deuteron wave function, but whether these are isobaric
components or quark substructure of the nucleon is not
revealed by this evidence. In any case, the fact' that the
experimental radius and scattering length do not lie on
the empirical line requires a larger I& than is provided by
the usual local potential models, closer to the value 0.47
given by the Butler-Sprung wave function.

V. CONCLUSION

In summary, we have improved upon, and simplified
the derivation of, the expansion of Bhaduri ef a/. for
the asymptotic radius. We have emphasized that the
finite-range correction alters this expansion in order z,
as already pointed out by Ericson. s We have taken into
account the differences among the effective ranges and
shown that the centrifugal barrier in the D state reduces
the correction to the asymptotic radius over what would
be expected in a purely 9-state model. Finally, we have
shown that when one takes into account the variation of
zg with respect to at, the expansion can indeed explain
the empirical linear relations found by us some time ago.
We emphasize that the developments in this paper de-

pend only on analyticity of the scattering matrix and
the existence of the healing function, but not on the use
of the Schrodinger equation. Hence, the conclusion that
the data require a larger value of the wound extension
is independent of the model which led us to discover the
linear relations among these observables.
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